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Abstract

The rapid growth of mobile communication and the proliferation of smart phones have drawn significant attention
to location-based services (LBS). The Wi-Fi positioning system (WPS) is a newly attractive method as a widely
applicable positioning technique in LBS. In WPS, the received signal strength indication (RSSI) data of all Wi-Fi access
points (APs) are measured, and stored in a huge database, as a form of radio fingerprint map. Because of the millions
of APs in urban areas, radio fingerprint data are seriously contaminated. Therefore, we present a coherent filtering
method for radio fingerprint data. All fingerprints used in the developed test bed are harvested from actual
radio fingerprint measurements taken throughout Seoul, Korea. This demonstrates the practical usefulness of the
proposed methodology.
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1. Introduction
To improve its relevance, context, and economic value,
a location-based service (LBS) coordinates user location
with various end-user applications. Despite the many
possibilities offered by LBS, its market penetration has
been slow. Most early-stage services failed to spread to
the mass market. Moreover, monetization of the services
is limited to some special purpose markets, such as
car map/navigation. The limitations of LBS are related
mainly to the insufficient precision of position estima-
tion. The general mean error of position estimation is in
the order of many tens of meters, while the deviation
can be of the order of hundreds of meters. The demon-
stration of Figure 1 shows the layered technical structure
for LBS. Among technical layers, the position quality is
essentially determined by the positioning system.
The positioning system measures the estimated pos-

ition of a moving object (usually a mobile handset), and
then minimizes the difference between the actual and es-
timated position. A well-estimated position can reduce
the practical and emotional disjunction caused by the
position difference.
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The global positioning system (GPS) provides very
precise positioning estimation [1,2]. Owing to current
advances in GPS technology, GPS receivers can acquire
GPS signals with power levels as low as −160 dBm.
However, the GPS signal should be attenuated signifi-
cantly when it travels through construction materials,
or any other obstacle (note that signal strength of at
least −145 dBm is needed to acquire ephemeris data; the
unobstructed GPS signal strength on Earth is measured
at about −130 dBm.) This attenuation of a GPS signal
makes it difficult to find a sufficient number of GPS
satellites for each receiver in the urban environment (in
GPS triangulation, at least three satellites are required to
identify a current position). Presently, LBS are mainly
used in urban areas, even in indoor environments. Social
networking, friend finders, and local search applications
need extremely wide coverage of positioning technology
with a very short time to first fix (TTFF). LBS applica-
tions are shifting from rural areas, highways, and arterial
roads, to urban and metropolitan areas.
With the rapid increase in Wi-Fi access points (APs)

in metropolitan areas, Wi-Fi can be used as a viable al-
ternative positioning infrastructure [3,4]. Each Wi-Fi AP
generates a radio signal with a unique identifier or media
access control (MAC) address every second, which
enables mobile devices to identify the specific AP. The
millions of public/private Wi-Fi APs can be used for
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Figure 1 Layered technical structure for LBS.
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Wi-Fi-based positioning. On the basis of the received
signal strength from each valid AP, and embedded algo-
rithms, the typical accuracy of Wi-Fi positioning is in
the order of tens of meters in metropolitan areas, which
is more accurate than other cellular positioning tech-
nologies, because Wi-Fi APs are more closely spaced
than cellular network base stations. The TTFF can be as
short as 100 ms. Compared with GPS, Wi-Fi positioning
works better in urban canyons or indoor environments,
than in rural area. It works well in dense metropolitan
areas, both outdoors and indoors, owing to its greater-
received signal strength and lower attenuation. The two
major approaches that implement Wi-Fi positioning are
AP triangulation, and radio frequency (RF) fingerprint.
Triangulation is simple to implement [3,5,6]. As seen in
Figure 2 Position estimation by WPS.
Figure 2a, three reference APs with already known coor-
dinates are needed. After measuring the distance from
the APs and a target point, three circles can be drawn.
The circles intersect at one point, which is the target
point. The coordinate of the target point can easily be
calculated by the distance from, and the known coordi-
nates, of the APs.
The main difficulty of this approach is measuring the

