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Abstract

Interference mitigation techniques are essential for improving the performance of interference limited wireless
networks. In this paper, we introduce novel interference mitigation schemes for wireless cellular networks with space
division multiple access (SDMA). The schemes are based on a virtual layer that captures and simplifies the complicated
interference situation in the network and that is used for power control. We show how optimization in this virtual
layer generates gradually adapting power control settings that lead to autonomous interference minimization.
Thereby, the granularity of control ranges from controlling frequency sub-band power via controlling the power on a
per-beam basis, to a granularity of only enforcing average power constraints per beam. In conjunction with suitable
short-term scheduling, our algorithms gradually steer the network towards a higher utility. We use extensive
system-level simulations to compare three distributed algorithms and evaluate their applicability for different user
mobility assumptions. In particular, it turns out that larger gains can be achieved by imposing average power
constraints and allowing opportunistic scheduling instantaneously, rather than controlling the power in a strict way.
Furthermore, we introduce a centralized algorithm, which directly solves the underlying optimization and shows fast
convergence, as a performance benchmark for the distributed solutions. Moreover, we investigate the deviation from
global optimality by comparing to a branch-and-bound-based solution.

Keywords: Cellular interference management; SDMA; Distributed algorithms; Autonomous inter-cell coordination;
Power control; Network utility maximization

1 Introduction
Increasing bandwidth requirements, not least due to the
fast growing popularity of handheld devices with high data
rate consumption, bring cellular networks to the brink
of their capacity. Until recently, an end to the growth
of this demand is not yet in sight. In order to optimally
exploit the available bandwidth, current cellular networks
experienced a paradigm shift towards frequency reuse-
1. Consequently, this leads to an increased susceptibility
to interference such that current and future cellular net-
works are usually interference limited. This situation is
aggravated by a trend towards ever smaller cell sizes. Espe-
cially users at the cell-edge are affected by high inter-cell
interference (ICI). In theory, fully coordinated networks,
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where neighboring base stations act as a large distributed
antenna array, promise a vast boost in performance [1,2].
However, this makes great demands on synchronization
and backhaul bandwidth. In fact, the promised gains from
such schemes turn out to be hard to implement in prac-
tice [3]. As a consequence, distributed schemes for inter-
ference mitigation, incorporating joint scheduling and
adaptive power allocation, are of utmost interest. How-
ever, due to mobile users and varying channel conditions,
such algorithms have to be dynamic and able to operate
autonomouslya. Moreover, future cellular systems, includ-
ing pico and femto cells, must be self-organizing to main-
tain flexibility and scalability. Therefore, self-optimizing
interference coordination schemes are needed.
In this paper, we introduce such schemes with spe-

cial focus on cellular space division multiple access
(SDMA) networks. All proposed algorithms can be seen
as applications of a general radio resource management
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framework that configures and optimizes network opera-
tion autonomously and that allows us to incorporate ser-
vice requirements and performance targets. The frame-
work combines the following three essential ingredients:

(i) Network utility maximization (NUM). By
formulating a network utility maximization problem,
we steer the system to a desired operating point. This
includes fairness goals (like proportional fair and
max-min).

(ii) Virtual model. On top of regular scheduling and
resource allocation, we maintain a virtual model of
the network that captures and simplifies the
complicated interference situation in the real world.
It comprises a static ‘cooled-down’ version of the
network based on long-term gains, thus suppressing
the influence of fast-fading. We use this model to
obtain granular power control decisions. Thus, it can
be seen as a new layer for long-term resource
allocation decisions in a cooperative way (including
corresponding message exchange).

(iii) Suitable short-term scheduling. Instantaneously, we
employ a popular gradient scheduler which is known
to asymptotically converge to the solution of the
underlying utility maximization problem. The
scheduler has to take the power constraints into
account (which can be strict or average constraints)
that are obtained in the virtual layer to manage
interference.

To implement this approach, we equip each base station
with an additional sector controller that requires addi-
tional (infrequent) long-term feedback from the mobiles.
Note, that this is a practical assumption since cur-
rently, standardized schemes (such as long-term evolution
(LTE)-advanced) also consider advanced feedback con-
cepts that are not limited to the serving base station
[4]. Moreover, we permit a limited message exchange
between the sector controllers. Figure 1 depicts the gen-
eral approach. Based upon the long-term feedback, the
sector controllers create and update a ‘virtual model’ of
the network. The sector controller is thereby just the
entity in each base station that takes care of all (virtual)
resource allocation and scheduling issues. The main idea
of this virtual model is to optimize over ‘virtual resources’,
based on long-term averaged versions of true variables, in
order to distributively control a rapidly changing complex
network. Thus, the virtual model captures the compli-
cated interference interdependencies in the ‘real’ network
and is used for the control and adaption of power alloca-
tions. The virtual model allows each sector to efficiently
compute estimates of the gradient of the system utility
function with respect to transmit powers of particular
resources in the sector, thus allowing local maximiza-
tion of the overall utility. More precisely these estimates

are eventually generated by a ‘virtual scheduling’ process.
The virtual model and this virtual scheduling process can
be considered as an additional virtual layer for resource
allocation. The idea is that if user rates improve in the vir-
tual layer, they also improve in the real network. Instead
of exchanging channel state information (CSI) with all
relevant base stations, only the (gradient) information
(called sensitivities) that is obtained in the virtual layer
needs to be exchanged. The virtual model, being based
on average quantities, can be further justified since the
goal of the algorithm is to adapt the transmit power lev-
els to average interference levels and not to track fast
fading.
Asmentioned before, we focus on fixed codebook-based

schemes in SDMA networks. In particular, we assume
that each base station maintains a fixed codebook of a
certain size comprising precoding vectors, called ‘beams’.
These beams can be used to support multiple users on
the same time-frequency resource. Using fixed codebooks
is a practical assumption and allows us to compare our
algorithms with practical schemes used in current cellular
systems.
The optimization within the virtual layer can be orga-

nized either in a centralized or in a distributed manner.
Clearly, a distributed implementation is favorable but
in order to accurately quantify the tradeoffs involved,
we also investigate a centralized solution. This does not
only provide a valuable benchmark for the distributed
algorithms, but may also be a feasible option for small
networks, where a central controller is indeed possi-
ble. Our centralized baseline algorithm is based on an
alternating optimization approach, solving scheduling and
power optimization in the virtual control plane sepa-
rately. Since user rates are strongly coupled via transmit
powers, we employ a successive convex approximation
technique to tackle the inherent non-convexity. Due to
the non-convex nature of the underlying optimization
problem, global optimality cannot be guaranteed. There-
fore, we additionally assess the deviation from global
optimality by comparing our approach to an optimal solu-
tion based on branch-and-bound (BNB) in a simplified
setting.

1.1 Related work
There is a significant amount of research on interference
mitigation in cellular networks [5], which is often treated
as a specific aspect of self-organization in cellular net-
works. A comprehensive survey on this is provided in
[6]. A straightforward approach to avoid interference is
to use a frequency reuse factor greater than one or some
fractional frequency reuse scheme [7]. Another line of
research targets reuse-1 networks and interference mit-
igation by power control and resource allocation. There
have been a variety of suggestions for joint multicell power
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Figure 1 General network control approach. Each sector controller maintains a virtual model of the network based on long-term feedback.
Optimization in this model generates sensitivity messages which are exchanged among sector controllers and which are used to adjust power
allocations.

control and scheduling in cellular networks such as [8,9]
(see also [10] for an overview). Multicell coordination via
joint scheduling, beamforming, and power adaptation is
considered in [11]. Thereby, fairness requirements (lead-
ing to concave utility functions) are fundamental for
current and future cellular standards. The work [12] con-
siders joint power allocation and user assignment to cells
in the NUM context, taking into account a mixture of
concave and non-concave utilities. In [13], a gradient
algorithm-based scheme for self-organizing resource allo-
cation in LTE systems is proposed. However, a multitude
of information has to be exchanged between coordinating
sectors.
Although many of the aforementioned references con-

sider distributed schemes, none treats resource allocation
and interference management in multiuser MIMO sys-
tems. By contrast, our framework explicitly aims to exploit
the freedom in terms of resource and power allocation
offered by SDMA. Thereby, our framework builds upon

and extends the framework introduced in [14,15] for
single-antenna (SISO) networks.
It is commonly accepted that the underlying optimiza-

tion problems, which are non-convex in general, can be
solved optimally only for a limited set of problems and
utilities in reasonable time. Existing solutions in cellu-
lar networks often rely on uplink downlink duality [16].
Since they attempt to solve such non-convex problems
directly, successive approximation techniques become an
increasingly popular tool to treat this non-convexity, used
for example for power control in DSL [17] and multihop
networks [18]. Global optimality is often achieved using
branch-and-bound-based approaches [19,20] or mono-
tonic optimization [21], however at a high computational
complexity. Other directions include interference pricing
[22,23] or game theoretic approaches [24]. Only recently,
distributed coordination schemes in cellular networks
have gained increasing popularity [9,14,25] due to the
high complexity of centralized approaches. For example,
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[26] considers the derivation of transmit beamformers,
also based on interference prices, for dense small cell
networks.