distance from each AP to the target point. The typical
path loss models (such as COST231, Okumura-Hata)
are generally applied to measure the distance. However,
it is extremely difficult to build a good and general
model for distance measurement, which coincides with
the actual field situation. RF fingerprinting [7,8] consists
of two phases - training and positioning - demonstrated
in Figure 2b. In the training phase, a reference finger-
print database (DB) is constructed. The reference DB
contains the signal strength measurements of the APs at
all reference points. Usually, the entire area should be
divided into a set of grids, and the centers of grids are
usually considered the reference points. During the posi-
tioning phase, the position of a target point can be iden-
tified by comparing its measured fingerprint with the
pre-stored reference fingerprint DB. The main advantage
of RF fingerprinting is algorithmic simplicity. Simple
comparing algorithms, such as pattern matching, can be
easily applied to the practical process of position estima-
tion. Then the RF fingerprinting is currently more pre-
ferred than triangulation [9]. The most advancement for
RF fingerprinting has been searched in the area of pos-
ition estimation algorithms. A pattern matching algo-
rithm is used to determine the geographical position of a
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target point. When a fingerprint pattern of the test point
is measured by a portable device (usually a handset),
an algorithm compares the measured fingerprint with
elements of the reference fingerprint DB. The most well-
known pattern-matching algorithm is nearest neighbor
(NN) [7]. As an enhanced version of the NN algorithm,
the K nearest neighbor (KNN) algorithm can be taken
into account [7]. The average of coordinates of k-
reference grids can be used to determine the estimated
position of the target point (see Figure 3 for a detailed
procedure of pattern matching). Various variations,
such as smallest polygon [10] and neural networks [11],
are applied in the framework of KNN pattern matching.
Another type of algorithm for positioning adopts a prob-
abilistic framework. The idea of the probabilistic frame-
work is to compute the conditional probabilistic density
function (pdf) of an estimated position given the measured
fingerprint pattern at the target point. The probabilistic
likelihood can be modeled by Histogram [12], Gaussian
[11], Log-normal [13], or Kernel [12].
The main challenge related to RF fingerprinting is the

creation and maintenance of an up-to-date reference
fingerprint DB, which is especially difficult, due to the
dynamic character of APs: they are often moved, or in
some cases are temporary, with new APs being continu-
ously deployed. The huge numbers of APs, both indoor
and outdoor, are generally deployed in the urban envir-
onment. These cause serious complexity to the finger-
print DB management. In addition, the RSSI (measured
Figure 3 Basic process of pattern matching.
in dB unit) of each AP is an element of pattern vector.
The difference between reference pattern and measured
pattern determines the similarity of two patterns. Usu-
ally, lots of information (i.e., number of elements in pat-
tern vector) provides confidence to similarity estimation.
However, we should consider the measurement error
and characteristics of radio signal strength. Because of
environmental interference, the measurement error is
inevitable. We can observe usually ±3 dB or higher sig-
nal strength fluctuation. The important thing is that the
unit ‘decibel (dB)’ has log scale. That is, the difference
between −75 and −87 dB means not just ‘12 (= −75
to −87)’ degree separation. But, the signal power of −87 dB
is 1/16 (i.e., 6.25%) of that of −75 dB. Same fluctuation on
electromagnetic field gives extremely higher effect to low
RSSI. Small signal power change on low RSSI makes a
large change on the dB scale. AP information with low
RSSI should be filtered (i.e., zero or very low weight on the
AP with low RSSI) to guarantee estimation quality. A set of
data filtering methods should be applied as a key manage-
ment framework in a complex fingerprint DB.
The most popular common data filtering method is

the Kalman filter [14]. The historically measured data
can be unified with newly measured data, to eliminate
data noise. However, the Kalman filter can just be ap-
plied to statistical outliers, by comparing the historic
and current data. It is too complicated to apply to
practical large-scale fingerprint DB, and also, it cannot
make any common cutover threshold for consistent
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filtering in RF fingerprinting (the importance of consistent
filtering in fingerprint WPS is described in Section 3).
Therefore, we propose a coherent data-filtering frame-

work for standard RF fingerprint DB. The sufficiently
valid fingerprint data are maintained by the proposed fil-
tering framework. The number of APs for each reference
fingerprint is maintained, with an effective level. The en-
tire framework is described by an integer programming
model. Moreover, we simultaneously propose a practical
procedure for filtering, as a form of dynamic algorithm
using an iterative function. As a result of a coherent fil-
tering framework, we can make a standard RF finger-
print DB, which is full of effective and valid data sets.
All fingerprint data used in the developed test bed are
harvested from actual radio fingerprint measurements
taken throughout Seoul, Korea. This demonstrates the
practical usefulness of the proposed framework.
2. RF fingerprint map
A reference RF fingerprint DB constitutes the funda-
mental basic information of the proposed WPS. Most
position estimation systems that use Wi-Fi APs require
prior knowledge of the Wi-Fi RF fingerprint. The usual
Wi-Fi fingerprints are collected in the form of Table 1.
The Wi-Fi fingerprint consists of base station identifica-

tion (BSSID; i.e., MAC address), service set identification
(SSID), measurement X-axis (MES_X, i.e., Longitude),
Measurement Y-axis (MES_Y, i.e., Latitude), and Received
Signal Strength Index (RSSI). When an AP is detected
by an automatic scanning device, the fingerprint data (i.e.,
BSSID, SSID, RSSI) are stored with its position (i.e.,
MES_X, MES_Y). These fingerprint data should be stored
and handled as a DB map. A conventional reference fin-
gerprint DB map consists of many grids. Each grid has RF
fingerprint data consisting of AP identifiers (usually the
MAC address of an AP), and the signal strength of each
AP (see Figure 4).
In general, fingerprint data for reference DB are col-

lected by wardriving. Wardriving is a data acquisition
method for a position estimation system using Wi-Fi,
and it is suitable for collecting fingerprint data over a
Table 1 Example of the Wi-Fi AP fingerprint

BSSID SSID MES_X MES_Y RSSI (dB)

00:01:36:1f:9c:d2 Sklifeap_4 37.5036 127.0336 −80

00:01:36:24:66:60 Primebc-ap2 37.5060 127.0436 −69

00:01:36:25:2a:ea Hpsetup 37.4956 127.0302 −79

00:01:36:25:2a:eb SK_WLAN 37.4956 127.0302 −79

00:01:36:26:24:27 KWI-B2200T- 37.5038 127.0274 −87

00:01:36:26:24:28 D-1201 37.5038 127.0274 −83

00:01:36:27:4d:54 Tectura Corporation 37.5084 127.0434 −89

00:01:36:2a:84:f9 Default 37.4962 127.0302 −81
wide range [15]. We collected the entire fingerprint data
of the Seoul Gangnam urban area, which contains about
110,000 grids. Figure 5 shows a sample of a reference
fingerprint DB map, with grid representation.
An up-to-date reference fingerprint DB should be main-

tained for precise position estimation. The segmented
rescanning can be a promising way to update reference
DB. The entire area is segmented into unit areas. Each unit
area has distinguishable geographical characteristics, such
as commercial, residential, and industrial or so. Then, a
sample set of reference points is selected in a respective
unit area. In general, the number of sample reference
points is very small compared to total reference points,
and the sample reference points are scattered uniformly
throughout the unit area. We monitor the fingerprints of
sample reference points periodically. The proportion of
sample reference points, which have significantly different
fingerprint pair for two time-consecutive monitoring
epochs, is the determinant of area rescanning. If the pro-
portion of significantly different fingerprint pairs is higher
than a pre-specified ratio, we can conclude that the stored
fingerprints of a unit area are not ‘valid’ (i.e., data is
outdated), and we need to replace all fingerprints of the
unit area by rescanning. Otherwise, the fingerprints of the
unit area are verified as still valid, and remained to the
reference fingerprint DB. Note that RF fingerprint DB is
not stored in each handset in real applications. All applica-
tions send requests of position estimation to a location
server which contains entire RF fingerprint DB.
A reference fingerprint DB map gives two types of in-