1.2 Organization
The paper is organized as follows. In Section 2, we
introduce the considered system model, introduce the
notation, and describe the optimization problem that we
address. In Section 3, we present a virtual control layer for
solving this problem and introduce three distributed algo-
rithms that are based on different realizations of this vir-
tual control plane. In Section 4, we propose an alternative
centralized scheme, while in Section 5, we present an opti-
mal solution based on branch-and-bound. In Section 6, we
present system-level simulation results that evaluate the
performance of the distributed algorithms and moreover
investigate simpler scenarios to compare these to the cen-
tralized and the optimal baselines. Eventually, in Section 7,
we state the most important conclusions.

2 Systemmodel and notation
We consider the downlink of a cellular OFDMA network,
where each cell is sub-divided into three sectors. In total,
we have M sectors m ∈ {1, . . . ,M}. Each sector is served
by a base station having nT transmit antennas with a cor-
responding sector controller responsible for user selection
and resource allocation. There are I users randomly dis-
tributed in the system, each equipped with nR receive
antennas. In the following, we assume nR = 1. We assume
that each user has pending data at all times. Let Im be the
number of users associated to sectorm.
We assume slotted time with time slots t = 1, 2, 3, . . .,

called transmission time interval (TTI). In reference to

LTE specifications, orthogonal frequency-division mul-
tiplexing (OFDM) sub-carriers are grouped into J sub-
bands, called physical resource blocks (PRBs)b. For the
duration of a time slot, the system is in a fixed fading
state from a finite set F . Note, that the assumption of
finite fading states is made to foster the analysis. In our
simulations, however, we evaluate the performance using
established 3GPP channel models (cf. Section 6). Never-
theless, the assumption of a finite set of fading states is
often used in the literature [27] and can be further justified
by the observation that, first, the measurement accuracy
of the user devices is limited and, second, there is only
a finite number of modulation and coding schemes that
the base station can choose from. Fading state l, in turn,
induces a finite set of possible scheduling decisions k ∈
K (l). We denote by π (l) the probability of fading state l
(with

∑
lπ (l) = 1). The sector controllers perform lin-

ear precoding, where precoding vectors for beamforming
are taken (as for example in LTE) from a fixed N-element
codebook CN := {u1, . . . ,uN } which is publicly known.
In the following, we identify a beamforming vector (ub ∈
C
nT ) by its index b ∈ {1, . . . ,N}. From the sector con-

trollers’ perspective, this makes a beam b on a specific
PRB j a possible resource for user selection and power
allocation. This relationship is depicted schematically in
Figure 2. Let Pmjb be the power assigned to beam b on PRB
j by base station m. This value is determined differently
in each of the presented approaches under comparison. In
summary, the (non-trivial) task of each sector controller
is to find a scheduling decision (being an assignment
of available resources on PRBs– to users) and a suit-
able power allocation, such that a global network utility
function is maximized.

Figure 2 Resource grid from the scheduler’s perspective. Resource allocation and power control can be performed on a per-PRB-per-beam
granularity.
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Eventually, we have the following additional notational
conventions. Let hmij (t) ∈ C

nT be the vector of instanta-
neous complex channel gains from base station m to user
i on PRB j (we assume frequency-flat channels within a
PRB). Accordingly,

〈
hmij (t) ,u

〉
denotes the scalar product

of (beamforming) vector u and channel hmij (t). The noise
power at the mobile terminal is denoted as σ 2. Through-
out the paper, we label vectors and matrices with bold-
faced letters. For the ease of reference, the most important
notation used throughout this paper is summarized in
Table 1.

2.1 Problem statement
The overall goal is to devise autonomous network control
schemes which maximize an overall increasing concave
utility function U . The utility function is defined as the
sum of sector utility functions Um, which are in turn
defined over average user rates X̄m. Consequently, the
problem to solve for each sector m ∈ {1, . . . ,M} is given
by

max
X̄m

∑
m

Um
(
X̄m)

(1)

s.t. X̄m ≤
∑
l

π (l)
∑
j

∑
k∈K(l)

φlm
jk

∑
b

μl
jb (k) (2)

∑
k

φlm
jk = 1, all l, j,m (3)

0 ≤ φlm
jk ≤ 1 (4)

Thereby, μl
jb (k) =

(
μl
ijb (k)

)
i∈{1,...,Im} is a vector com-

prising elements μl
ijb (k), which represent the rate that

user i is assigned on PRB j and beam b when the system
is in fading state l and scheduling decision k is chosen.
They can be zero if the particular resource is not assigned
to user i by decision k. φlm

jk denotes the fraction of time
that scheduling decision k is chosen on PRB j, provided
the system is in fading state l.
In a nutshell, we are not interested in a specific ‘snap-

shot’ of the system, but only in ergodic rates. Therefore, a
possible control algorithm should not adapt to a specific
system state but should be able to optimize the system
performance over time.
Problem (1 to 4) is solved by applying a gradient sched-

uler [28] at each time instance. The gradient scheduler
chooses the best scheduling decision k∗ according to

k∗ (t) ∈ arg max
k∈K(l)

∇Um
(
X̄m

(t)
) ∑

b
μ
l(t)
jb (k) . (5)

Table 1 Important notation

Notation Definition

Pmjb Power assigned to beam b on PRB j in
sectorm

P̄mjb Average power constraint (‘target’ power) of
beam b on PRB j in sectorm

P̄m(t) Current total allocated power in sectorm

Pmax Maximum total base station power

cjb(k, P̄mj ) Power cost/consumption of beam b on PRB j
in sectorm

Cmjb (k) Virtual power cost/consumption of sector m
on beam b and PRB j

π(l) Probability of fading state l

K(l) Set of possible scheduling decisions given
fading state l

hmij (t) Channel vector from base stationm to user i
on PRB j at time t

h̄mij Average channel from base stationm to user
i on PRB j

μl
jb(k) Vector of user rates on PRB j and beam b

given decision k and fading state l

X̄m
Vector of average total rates of users in
sectorm

φ lm
jk Fraction of time that scheduling decision k is

chosen on PRB j given fading state l

φm
ijb Fraction of time that user i in sector m is

scheduled using beam b on PRB j

Gmij Long-term gain of user i to base stationm for
his best beam on PRB j

Gmijb Long-term gain of user i to base stationm for
beam b on PRB j

Rmij (k) Virtual rate of user i on PRB j given decision k

Rj Vector of virtual user rates in PRB j

Rmijb Virtual rate of user i on PRB j and beam b

Xmi Virtual average rate of user i in sectorm

X(t/nv) Vector of virtual average rates at tth virtual
scheduling run

Fmijb SINR of user i on beam b and PRB j

D(m̂,m)
jb Sensitivity of sector m to a power change of

beam b on PRB j in sector m̂

Dm
jb Sum sensitivity to a power change of beam

b on PRB j in sectorm

nj(k) Number of beams that are activated on PRB j
if decision k is chosen

λjb(t) Dual parameter: deviation of power on PRB j
and beam b from the target value

αm
jb (k) Scales target beam powers to instantaneous

powers ‘costs’

αm
ijb ,β

m
ijb Approximation constants in concave lower

bound

The gradient scheduler tracks average user rates X̄m
(t)

and updates them after each time slot according to

X̄m
(t + 1) = (1 − β) X̄m

(t) + βJ
∑
b

μ
l(t)
jb

(
k∗ (t)

)
, (6)
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where the fixed parameter β > 0 determines the size of
the averaging window. The gradient scheduler is known
to asymptotically solve the problem (for β → 0) with-
out knowing the fading distribution. In case of logarithmic
utilities, the gradient scheduler becomes the well-known
proportional fair schedulerc.

3 Autonomous distributed power control
algorithms for interferencemitigation

We now turn to the distributed power control schemes
for autonomous interference management in cellular net-
works, which are designed to enable network entities to
locally pursue optimization of the global network util-
ity. We introduce three basic approaches. It is important
to note that all algorithms are special cases of the well-
known gradient algorithm [28,29], whose convergence
behavior has been thoroughly analyzed. Therefore, we
refrain from reproducing this theoretical analysis. How-
ever, in Section 6, for illustration purposes, we present
numerical results indicating a fast convergence behav-
ior. The main difference between the algorithms that we
propose is the granularity of power control.
The first algorithm uses an opportunistic scheduler

which only adapts the power per frequency sub-band,
which is then distributed equally among activated beams.
We call this opportunistic algorithm (OA). It leaves full
choice to the actual scheduler as to which beam to acti-
vate at what time. The scheduler can therefore decide
opportunistically (⇒ opportunistic algorithm). However,
the power budget per PRB which is distributed (equally)
among activated beams is determined by an associated
control scheme.
The second algorithm is the virtual sub-band algorithm

(VSA), which enforces strict power constraints on each
beam by requiring all beams to be switched on all the time
(with power values given by the associated control). This
has the advantage of making the interference predictable
(assuming known power values). However, it leaves only
limited freedom for the actual scheduler, whose task is
reduced to user selection for each beam. Since a beam
is always turned on, it can be treated as an independent
resource for scheduling, just like a ‘virtual’ sub-band (⇒
virtual sub-band algorithm).
The third is a hybrid approach, which permits oppor-

tunistic scheduling at each time instance but, in addition,
enforces average power constraints per beam. We call it
cost-based algorithm (CBA). It leaves more freedom for
opportunistic scheduling than the virtual sub-band algo-
rithm. In contrast to requiring all beams to be used at all
times with strict power values, we only require the target
beam power values to be kept on average. Thus, instanta-
neously, the scheduler is free to make opportunistic deci-
sions based on the current system state. In order to assure
that the average power constraints are kept, we introduce

an additional cost term into the utility maximization and
the gradient scheduler (⇒ cost-based algorithm).
We focus on the applicability in different fading environ-

ments, comparing the overall performance with respect
to a network-wide utility function as well as the perfor-
mance of cell-edge users. Thereby, we show that although
the algorithms behave differently in different user mobil-
ity scenarios, in general, it is more beneficial to impose
average rather than strict power constraints.
As we demonstrate later, the three algorithms perform

differently with different mobility assumptions on the
users. A problem that arises with increased mobility is
that the (virtual) model lacks behind the actual network
state. Especially when the controllers are restricted to
a gradual power adaption process on a per-beam gran-
ularity, they might not always be able to fully exploit
multiuser diversity. Since the proposed algorithms put
different emphasis on opportunistic scheduling in power
adaption and resource allocation decisions, they perform
differently when facing user mobility and fast fading.
Let us now turn to the control plane, the virtual layer,

of the considered algorithms. They all have the follow-
ing general procedure in common. The goal of the control
plane is to obtain estimates of the partial derivatives of
the network utility with respect to the power allocation of
particular resources and to adapt the power control policy
accordingly. These estimates can be seen as estimates of
the sensitivity of the network utility to changes of the allo-
cation strategies. Thereby, the allocation can be, as in the
OA of Section 3.1, the power allocation of a PRB which
is then divided equally among activated beams. Or it can
even be, as in the VSA of Section 3.2, the power alloca-
tion of an individual beam. Or it can also be, as in the CBA
of Section 3.3, simply an average power constraint of an
individual beam, which does not have to be kept at every
single time instance.
A further similarity between all algorithms is that in

addition to ordinary short-term CSI, the mobiles (not nec-
essarily often) report long-term feedback to their base
stations, which is then used to calculate (virtual) user
rates and, accordingly, (virtual) average rates. These aver-
age rates are a good representation of the interference
coupling throughout the network and are used to cal-
culate the ‘sensitivities’ to power changes on particular
resources in other sectors (and in the own sector). This
sensitivity information is compiled in messages which are
exchanged between the sectorsd. Upon reception of the
message vectors, the sector controllers are now able to
calculate the desired estimate of the system utility’s sensi-
tivity to power changes on particular resources and adjust
powers (or power constraints) accordingly. It is impor-
tant to always distinguish between actual rates and virtual
rates. The actual average rates are the ones tracked by
the ordinary (proportional fair) scheduler and determine
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the sector’s utility. The virtual average rates are based on
long-term feedback of averaged channel gains and do not
have an immediate physical meaning in the ‘real world’.
They are created by a ‘virtual’ scheduler based on ‘virtual’
scheduling decisions. The set of all these rates forms a
‘virtual’ model of the systemwhich is used to derive power
adaption decisions.
The question remains how the virtual average rates and

accordingly the sensitivities to power changes are cal-
culated. Besides the granularity of power control, this
virtual model, which can be also seen as a virtual layer
for interference mitigation above the actual short-term
scheduling, is the main difference between the investi-
gated algorithms. In the following, we will discuss this in
detail.

3.1 Opportunistic algorithm
OA can be seen as a straightforward extension of the
multi-sector gradient (MGR) algorithm in [14] to multi-
antenna networks. Although it is designed for multi-
antenna networks, it does not perform power control on a
per-beam basis (as opposed to the other two algorithms)
but gives complete freedom to the sector controllers with
respect to the number and choice of beams that are active
at every given time instance. The only value that is con-
trolled is the power budget per PRB. Nevertheless, SDMA
is applied where multiple users can be scheduled on the
same PRB, however on different beams. Consequently,
the long-term feedback of users comprises a codebook
index (being the maximizing index b∗ in (7)) as well as a
corresponding gain

Gm
ij = max

b

〈
h̄mij ,ub

〉
, (7)

where h̄mij is the channel from user i to its sector con-
troller on PRB j, averaged to eliminate the influence of
fast-fading.
The task of finding scheduling decision k now amounts

to determining the best subset of users to be scheduled on
a PRB, subject to the constraint that each user can only be
scheduled exclusively on its reported beam. Let us define
(virtual) user rates (time index omitted), assuming a user
is scheduled on PRB j (otherwise Rm

ij (k) = 0), given by

Rm
ij (k) = ρ

(
Fm
ij

)
, with Fm

ij := Gm
ij P̄

m
j (k)

σ 2 + ∑
m′ 	=m P̄m′

j Gm′
ij

.

(8)

In this paper, we use ρ(x) = log(1 + x). Thereby, P̄mj (k)
is the current power value of PRB j divided by the num-
ber of users scheduled, thus depending on decision k.
Moreover, P̄m′

j G̃m′
ij represents a long-term estimate of the

interference of sectorm′ on PRB j (which can bemeasured
by the mobiles).

Having defined the virtual user rates R, virtual average
user rates X and sensitivities are derived by virtual
scheduling (based on a similar procedure in [14]) as fol-
lows. We run the following steps nv times per TTI in
each sector m and for any PRB j. Thereby, the param-
eter nv determines how long the virtual scheduler runs
before accepting the sensitivities. Consequently, a larger
value means more overhead by the virtual layer but better
results.

• We determine the virtual scheduling decision k∗
using a gradient scheduler according to

k∗ ∈ argmax
k

∇Um
(
Xm

(
t
nv

))
Rj

(
k,

t
nv

)
.

• We update virtual average user rates according to

X
(
t + 1
nv

)
= (1 − β1)X

(
t
nv

)
+ β1JRj

(
k∗, t

nv

)
.

• We update sensitivities according to

D(m̂,m)
j

(
t + 1
nv

)
= (1 − β2)D

(m̂,m)
j

(
t
nv

)

+ β2

Im∑
i=1

∂Um (Xm)

∂Xm
i

∂Rm
ij

(
k∗, t

nv

)
∂P̄m̂j (t)

.

(9)

Thereby, β1 and β2 are small averaging parameters.
Using (8), the derivates in (9) are given by

∂Rm
ij

∂Pm̂j
=

⎧⎪⎪⎨
⎪⎪⎩

ρ′
(
Fm
ij

) Fmij
Pm̂j

m̂ = m

−ρ′
(
Fm
ij

) (
Fmij

)2
Pmj

Gm̂
ij

Gm
ij

m̂ 	= m

Starting with equal power, the adaption of the PRB pow-
ers can be summarized as follows. From time to time, the
sensitivities are exchanged and summed up by each sec-
tor controller for each beam and PRB. Since each D(m̂,m)

j
is an estimation of the sensitivity of sector m’s utility to a
power change in sector m̂, the summation gives an esti-
mate of the network utility’s sensitivity. Then, the power
is increased on the PRB with the largest positive sum and
decreased on the PRB with the largest negative sum.