formation: ‘the number of APs per grid’, and ‘the cover-
age of an AP’. The number of APs per grid determines
the size of fingerprint DB map. The size of the map has
a strong relationship with both the calculation speed
and accuracy of position estimation. A set of APs that
have relatively low RSSI values has limited effect for pos-
ition estimation. The valuable fingerprint data are ob-
tained from the APs that have higher RSSI values. The
higher RSSI value means closer location from a refer-
ence point of the fingerprint DB map. Figure 6 shows
the coverage of an AP. The coverage is shown as a set of
detected grids of the AP. By the change of RSSI cutover
threshold from −90 to −55 dB, the coverage of an AP
shrinks to a smaller range.
The proper cutover threshold filters out the ineffect-

ive APs, decreases the number of detected APs per
grid, and then finally restricts the coverage of the
APs. The restricted AP coverage guarantees the higher
likelihood for fixation of position estimation. There-
fore, the determination of a cutover threshold for each
AP is the essential point for reference fingerprint DB
management. The key of the proposed coherent data
filtering framework is the determination of the cutover
threshold.
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3. Coherent data filtering and compensation
In our experiment in the Gangnam district of Seoul, we
collected 0.6 million fingerprint patterns in a single col-
lection cycle. Moreover, a single measured fingerprint
pattern contains more than 30 AP identifications (i.e.,
BSSID) and RSSI measurement data, on average. The
total data volume collected in our single collection cycle
Figure 5 Sample grid in DB map. Note: All Korean characters indicate na
exceeds hundreds of megabytes. This huge volume of
fingerprint data has a significant negative effect on both
the running speed of the positioning estimation algo-
rithm, and reference fingerprint DB map maintenance.
Moreover, the dimension of fingerprint should be re-
stricted, for practical pattern matching type position es-
timation algorithms (the dimension of a fingerprint is
mes of places. The imported map uses Korean geographical interface.



Figure 6 Coverage change of an AP.
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the number of (AP identification and RSSI value) pairs,
as shown in Figure 7). For the entire domestic national
data collection and efficient position estimation, the fil-
tering mechanism should be widely applied, in any form
whatsoever.
Figure 7 shows the general filtering structure of the pro-

posed method. To maintain the consistency of filtering, cut-
over RSSI thresholds are applied to both the ‘reference
fingerprint DB’ and ‘fingerprint measured by handset in po-
sitioning stage’. The simultaneous application of common
cutover thresholds gives consistency to the fingerprint pat-
tern matching in the actual positioning stage. The entire
Common Finger
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Figure 7 Coherent data filtering concept.
framework to determine the proper cutover threshold can
be mathematically described as the following integer pro-
gramming models (1), (2), (3), (4), and (5).
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yij; oij ¼ 0 or 1f g ð5Þ

where gj is the desired number of APs in grid j. Note
that gj determines the numerical dimension in a position
estimation algorithm. A typical position estimation algo-
rithm uses a pattern-matching method. The synchron-
ous and proper dimensioning of pattern matching is
important for the significance and running speed of esti-
mation. The practical value of gj can be fixed as differen-
tiated numbers, according to the regional characteristics,
such as residential or commercial areas (i.e., smaller
values for residential and larger ones for commercial).
mj denotes the number of APs offered for grid j in the
reference fingerprint DB map, after filtering. Thus, the
objective function (1) minimizes the difference between
the desired and offered number of APs, for all grids in
the reference DB map. Equation 2 represents the calcu-
lation of mj. yij is determined as 1, if APi in grid j sur-
vives after the filtering, otherwise as 0. The summation
of yij for all is in a grid j (i.e., ∑

i
yij) can make the value of

mj. oij means the original existence of APi in grid j.
When APi is originally detected in grid j, the value of oij
is determined as 1, otherwise as 0. The inequality (3)
shows the existence of APi in grid j before and after fil-
tering. The candidate APs for filtering should be selected
among the originally detected APs by the inequality (3).
The inequality (4) guarantees that all survived AP RSSIs
are greater than the RSSIs of filtered APs. (oij − yij) has
value 1 (i.e., (oij − yij) = 1), if APi in grid j is filtered.
Thus, (oij − yij)rij means RSSIs of filtered APs. (oij − yij)rij
should be less than the yijrij, the RSSIs of survived APs.
rij is the measured RSSI of APi in grid j. For arithmetical
consistency, we slightly modify the RSSI of AP in our
model, in the form of rij = −1/RSSIij (RSSIij is the actual
measured value of RSSI for APi in grid j (unit: dB)).
The proposed mathematical model determines the

cutover RSSI threshold for each AP in each grid. Then,
it can select optimal significant APs for each grid. The
Figure 8 Cutover threshold for grid.
determined RSSI threshold guarantees the minimum dif-
ference between the desired and offered number of APs.
However, for coherent application of common cutover
threshold to both the ‘reference DB map’ and ‘measured
fingerprint by handset’, the practical cutover threshold
should be given for each AP as a single value, not for
each grid (a mobile handset does not know its current
grid position in the positioning stage). The determined
RSSI cutover threshold by the mathematical model can
make multiple thresholds for a single AP. Figure 8a
shows the discrepancy of RSSI thresholds for a specific
AP (i.e. −85 and −88 dB for AP14) in the mathematical
modeling approach.
To get a practical cutover RSSI threshold for each AP,

we should determine a single value threshold for a single
AP, such as −88 dB for AP14 in Figure 8a, or −85 dB for
AP14. This single-value threshold determination cannot
maintain the optimality of the aforementioned mathemat-
ical model, but it can give the common cutover threshold
to both the reference DB map building and handset
positioning. Because of the dynamic interaction between
adjacent grids, as presented in Figure 8b, a single-value
threshold should be determined, under the harmonization
among grids. The decrement or increment of single-value
threshold can make for a different offered number of APs
among grids. We suggest a dynamic type of algorithm
to determine a harmonized single-value threshold for
each AP.

argRSSIAPi minf RSSIAPi
� � ¼ �RSSIAPij f RSSIAPi

� �
¼ ∑

ĵ kð Þ
j gĵ kð Þ−mĵ kð Þ RSSIAPi

� �j !�
ð6Þ

Equation 6 shows the single-value RSSI threshold de-
termination for APi. |gĵ(k) −mĵ(k)(RSSI

APi)| has the same
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meaning in function (1), except that mĵ(k)(RSSI
APi) de-

notes the offered number of APs for grid ĵ(k) under the
given RSSIAPi (a grid ĵ(k) is in a grid set ĵ which has APi
as a detected AP in its fingerprint; k is the ordering
index for each grid in a set ĵ). RSSIAPi is the determined
single-value RSSI threshold for APi. The RSSIAPi guar-
antees the minimum difference between the desired and
offered number of APs for grids ĵ. The RSSIAPi values
are determined by an iterative Equation (7):

f nþ1 RSSIAPinþ1

� � ¼ gĵ nþ1ð Þ−mĵ nþ1ð Þ RSSIAPinþ1

� ���� ���
þ f �n RSSIAPin �� � ð7Þ

The function fn
* in Equation 7 denotes the summation

of difference between the desired and offered number of
APs from the 1st to the nth grid, under the given current
RSSI threshold for APi, RSSIn

APi *. The fn+1 can be ob-
tained by the summation of ‘the nth function value (i.e.
fn
* (RSSIn