3.2 Virtual sub-band algorithm
VSA requires long-term feedback that comprises average
link gains per beam and sector from each mobile. We
define

Gm
ijb =

∣∣∣〈hmij ,ub〉∣∣∣2 (10)

to be the average link gain (the bar denotes empirical
averaging over time) of mobile terminal i on beam b and
PRB j to sector controller m. Based on the long-term
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CSI, the control plane of VSA responsible for determin-
ing the power allocation per beamworks as follows. Given
average gains in (10), each sector controller calculates
corresponding virtual rates according to

Rm
ijb =: ρ(Fm

ijb), with

Fm
ijb =

Gm
ijbP

m
jb

σ 2 + ∑
b′ 	=b Gm

ijb′Pmjb′ + ∑
m̂	=m

∑
b′′ Pm̂jb′′Gm̂

ijb′′
.

(11)

Note that since all beams are activated at all times,
we have an additional intra-sector interference term (as
opposed to OA), since this interference can no longer be
eliminated, e.g., by switching off beams. Let Xm

i be the vir-
tual average rate of user i in sector m (not to be confused
with actual average rates X̄ in (6)), defined as

Xm
i =

J∑
j=1

N∑
b=1

φ̃m
ijbR

m
ijb. (12)

Here, φ̃m
ijb represent optimal time fractions of resource

usage for sector m. They are determined as a solution to
the following optimization problem (for fixed virtual user
rates):

f (R) := max
φm
ijb

∑
i
Um

⎛
⎝∑

j

∑
b

φm
ijbR

m
ijb

⎞
⎠ (13)

s.t.
∑
i

φm
ijb = 1, 0 ≤ φm

ijb ≤ 1.

We rely on an explicit solution to (13) since we can-
not apply the virtual scheduling from [14]. This is because
the resources for power control (which are now individual
beams) are no longer orthogonal but cause interference
to each other [30]. Having the virtual user rates, the sec-
tor controllers calculate sensitivities to power changes on
beams for all sectors (including self ) and beams, given by

D(m̂,m)

jb =
∑
i

∂Um

∂Xm
i

∂Xm
i

∂Pm̂jb
(14)

=
∑
i

∂Um

∂Xm
i

∑
b′

(
φ̃m
ijb′

)1−ε ∂Rm
ijb′

∂Pm̂jb
,

where

∂Rm
ijb′

∂Pm̂jb
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ′
(
Fm
ijb′

) Fmijb′
Pm̂jb′

m̂ = m, b′ = b

−ρ′
(
Fm
ijb′

) (
Fmijb′

)2
Pmjb′

Gm
ijb

Gm
ijb′

m̂ = m, b′ 	= b

−ρ′
(
Fm
ijb′

) (
Fmijb′

)2
Pmjb′

Gm̂
ijb

Gm
ijb′

m̂ 	= m

Note that the small coefficient ε > 0 stems from an
application of Theorem 1 (which can be found at the

end of Section 3.3) in order to ensure the differentia-
bility of problem (13). The such generated sensitivities
are exchanged from time to time between all sector con-
trollers. Thereby, every sector k receives J · N sensitivity
values from all other (M − 1) sectors, in addition to the
J · N values from its own sector. Thus, we have

Dm
jb =

M∑
m̂=1

Dm,m̂
jb , (15)

summing up the sensitivities of all sectors (including
itself ) to a power change of beam b on PRB j in sec-
tor m and which can be either positive or negative. Note
that sector indices m and m̂ in the RHS of (15) are inter-
changed compared with (14), since in (14), we are inter-
ested in how the beam in sector m̂ interferes with sector
m, while in (15), it is of interest how the beam in sectorm
interferes with (all) sector(s) m̂.
Since Dm,m̂

jb represent estimates of the sector utilities to
a power change on jb in sector m, Dm

jb clearly is an esti-
mate of the sensitivity of the system’s utility to a power
change on the respective beam. Depending on the Dm

jb , we
can now make a power adjustment which steers the sys-
tem operating point towards a greater utility in the virtual
model.
The power adjustment is carried out in steps of � > 0,

which is small and fixed. Let P̄m(t) denote the current
total allocated power in sector m and Pmax the upper
bound on the total sector powers. Then, the following
procedure is applied.

(1) Pick a virtual resource (jb)∗ (if there is one) such that
D(m)

(jb)∗ (t) is the smallest among all virtual resources jb
with D(m)

jb (t) < 0 and Pmjb (t) > 0. Now, set

Pm(jb)∗ (t + 1) = max
{
Pm(jb)∗ (t) − �, 0

}
.

(2) If P̄m (t) < Pmax, pick (jb)∗ (if there is one) such that
D(m)

(jb)∗ (t) is the largest among those jb with
D(m)

jb (t) > 0. Set

Pm(jb)∗ (t + 1) = Pm(jb)∗ (t)+min
{
�,Pmax − P̄m (t)

}
.

(3) If P̄m (t) = Pmax andmaxjb D(m)

jb (t) > 0, pick a pair(
(jb)∗, (jb)∗

)
(if there is one) such that D(m)

(jb)∗ (t) is the
largest, and D(m)

(jb)∗ (t) is the smallest among those
virtual resources jb with Pmjb (t) > 0 and
D(m)

(jb)∗ (t) < D(m)

(jb)∗ (t). Set

Pm(jb)∗ (t + 1) = max
{
Pm(jb)∗ (t) − �, 0

}
, and

Pm(jb)∗ (t + 1) = Pm(jb)∗ (t) + min
{
�,Pm(jb)∗ (t)

}
.
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By intuition, the algorithm reallocates power to the
beams with large positive utility-sensitivity. Note that for
numerical reasons, it may be necessary to specify a certain
minimum power per beam Pmin

b instead of allowing beam
powers to be reduced to zero. In this case, the changes to
the algorithmic notation above are straight forward, so we
do not explicitly state them here.

3.3 Cost-based algorithm
Since CBA enforces average power constraints per beam,
the following additional constraint to the NUM problem
(1 to 4) is introduced.

∀b : P̄mjb ≥
∑
l

π (l)
∑
k

φlm
jk cjb

(
k, P̄mj

)
(16)

It includes cost term cjb
(
k, P̄mj

)
which represents the

power cost or power consumption of beam b (on PRB j)
given scheduling decision k and P̄mj , which is the total
power budget of PRB j. We assume that each beam that
is activated gets an equal share of the available total PRB
power P̄mj . Thus, if nj(k) is the number of beams that are
activated on PRB j if decision k is chosen, the ‘cost’ of
activating beam b on PRB j becomes

cjb(k, P̄mj ) = 1
nj(k)

P̄mj ,

with P̄mj = ∑
b P̄mjb .

To solve the modified problem (1 to 4 and 16), we
also have to modify the gradient scheduler (5 to 6). The
modified gradient scheduler now chooses the scheduling
decision k∗ according to

k∗ ∈ argmax
k

[
∇XUm

(
X̄m

(t)
) ∑

b
μ
l(t)
jb (k) (17)

−
∑
b

λjb (t) cjb
(
k, P̄mj

)]
.

Dual parameters λjb (t), measuring the deviation of
powers over time from the target power values on a par-
ticular beam, are updated according to the following rule:

λjb (t + 1) =
[
λjb (t) + β3

(
cjb

(
k∗, P̄mj

)
− P̄mjb (t)

)]+
.

(18)

Average user rates X̄m
(t) aremaintained and updated as

in (6). The above algorithm can be seen as an application
of the greedy primal dual (GPD) algorithm presented in
[29].
The virtual control plane differs fromVSA in the follow-

ing. In contrast to the VSA, where every beam is switched
on all the time, the situation is different here. To enable
the calculation of derivatives of the rates with respect to

beam powers (needed in (22)), we introduce scaling fac-
tors αm

jb (k), which scale target beam powers P̄mjb to powers
‘costs’e Cm

jb (k) that are instantaneously used by the virtual
scheduler. Thus, αm

jb (k) P̄mjb = Cm
jb (k).

Given average gains (10) as in VSA, the sector con-
trollers calculate (virtual) user rates given by

Rm
ijb (k) = ρ

(
Fm
ijb(k)

)
, (19)

with

Fm
ijb(k) =

αm
jb (k)Gm

ijbP̄
m
jb

σ 2 + Iintra + Iinter
, (20)

Iintra = ∑
b′ 	=b αm

jb′ (k)Gm
ijb′ P̄mjb′ , and Iinter = ∑

m̂ 	=m
∑

b̂
Gm̂
ijb̂
P̄m̂
jb̂
.

Virtual average user rates are calculated by CBA as
follows:

Xm
i =

∑
j

∑
k

φ̃m
jk

∑
b

Rm
ijb(k). (21)

Again, φ̃m
jk are optimal time fractions of resource usage

for sector m; however, in contrast to VSA where those
time fractions were calculated explicitly, CBA uses the
approach of OA to determine the virtual average rates
(and implicitly the time fractions) through virtual schedul-
ing. As before, to distinguish real and virtual scheduler, we
use capital letters for virtual scheduler quantities when-
ever possible. In each TTI, the virtual scheduler performs
nv scheduling runs. In each run, the following steps are
carried out on each PRB j:

• We determine the virtual scheduling decision k∗
similar to (17).