APi*))’ and ‘difference between the desired and of-
fered number of APs for the n + 1th grid (i.e., |gĵ(n+1) −
mĵ(n+1)(RSSIn+1

APi)|)’. The difference between the desired
and offered number of APs for the n + 1th grid is calcu-
lated under the RSSI threshold of APi in the n + 1th grid.
Now, we compare the fn+1(RSSIn+1

APi) and fn+1(RSSIn
APi*). If

the gap between fn+1(RSSIn+1
APi) and fn+1(RSSIn

APi*) is lower
than a pre-specified range, the current RSSI threshold for
Figure 9 Sample grid set for single value cutover threshold calculatio
map uses Korean geographical interface.
APi is maintained at the same value for the nth grid, (i.e.,
RSSIn+1

APi* = RSSIn
APi*). Otherwise, we configure the new

current RSSI threshold as RSSIn+1
APi. Note that the RSSI

threshold (i.e., RSSIn
APi for all i and n) is ideally obtained

from the integer programming models (1) ~ (5). However,
we have a candidate RSSI range, namely RSSIn

APi = {min-
RSSIAPi,…, maxRSSIAPi}, for calculation convenience. The
complexity of the proposed dynamic algorithm is O(nC), n
is the number of neighboring grids of target grid and C is
the scale factor of RSSI measure. To specify all APs in a
grid (if we assume k APs per grid), we need maximum k
implementations of the dynamic algorithm of O(nC) com-
plexity (i.e., total O(nkC) complexity of implementations).
The selection of APs in online positioning stage is totally
based on the common cutover RSSI threshold of specific
AP. The process of online positioning stage is relatively
simple. Just applying the common cutover RSSI threshold
can give the simplicity in practical application in online po-
sitioning process. Figure 9 shows the sample grid area for
calculation of the proposed filtering method. A total of nine
neighbor grids are selected for applying the filtering
method. We assume the desired number of APs as a single
value of 10, for simplicity (the determination of desired
number of APs (i.e., gj) is described in the Appendix).
By applying the filtering method, we obtain the follow-

ing results (Table 2), which show the offered numbers of
n. Note: All Korean characters indicate names of places. The imported



Table 2 Results for sample filtering

Grid# 1 2 3 4 5 6 7 8 9

Before filteringa 25 19 18 21 13 18 7 8 20

|gj ‐mj | 15 9 8 11 3 8 3 2 10

After filteringb 11 10 9 15 9 9 5 6 15

|gj ‐mj | 1 0 1 5 1 1 5 4 5
aAverage difference 7.67, average offered APs 16.56; bAverage difference 2.56,
average offered APs 9.889.

Kim and Yeo EURASIP Journal on Wireless Communications and Networking 2014, 2014:13 Page 9 of 15
http://jwcn.eurasipjournals.com/content/2014/1/13
APs for each grid. The average offered numbers of APs
are very close to the desired number. The difference is
reduced from 7.67 to 2.56.
After the filtering by single-value cutover RSSI thresh-

old, we perform a fingerprint compensation process in
the building of reference DB, based on a coherence test.
The collected fingerprint data have empirical fluctua-
tions on RSSI caused by environmental factors. The hu-
man movement makes a short-range fluctuation of RSSI
(The human body is a sort of radio wave absorber.
Approximately 3 dB is attenuated throughout the single
human body). We can compensate imperfectly measured
RSSI values by the compensated ones. Figure 10 shows
the concept of compensation. First, we find the temporal
fluctuation on RSSI. Because of human movement, RSSI
Figure 10 Coherent data compensation.
can be fluctuated temporally. Thus, we collect RSSI meas-
urement data from several different time bands at each col-
lection point. If the difference of RSSI measurements is
greater than a certain level, we select vertical and horizon-
tal neighbor grids and apply a smoothing technique. By the
curve fitting (linear or exponential) with neighboring RSSI
values, the two newly compensated RSSI values (i.e., verti-
cal and horizontal) are obtained according to both the ver-
tical and horizontal axis”.
Using the filtering and compensation mechanism, the

volume of fingerprint data is significantly reduced, and
the data quality is highly enhanced, for precise position
estimation. The common RSSI threshold for both the
reference fingerprint DB and handset-measured finger-
print gives effective dimension of the fingerprint, which
imparts good estimation quality, with sufficiently fast
running speed for position estimation algorithms.

4. Numerical results
To show the applicability of the proposed filtering and
compensation methods, we collected all the fingerprint
data from the Seoul Gangnam urban district, which con-
tains about 110,000 grids. A single scanning process usu-
ally generates approximately 600,000 fingerprint data. This
is a huge amount of data, and a relatively large area is not
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Figure 12 Test district.

Kim and Yeo EURASIP Journal on Wireless Communications and Networking 2014, 2014:13 Page 10 of 15
http://jwcn.eurasipjournals.com/content/2014/1/13



(a) (b)
Figure 13 Comparison of before/after filtering. (a) Area 14. (b) Area 19.

Table 3 Single-value thresholds for APs

AP index Cutover threshold (dB) AP index Cutover threshold (dB) AP index Cutover threshold (dB)

952 −95 976 −79 1,000 −60

953 −69 977 −76 1,001 −85

954 −40 978 −73 1,002 −95

955 −95 979 −81 1,003 −95

956 −84 980 −79 1,004 −85

957 −79 981 −84 1,005 −77

958 −85 982 −81 1,006 −81

959 −76 983 −77 1,007 −76

960 −78 984 −75 1,008 −75

961 −81 985 −78 1,009 −83

962 −67 986 −54 1,010 −95

963 −95 987 −40 1,011 −95

964 −84 988 −95 1,012 −95

965 −95 989 −79 1,013 −95

966 −79 990 −79 1,014 −76

967 −61 991 −81 1,015 −55

968 −61 992 −95 1,016 −95

969 −85 993 −95 1,017 −76

970 −64 994 −61 1,018 −87

971 −80 995 −84 1,019 −76

972 −79 996 −83 1,020 −76

973 −79 997 −83 1,021 −85

974 −81 998 −79 1,022 −51

975 −95 999 −95 1,023 −42
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Figure 14 Test districts in Gangnam, Seoul.
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suitable for testing and enhancing the details of the filtering
method. Thus, we constructed a Windows-based perform-
ance analysis tool, as shown in Figure 11. The analysis tool
shows the density of APs by different coloring (Light
red means relatively light density of APs; dark red means
relatively high AP density.). We applied the proposed fil-
tering method and evaluated its performance in a rela-
tively restricted area as the first step.
The test area shown in Figure 12 is a square district

(320 m × 500 m) in Gangnam, Seoul. This district is
classified as a commercial area in Seoul. It includes many
commercial buildings and dense foot traffic. There are 248
grids. A total of 1,267 APs are detected. Each grid has one
fingerprint, which has 26.6 APs and their RSSI measure-
ment value, on average. A total of 6,566 (AP identification
Table 4 Position estimation error for test districts

Test district Commercial/
residential

Average error
without filtering (m)

Average error
unified RSSI fil

1 65:35 64 63

2 25:75 49 47

3 60:40 72 72

4 30:70 56 55

5 70:30 81 79

6 40:60 47 46

7 55:45 59 58

8 70:30 74 71

9 75:25 76 73

10 50:50 62 61

Average - 64.0 62.5

Enhancement rate - - 2%
and RSSI value) pairs are used to build the reference
fingerprint DB.
The proposed filtering method greatly reduces the vol-

ume of data: from 6,566 measurement pairs (26.6 APs per
grid on average), to 2,751 (10.9 APs per grid on average).
Approximately 60% of the measurement data are filtered
out by the proposed method. Figure 13 shows the differ-
ence of the originally measured APs and offered APs by
the filtering method, for areas 14 and 19 of Figure 13. The
offered numbers of APs are in the range of the desired
number of APs per grid (we set the desired number of APs
to 10 for the test).
Table 3 shows the single-value RSSI thresholds for