• We update virtual average rates similar to (6).
• We update the virtual average power costs for each

beam b similar to (18).
• We update sensitivities for each beam b and sector m̂

(β2 > 0 small) according to

D(m̂,m)
jb

(
t + 1
nv

)
= (1 − β2)D

(m̂,m)
jb

(
t
nv

)

+ β2

Im∑
i=1

∂Um (Xm)

∂Xm
i

∑
b′

∂Rm
ijb′

(
k∗, t

nv

)
∂P̄m̂jb (t)

.

(22)

Using (19) to (20), the derivatives in (22) are given by

∂Rm
ijb′

∂Pm̂jb
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ′
(
Fm
ijb′

) Fmijb′
Pm̂jb′

m̂ = m, b′ = b

−ρ′
(
Fm
ijb′

) (
Fmijb′

)2
Pmjb′

Gm
ijbα

m
jb

Gm
ijb′α

m
jb′

m̂ = m, b′ 	= b

−ρ′
(
Fm
ijb′

) (
Fmijb′

)2
Pmjb′

Gm̂
ijbα

m̂
jb

Gm
ijb′α

m
jb′

m̂ 	= m

.
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The power adaption is then carried out similar to the
other algorithms. For each resource, each sector sums up
values D(m̂,m)

jb from all sectors and increases the power
level on the beam with largest positive sum while decreas-
ing the power level on the beamwith largest negative sum.
However, CBA adapts only power constraints per beam,
not actually used beam powers.
Figure 3 gives a sketch of power trajectories using the

simulation environment described below, in Section 6.1.
To find out whether CBA really holds the average power
constraints, we exponentially average instantaneously
used powers per beam with the same time constant used
for scheduling and compare the result to the target power
values determined by the virtual model. The left side of
Figure 3 shows the averaged powers, as actually used by
the ‘real’ scheduler, while the right side shows the tar-
get power values determined by the virtual scheduling
procedure. Note that since scheduling is opportunistic,
instantaneously, the power levels fluctuate highly and
beam powers can differ from the target values (or a beam
can be completely turned off ). This is illustrated by the
‘zoomed-in image’ in Figure 3 (left), where actual powers
without averaging are shown. It turns out that on average,
the power constraints are kept remarkably well.
Apart from the intuitive benefits of instantaneously

allowing opportunistic scheduling, we observe that from
a practical point of view, average power constraints are
further justified since hybrid automatic repeat request
(HARQ) coding is essentially performed over multiple
successive transmissions.

In all three presented algorithms, naturally, questions
arise regarding differentiability. Note that the problem to
be solved by each sector controller is given in (13). Due
to the maximum operator, it might not be differentiable
everywhere even with the utility function being differen-
tiable. Therefore, let us define a slightly modified version
of problem (13), given by

fε (R) := max
φm
ijb

∑
i
Um

⎛
⎝∑

j

∑
b

(
φm
ijb

)1−ε

Rm
ijb

⎞
⎠ . (23)

One can show the following:

Theorem 1. Let 0 < ε < 1 be finite and Um be an increas-
ing concave utility function, defined in (0,∞). Then, the
family of functions fε (R) (defined by (23)) with Rijb ≥ c > 0
(∀i, j, b) is differentiable everywhere and converges for any
sequence εn → 0 to f in (13) (which is continuous) in the
uniform sense.

Proof. The proof can be found in Appendix 1 .

By Theorem 1, we can replace our utility function with a
smooth, uniformly convergent approximation, which can
be locally maximized in the power control loop. Note that
this replacement is already incorporated in the calculation
of sensitivities (Equation 14).

4 An alternating optimization-based approach
Given the distributed nature of the above presented algo-
rithms, the question arises: Can a centralized controller do

Figure 3 (Averaged) power trajectories of ‘real’ scheduler (left) and target powers given by virtual model (right). The power allocations of
four exemplary beams are compared. The ‘zoom’ indicates the averaging of powers over time. The four curves (red, green, light blue, and dark blue)
indicate the averaged per-beam powers over time of the beams (here, a codebook with four entries was used) of an arbitrary chosen PRB, both for
the ‘real’ scheduler (left) and for the virtual layer (right)).
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better? Therefore, in the following, we want to compare
the algorithms of Section 3 with a centralized solution.
The optimization problem which the virtual controller

has to solve is given by

max
P,�

M∑
m=1

Im∑
i=1

log

⎛
⎝ J∑

j=1

∑
b

φm
ijbR

m
ijb(P)

⎞
⎠ (24)

s.t. ∀b, j,m :
∑
i

φm
ijb ≤ 1 (25)

∀m :
∑
b

∑
j
Pmjb ≤ Pmax, (26)

with Rm
ijb(P) = log

(
1 + Fm

ijb(P)
)
and Fm

ijb defined in (11).
As described in Section 3, the power allocation problem
is so far solved using a distributed gradient ascent proce-
dure. However, when we allow a centralized controller for
the network, we can instead solve (24 to 26) directly each
time a power update is desired and use the resulting power
allocation directly for actual resource allocation.
Obviously, problem (24 to 26) is highly non-convex. In

the following, we try to solve the problem by alternat-
ing the optimization in P (holding � constant) and �

(holding P constant). We therefore have a scheduling sub-
problem and a power allocation (PA) sub-problem. The
overall procedure is summarized in Algorithm 1.

Algorithm 1 Alternating optimization-based virtual
layer
1: initialize counter τ = 0, select feasible �(0) and P(0)

arbitrarily
2: repeat
3: τ ← τ + 1
4: solve scheduling sub-problem using fixed P(τ − 1)

and obtain �(τ )

5: solve SCA-based power allocation sub-problem
using fixed �(τ ) and obtain P(τ ) (Algorithm 2)

6: until converged
7: use P(τ ) to update power allocation in network

Since the scheduling sub-problem is convex (cf.
Lemma 2), we only have to care about the power allo-
cation sub-problem. We try to tackle this problem by a
successive convex approximation (SCA) approach similar
to [17]. The sub-problem in P is still highly non-convex.
However, using Lemma 3, we obtain a convexified version
of the power allocation sub-problem.

Lemma 2. With constant P, optimization problem (24-26)
is a convex optimization problem in �.

Proof. The proof follows since non-negative weighted
addition and scalar composition preserve concavity
[31].

Lemma 3. Using a concave lower bound (assuming appro-
priately chosen constants) to the user rates, given by

R̃m
ijb := αm

ijb log(F
m
ijb) + βm

ijb ≤ Rm
ijb, (27)

(with equality holding when approximation constants are
chosen as αm

ijb = Fmijb
1+Fmijb

and βm
ijb = log(1 + Fm

ijb) −
αm
ijb log(F

m
ijb)) and a logarithmic change of variables given

by P̃mjb = log(Pmjb ), the modified PA sub-problem

max
P̃

M∑
m=1

Im∑
i=1

log

⎛
⎝ J∑

j=1

∑
b

φm
ijbR̃

m
ijb(P̃)

⎞
⎠ (28)

∀m :
∑
b

∑
j
eP̃

m
jb ≤ Pmax (29)

is a convex optimization problem.

Proof. The proof can be found in Appendix 2 .

The SCA procedure is summarized in Algorithm 2.

Algorithm 2 SCA-based power allocation sub-problem
1: initialize counter τ = 0, α(0) = 1; β(0) = 0
2: repeat
3: solve (28 to 29), obtain P̃∗

(τ )

4: tighten approximation (∀i, j, b,m):

αm
ijb(τ + 1) =

Fm
ijb(P

∗(τ ))

1 + Fm
ijb(P

∗(τ ))
(30)

βm
ijb(τ + 1) = log

(
1 + Fm

ijb
(
P∗ (τ )

))
− αm

ijb log
(
Fm
ijb

(
P∗ (τ )

))

5: τ ⇐ τ + 1
6: until converged

The algorithm is initialized as described in the first
step of Algorithm 2, which is equivalent to a high
signal-to-interference-plus-noise ratio (SINR) approxi-
mation (which can be seen when applying this initializa-
tion in (27)). The high-SINR approximation assumes that
for large SINR, log(1+SINR) ≈ log(SINR). This is a com-
mon initialization for this kind of algorithm [17,32]. Each
iteration of the algorithm comprises two steps, a maxi-
mize step and a tighten-step. In the maximize step, we
find a solution to the current convexified version (28 to
29) of the power control problem. This solution is then
used in the tighten step to update the convex approxima-
tion parameters α and β for each link according to (30).
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The algorithm converges when the tighten step (30) does
not produce any (significant) changes. Being based on
an inner approximation framework by Marks and Wright
[33], it can be shown that Algorithm 2 converges at least
to a KKT point of the PA sub-problem.

5 Approaching global optimality: comparison
with branch-and-bound

It is known that the underlying optimization problem
is non-convex; thus, the gradient ascent-based algo-
rithms presented in Section 3 as well as the alternating
optimization-based algorithm of Section 4 will most likely
converge to a local maximum. Thus, although simulation
results (cf. Section 6) show already high gains in utility, the
question remains how good the solution found actually is,
that is how much of the achievable performance gains is
actually realized?
To simplify the analysis in this section, we restrict our-

selves to the single-antenna case (which reduces all algo-
rithms toMGR in [14]). The main difficulty of the analysis
is that even in this simple setting, the underlying problem

f (P,�) = max
P,�

M∑
m=1

Im∑
i=1

log

⎛
⎝ J∑

j=1
φm
ij R

m
ij

⎞
⎠ (31)

s.t. ∀j,m :
∑
i

φm
ij ≤ 1 (32)

∀m :
∑
j
Pmj ≤ Pmax (33)

with Rm
ij = log

(
1 + Gm

ij P
m
j

σ 2+∑
m′ 	=m Gm′

ij Pm′
j

)
, is highly non-

convex (even in the two-sector, two-user case). Moreover,
since this is essentially a joint optimization in time frac-
tions� and power values P, the complexity is significantly
higher than with power control only. To gain insight into
the deviation from the optimal solution of (31 to 33),
we compare our algorithm’s performance in the simpli-
fied setting with a (near) optimal solution based on BNB.
Although computationally very expensive, it gives us a
good impression on how much of the achievable perfor-
mance is actually reached. We assume, without loss of
generality, that the maximum sum power available in each
cell in (33) is normalized to one.
Branch-and-bound is a standard algorithm for global

optimization, which creates a search tree where at each
node, an upper and a lower bound to the problem are
evaluated. Details can be found for example in [34]. It is
based on constantly sub-dividing the feasible parameter
region and for each node of the resulting tree calculating
the upper and lower bounds to the objective function. For
ease of notation, we will combine all parameters to our
objective function in one vector P̂ = (p1, . . . , pn). LetP(0)

denote our initial parameter region. This region forms a

convex n-dimensional polytope with V extreme points (or
vertices) P̂v. We collect the corner points of polytope P(0)

in set V(0). Consequently, the parameter region associ-
ated with node l is denoted asP(l) with associated vertices
V(l).
Due to the structure of the constraints, we have n

2
parameter pairs with independent constraints. Each of the
parameter/constraint pairs form a (two-dimensional) sim-
plex. When branching, we split the parameter region of
node l, P(l), in sub-regions P(l+1) and P(l+2) by split-
ting the longest edge among the edges of all (n2 ) simplexes
together. Doing so, we divide the parameter region into
two sub-regions of equal size. Figure 4 visualizes the
above-stated procedure by showing the simplex created by
two interdependent power values together with an inde-
pendent third dimension. The dashed line indicates the
splitting into two sub-polytopes.
Below, we explain how the upper and lower bounds

to the sub-problems are found. It is well known
that the Shannon rate can be written as a differ-
ence of concave functions f mij (P) − gmij (P), with f mij
(P) = log

(
σ 2 + ∑M

m′=1Gm′
ij P

m′
j

)
and gmij (P) = log

(
σ 2+∑

m′ 	=m Gm′
ij P

m′
j

)
. Using this, our non-concave objective

function (31) can be rewritten as

F̂(P̂) =
M∑

m=1

Im∑
i=1

log

⎛
⎝ J∑

j=1
φm
ij f

m
ij (P̂) − φm

ij g
m
ij (P̂)

⎞
⎠ .

(34)

Unfortunately, φm
ij f

m
ij (P̂) (and thus also φm

ij g
m
ij (P̂)) is nei-

ther convex nor concave (note that f (a, b) = a · log(1+ b)

Figure 4 Three-dimensional polytope with indicated branching.
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is not concave). However, we can define the concave func-

tion(s): f̃ mij (P̂) = φm
ij log

(
σ 2 + 1

φm
ij

∑M
m′=1Gm′

ij P
m′
j

)
, and

in the same way g̃mij (P̂). Using this, (34) can be upper
bounded by

M∑
m=1

Im∑
i=1

log

⎛
⎝ J∑

j=1
f̃ mij (P̂) − g̃mij (P̂)

⎞
⎠ . (35)

Equation 35 is still not concave since it includes a sum
of a concave function (f̃ mij (P̂)) and a convex function
(−g̃mij (P̂)). To get a concave objective function, we replace
g̃mij (P̂) by it’s convex envelope (cf. [34]), defined as follows:
Let P1, . . . ,PV be the vertices of a polytope P . The con-

vex envelope γ (P) of a concave function g(P) over P can
be expressed as

γ (P) = min
λ

V∑
v=1

λvg(Pv),

subject to
∑V

v=1 λvPv = P,
∑V

v=1 λv = 1, and λv ≥ 0.
Using this definition, the (convex) optimization problem
we have to solve in order to obtain our upper bound (at
node l) is given by

FU = max
λ

M∑
m=1

Im∑
i=1

log

⎛
⎝ J∑

j=1
f̃ mij (P̂) −

V∑
v=1

λvg(P̂v)

⎞
⎠

s.t. P̂ =
V∑
v=1

λvP̂v,
V∑
v=1

λv = 1, λv ≥ 0 (∀v),

with λ = (λ1, . . . , λV ), P̂ ∈ P(l), P̂v ∈ V(l), and V being
the number of vertices collected in V(l).We use three dif-
ferent approaches to obtain a lower bound at node l. The
first lower bound is obtained by taking the maximum of
the objective function values at each of the corner points
of the respective parameter region. Second, we evaluate
the optimal parameter vector from calculating the upper
bound. Third, we use a standard solver to compute a
(local) optimum of the original non-convex problem. If
one of the three methods leads to a higher value, the
current global lower bound is replaced.

6 Numerical evaluation
In this section, we present numerical results to evaluate
the distributed algorithms of Section 3 as well as the cen-
tralized and BNB-based solutions of Section 4 and Section
5, respectively.

6.1 System-level simulations
In order to compare the performance of the three algo-
rithms in a setting close to practice, we conduct system-
level simulations based on LTE.

6.1.1 Simulation setup
The general simulation setup can be found in Table 2. We
employ a grid of seven hexagonal cells, each comprising
three sectors (to ensure equal interference conditions for
each sector, a wrap-around model is used at the system
borders). Users are distributed randomly over the whole
area; thus although we have, say, 210 user in total, lead-
ing to an average of ten users per sector, some sectors
have a higher load than others. A detailed description of
the precoding codebook can be found in [35]. As chan-
nel model, we use the WINNER model [36], Scenario C2.
All simulations are performed with realistic link adapta-
tion based onmutual information effective SINRmapping
(MIESM); moreover, we use explicit modeling of HARQ
(hybrid automatic repeat request) using chase combining.
For efficiency reasons, we simulate a limited number of
PRBs (J = 8) compared to a real-world system; however,
the results are expected to scale to a higher number of
PRBs.

6.1.2 Baseline algorithm
As baseline, we use a non-coordinative scheduling algo-
rithm called greedy beam distance (GBD) algorithm, with
a codebook size of 3 bits (eight beams). GBD requires
feedback from each user, comprising a CDI and a chan-
nel quality information (CQI) value. Note that the CQI is
only an estimate of the users’ SINR values in case the user
alone is scheduled on the PRB (with full power), since the
scheduling decisions cannot be known in advance. Thus,
it does not contain intra-sector interference. Moreover,
it contains only an estimate of the inter-sector interfer-
ence. On each PRB, the users are greedily scheduled on
their best beams (using their proportionally fair weighted
CQI feedback as utility). Thereby, a minimum beam dis-
tance has to be kept, in order to minimize the interference
between users scheduled on the same PRB. This distance

Table 2 General simulation setup

Parameter Value

Number of sectors (M) 21

Total number of terminals (I) 105 to 315

Mobile terminal velocity 0 km/h, 3 km/h

Number of PRBs (J) 8

Number of beams (B) (coordination) 4

Number of beams (B) (baseline) 8

Base station antennas (nT) 4

Number of terminal antennas (nR) 1

Simulation duration 10,000 TTI

Power adaption step size (�) 0.5% of the initial power

Traffic model Full buffer

This table summarizes the main parameters that we use in the system-level
simulations.
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is based on a geometrical interpretation of beamforming.
It means that given a user is scheduled on a certain beam,
adjacent beams (up to a certain ‘distance’) are blocked
and users that reported one of those beams are excluded
from the list of scheduling candidates for the respec-
tive PRB. We use a minimum distance of 3, that is, with
the used eight-beam codebook at most three users can
be scheduled on the same PRB. Of course, no adaptive
power allocation is performed; the power is distributed
equally among the PRBs (and further among the thereon
scheduled users).

6.1.3 Simulation results
We use two essential performance metrics for our com-
parison. First, since we have a system-wide proportional
fair utility, we compare the geometric mean of average
user rates (GAT) as ameasure of the increase of the overall
utility. The equivalence of maximizing GAT and sum util-
ity can be seen when observing that the geometric mean
of some set of values is equal to the exponential average
of the logarithm of the values. Therefore, the sum of log-
arithms is maximized precisely if the geometric mean is
maximized. Second, the performance of cell-edge users,
which we measure by the 5% quantile of average user
throughputs, is a natural benchmark for each distributed
base station coordination algorithm.
Figure 5 shows cell-edge user throughput over GAT for

the evaluated algorithms with user mobility (and there-
fore with fast fading), while Figure 6 depicts the simulation
results in a setting without user mobility. We compare
the three approaches of Section 3 to the uncoordinated
baseline of Section 6.1.2. Thereby, for each algorithm, the
performance is evaluated for different average number of

users per sector. More precisely, from left to right, the
markers in the figure represent an average number of 5,
8, 10, 12, and 15 users per sector (corresponding to total
numbers of 105, 168, 210, 252, and 315 users in the net-
work, respectively). Obviously, increasing values on the
ordinate corresponds to increased fairness (with respect
to our 5% quantile metric), while higher values on the
abscissa correspond to a higher sum utility (with respect
to our GAT metric). In both figures, we observe that a
higher number of users lead to increased sum utility (an
effect called multiuser diversity) while the cell-edge users
(represented by the 5% of users with lowest throughput)
suffer from a reduced performance (due to an increased
competition for resources).
In case of user mobility (Figure 5), we observe that

CBA clearly outperforms the other algorithms. In fact, for
every simulated user density, either the 5% fairness (low
user densities) or both metrics are improved (higher user
densities). For example, in the case of 210 users in the net-
work (corresponding to the third marker on the curves in
Figure 5), the CBA algorithm improves the performance
with respect to GAT by about 10% and in cell-edge user
throughput by more than 35%. It can also be observed
that the VSA algorithm works best at high user densities,
while in case of only a few users in the cell, the OA algo-
rithm (which requires the least overhead with respect to
additional feedback and signaling) and even the no-power
control baseline show a better performance, at least with
respect to the cell-edge performance. The decreased GAT
shown by VSA in the fading case is basically the cost of
leaving no freedom to the schedulers for opportunistic
scheduling, but to strictly specify the powers to be used
for all beams and time instances.

Figure 5 Cell-edge user throughput vs. GAT in a fading environment. The averaged cell-edge users’ throughputs vs. the geometric mean of
users’ throughputs are plotted for a fast-fading scenario with users moving at 3 km/h. Thereby, the proposed three distributed algorithms are
compared with a baseline algorithm without coordination. For each algorithm, the total number of users in the network is varied. In particular, the
markers in the figure, from left to right, represent an average number of 5, 8, 10, 12, and 15 users per sector. This corresponds to total number of 105,
168, 210, 252, and 315 users in the network, respectively.
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Figure 6 Cell-edge user throughput vs. GAT in a static environment. The averaged cell-edge users’ throughputs vs. the geometric mean of
users’ throughputs are plotted for a scenario without user mobility. Thereby, the proposed three distributed algorithms are compared with a
baseline algorithm without coordination. For each algorithm, the total number of users in the network is varied. In particular, the markers in the
figure, from left to right, represent an average number of 5, 8, 10, 12, and 15 users per sector. This corresponds to total number of 105, 168, 210, 252,
and 315 users in the network, respectively.

Figure 6 depicts the simulation results in a setting with-
out user mobility. We can see that OA offers already quite
high performance gains, both in GAT and in cell-edge user
throughput, although being the least complex algorithm.
However, the performance is even further improved by
the other two algorithms. VSA can improve especially the
gains of cell-edge users, for example, in the case of 210
users in the network to more than 200% compared with
no-power control. However, CBA again shows the best
performance, significantly improving the global utility
compared with VSA (and even more compared with no-
power control). Again, this gain increases with increasing
number of users in the network.
Besides the performance, the speed of convergence is

of large practical interest. To illustrate this, Figure 7
shows the GAT metric for all algorithms over time for

the case of stationary users (with 210 users in total). It
can be seen that the fastest convergence is achieved by
the OA and VSA algorithms, while the CBA algorithm,
which in the end achieves the highest GAT, needs about
3,000 TTIs to converge. This is expectable, since the
scheduler has to follow the power values obtained from
the virtual layer only on average; thus, it always ‘lacks
behind’ the adaptation of the virtual model. Regardless
of which algorithm performs best, it is of general impor-
tance that distributed power control algorithms do not
only work in a specific environment but can adapt to
changing network conditions (which, of course, is also
related to the notion of convergence). Figure 8 demon-
strates this autonomous adaptation ability by showing
the cell-edge user throughput over time (exemplary for
CBA in the static case) for multiple consecutive drops,

Figure 7 GAT over time in a static environment. The geometric mean of users’ throughputs is plotted over the first 4,000 TTIs of the simulation for
a scenario without user mobility. Thereby, the proposed three distributed algorithms are compared with a baseline algorithm without coordination.
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Figure 8 Cell-edge user throughput over time for consecutive
drops, no user mobility. The green line represents the CBA
algorithm, while the red line indicates the baseline without power
control. Multiple consecutive drops with a duration of 2,500 TTIs are
shown.

where, in each drop, a new user location and assign-
ment pattern are generated. It can be observed that the
the performance is improving very fast compared to the
baseline.

6.2 Performance of centralized solution based on
alternating optimization

Subsequently, we investigate the performance of the cen-
tralized scheme based on alternating optimization (AO),
as introduced in Section 4. For this, we compare the
performance with that of the distributed solution. More
precisely, we use the VSA algorithm of Section 3.2. Note
that the only difference between the subsequently inves-
tigated algorithms is the power adaptation procedure.
While in the distributed solution (in subsequent figures
denoted as VSA), the power is adapted gradually based
on the exchange of sensitivities, in the centralized solu-
tion (in subsequent figures denoted as AO), the solu-
tion to the optimization problem in the virtual layer

is directly used to globally update the power alloca-
tion. We are predominantly interested in the convergence
speed of the geometric mean of average user rates in
the different approaches and the relative performances
in different signal-to-noise ratio (SNR) regimes. More-
over, we investigate both a static setting without mobil-
ity and a setting where a user moves at a velocity of
3 km/h.
In Figure 9, we compare the behavior of the AO and

the distributed approach for constant channels. In gen-
eral, it can be observed that the convergence speed of the
average rates using AO is slightly faster. Often, both algo-
rithms converge to the same solution; however, this is not
necessarily always the case (as shown in Figure 9).
Figure 10 compares the performance of AO-based and

gradient ascent-based solution in a setting with moder-
ate user mobility. It can be observed that the convergence
speed of the centralized scheme is still slightly higher than
in the distributed case, and in most cases, the centralized
solution outperforms the gradient-based approach (how-
ever, at a much higher complexity). An interesting effect
that can be observed is that the influence of the initial state
on the outcome of the distributed solution is significant.
This is also depicted in Figure 10. Note that the only differ-
ence between the solid and the dashed red line in Figure 10
lies in the initial power values. In the first case, we start at
a minimal power assigned to all sub-carriers (note that for
technical reasons, it is not possible to assign exactly zero
power to the resources) and in the latter case, we start at
an allocation where power is distributed evenly among the
resources.
In Figure 11, it can be observed that the gains from

the centralized solution are higher in high-SNR regimes.
While at low SNRs, when the system is essentially noise-
limited, both approaches converge to the same solution;
in high-SNR regimes, when the system is essentially

Figure 9 Comparison of the centralized and distributed virtual control without mobility. The geometric mean of the average user rates is
shown in a scenario without mobility for the VSA algorithm (red) and the centralized baseline (blue).
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Figure 10 Comparison of centralized and distributed virtual
control at moderate mobility. The geometric mean of the average
user rates is shown in a fast-fading scenario. The centralized baseline
(blue) is compared to the VSA algorithm (red) with different initial
power allocations.

interference-limited, the direct AO-based optimization
outperforms the gradual power adaptation.
In summary, the centralized solution has some clear

advantages. First, it is invariant to the initialization of the
system and is thus able to adapt very fast to changing
environmental conditions. Second, especially when the
channels are varying fast and the SNR is high, the central-
ized scheme offers a higher performance in comparison
to the distributed scheme. However, one should note that
at realistic SNRs, the distributed solution still achieves
almost the same performance and at the same time
scales smoothly with the network size, while a central-
ized solution can only be implemented in very restricted
scenarios.

6.3 Global optimality
In the following, we compare the performance of the
distributed algorithm to an (nearly) optimal solution

based on BNB. To simplify the analysis in this section
and due to the high complexity of the BNB algorithm,
we restrict ourselves to the simple case of two sectors
with two users (no mobility) and two PRBs and a single
antenna.
Given a certain tolerance ε, BNB converges to an opti-

mal solution of (31). However, it has exponential complex-
ity and is therefore only feasible in very small settings.
We compare our distributed coordination algorithm with
an equal power non-cooperative scheduler and the BNB
algorithm described in Section 5.
In Figures 12 and 13, the blue line represents the GAT

obtained with the coordination algorithm, while the red
line represents the outcome of a non-cooperative equal-
power scheduler. The solid black line indicates the out-
come of BNB. Finally, the dotted black line depicts the
configured ε tolerance. Thus, the true optimum is guar-
anteed to lie in between the solid and dotted black lines.
To get an overview of the performance in different sce-
narios, we investigate three different settings, namely, a
setting with weak interference, a setting with approxi-
mately equal interference, and a setting with high inter-
ference. In Figure 12, the left marker corresponds to the
weak interference case, the middle marker to the case of
equal interference, while the right marker corresponds to
the case of strong interference. The weak interference is
characterized by Gm

ij > Gm′
ij (m 	= m′) for all i, j,m,m′;

thus, for all users, the link gains to the serving base sta-
tion are higher than the gains to the interfering base
station. Note that this is, from a practical point of view,
the more interesting case since due to handover algo-
rithms, most of the time, the gains to the own base station
are stronger than to the interferers. It can be observed
that the distributed power control performs quite well
since we see a significant improvement over equal power
scheduling. Moreover, the distributed power control

Figure 11 Performance at different SNR regimes. VSA algorithm (red) and centralized algorithm (blue) are compared in terms of geometric
mean of average user throughputs vs. average SNR.
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Figure 12 Comparison of the distributed power control with
BNB solution for different interference regimes.

appears to realize already a large portion of the available
gains.
In the ‘equal’ interference case, the gains to the inter-

fering base stations are roughly the same as the gains
to the own base stations; thus, Gm

ij ≈ Gm′
ij (m 	=

m′) for all i, j,m,m′. It can be observed that the power
control algorithm leaves a larger portion of the available
performance gains unused, compared to the weak inter-
ference case, although it shows significant improvements
over non-cooperative scheduling.
The strong interference case is characterized by Gm

ij <

Gm′
ij (m 	= m′), for all i, j,m,m′; thus, for all users, the link

gains to the interfering base stations are higher than the
gains to the ‘own’ base stations. Here, the gap in the non-
cooperative algorithm’s performance, compared to the
BNB result, is significantly worse than in the other cases.
By contrast, the power control algorithm shows roughly
the same performance gap than in the case of equal gains.
Again, to illustrate the convergence, Figure 13 gives an

example of the performance over time (here, for the weak

Figure 13 Comparison of distributed power control with the
BNB solution.Weak interference example.

interference case). Obviously, the power control algorithm
converges to a local maximum soon.

7 Conclusions
We proposed and compared three distributed algorithms
for autonomous interference coordination in cellular
SDMA networks. The algorithms are based on a virtual
layer that models the interference interdependencies in
the network and gradually adapts power control levels.
The proposed algorithms differ in granularity of power
control, required feedback, signaling overhead, and the
virtual model itself. System-level simulations indicate high
gains both in overall utility and in cell-edge user through-
put for all three algorithms in static environments without
user mobility. While VSA offers a very fine granularity
of power control on a per-beam level, it suffers from
the lack of freedom to instantaneously perform power
allocation in an opportunistic manner. In fact, in an envi-
ronment with significant user mobility, only CBA achieves
significant gains in both metrics. This demonstrates the
superiority of CBA’s approach to enforce average power
constraints but instantaneously allowing opportunistic
scheduling. Comparisons to a centralized benchmark
scheme reveal that although the convergence of the cen-
tralized scheme ismuch faster than in the distributed case,
the performance in overall utility is comparable.

Endnotes
aNote, that in this paper, we use the term autonomous

not in the sense of an autonomous operation of the
different network entities, such as base stations, but to
the ability of the network to find a suitable operating
point without the needed of prior planning or human
interaction.

bEach PRB consists of a fixed number of OFDM
symbols in time and has a total length of 1 TTI.

cWe use
∑

i log(X̄m
i ) as sector utility in this paper,

leading to a proportional fair operating point.
dTo reduce messaging overhead, sector controllers

could limit the message exchange to strongest interferers,
e.g., consider only neighboring base stations.

eTo avoid confusion, we denote variables belonging to
the real scheduler with lower case symbols, and variables
from the virtual scheduler with corresponding upper
case symbols.

Appendices
Appendix 1: proof of Theorem 1
First, we show that fε(R) is everywhere differentiable.
For this purpose, we use the following Lemma 4 and set
H(x, y) := U(R,�).

Lemma 4. Consider a function H (x, y), x ∈ [a1, a2], y ∈
[a3, a4], with some finite a1 < a2 and a3 < a4. Assume
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that H (x, y) and its partial derivative on x are continuous,
and H (x, y) is concave in x (for each y) and strictly concave
in y (for each x). Then, the function

ϕ (x) = max
y

H (x, y) (36)

is continuously differentiable in [a1, a2]. (This can be
generalized to the multi-dimensional case. Namely, the
domains [a1, a2] and [a3, a4] can be replaced by arbitrary
convex compact sets in finite-dimensional vector spaces,
and derivatives replaced by gradients).

Note, that Lemma 4 cannot be applied directly to (13)
since strict concavity in y in this case is not given. Clearly,
R and � are compact since φijb ∈[ 0, 1] and Rijb ∈
[ c,B] ,B < ∞, c > 0. Moreover, the concavity of U
follows by definition. Now, we have to show that fε(R) con-
verges for any zero sequence εn → 0 to f . First, fix a zero
sequence ε∗

n. Moreover, we define a sequence of functions

fn (R) := max
φm
ijb

∑
i
Um

⎛
⎝∑

j

∑
b

(
φm
ijb

)1−ε∗
n Rm

ijb

⎞
⎠

=̂ fε∗
n(R),

with (n ∈ N). We can use Dini’s Theorem to show that
{fn(R)}n∈N converges uniformly to f . This theorem states
that if {fn}n∈N (fn : K → R, n ∈ N, being a sequence
of continuous functions and K being a compact metric
space) converges pointwise to f (f : K → R being a con-
tinuous function) and if fn(x) ≥ fn+1(x) (∀x ∈ K and
∀n ∈ N), then {fn}n∈N converges uniformly to f .
The rate space K :=[ c,B]IJN is clearly compact, since

Rijb ∈[ c,B] ,B < ∞, c > 0. Moreover, for each x∗ ∈ K ,
fn(x∗) converges to f (x∗) when n → ∞ (since εn → 0),
and since φijb ∈[ 0, 1], we have φ1−εn ≥ φ1−εm (∀i, j, b) if
m ≥ n. Thus, fn(x) ≥ fn+1(x).

Appendix 2: proof of Lemma 3
Following the approach in [17], the convexity of optimiza-
tion problem (28 to 29) can be easily shown by noting that
R̃m
ijb in (28) can be written as

αm
ijb log

(
F̃m
ijb

)
+ βm

ijb,

where log(F̃m
ijb) can be further decomposed into

log(Gm
ijb) + P̃mjb − log

⎛
⎝σ 2 +

∑
b′ 	=b

Gm
ijb′e

P̃mjb′ +
∑
m′ 	=m

∑
b

Gm′
ijbe

P̃m′
jb

⎞
⎠ .

Due to the convexity of log-sum-exp [31], the term

log

⎛
⎝σ 2 +

∑
b′ 	=b

Gm
ijb′e

P̃mjb′ +
∑
m′ 	=m

∑
b

Gm′
ijbe

P̃m′
jb

⎞
⎠

is convex, and thus, R̃m
ijb is concave. Noting that non-

negative weighted addition and scalar composition pre-
serve concavity concludes the proof.
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