APs. We list a part of the whole list of thresholds for
reference.
with
ter (m)

Average error with coherent filtering and compensation (m)

Coherent filtering
only

Coherent filtering
and compensation

52 49

42 41

53 53

43 42

57 55

42 41

44 41

54 51

61 58

50 49

49.8 48

22% 25%



Figure 15 Error difference between before/after filtering.
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Next, we extended coherent filtering and compensa-
tion in a large area. Ten test districts (see Figure 14) in
Seoul Gangnam were selected to prove the applicability
of the proposed filtering method. The area of Gangnam
district is 39.55 km2. The range of area for test districts
is 0.10 ~ 0.17 km2. Each district has 50 ~ 60 target points
for position estimation.
We apply the well-known and widely used the KNN

pattern matching algorithm [7]. The results prove the ef-
fectiveness of the proposed method, in various diversified
environments of an urban area. For comparison purposes,
Table 4 includes the results of ‘W/O filtering’ and the ‘uni-
fied RSSI filter’. In the unified RSSI filter, we apply the
same RSSI cutover threshold for all APs, of −85 dBm.
The results show the effect of the proposed method. An

average of 22% enhancement (for coherent filtering only)
and 25% enhancement (for coherent filtering and compen-
sation) are measured for 10 different districts. Most of the
enhancement depends on coherent filtering. The contribu-
tion of compensation is somewhat limited. We also attach
Figure 16 Determination of desired number of APs.
the ratio of land utilization (commercial/residential) for
test districts. Each test district has its differentiated ratio
for commercial and residential areas. The enhancement is
diversified with the range (5 ~ 24 m). We can observe the
relatively higher enhancement for commercial-oriented dis-
tricts. The commercial-oriented districts have approxi-
mately 18-m (range 12 ~ 24 m) enhancement, whereas
approximately 8-m (range 5 ~ 13 m) enhancement for
residential-oriented districts. Figure 15 directly shows the
effectiveness of the proposed method by a graphic chart.
Note that the majority of test points belong to the out-

door environment. The automatic scanning vehicle has an
access problem to the indoor environment. The most of in-
door fingerprints are collected by human power. Thus, our
experiment has a limitation for the applicability on indoor
environment. However, our proposed framework are ap-
plicable both on indoor and outdoor environments. The
radio signal fluctuation and structure complexity are more
serious in an indoor environment. The proposed coherent
filtering framework has relative advantage on the complex
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and fluctuated environment (see the comparison between
commercial and residential). We carefully expect the ef-
fective application to the indoor environment.

5. Conclusion
The rapid growth of mobile communication and the
proliferation of smart phones have drawn significant at-
tention to location-based services. One of the most im-
portant factors in the vitalization of LBS is the accurate
position estimation of a mobile device. Traditional tri-
angulation has an inevitable weakness, in estimating an
AP's exact position. Moreover, significant technical ad-
vances are not shared publicly by solution providers. RF
fingerprint WPS is an alternative valuable way to pene-
trate the positioning solution provider market. Even by
indiscriminate fingerprint collection, providers can build
a fingerprint DB and apply a simple pattern-matching al-
gorithm for position estimation. However, to build a
competitive fingerprint WPS solution, we should focus
on fingerprint data management, and precise estimation
algorithms. The essential factor of radio fingerprint map
is the data integrity of RSSI. Because of millions of APs
in the urban area, RSSI measurement data are seriously
contaminated. Therefore, we present a coherent filtering
method for RSSI measurement data. In our method, we
built a new fingerprint filtering method. Based on the sin-
gle cutover threshold and data coherency, collected finger-
prints are filtered and compensated. A new fingerprint
data filtering for position estimation can strengthen the ad-
vantages of RF fingerprint WPS. Compared to the existing
approaches for fingerprint filtering, our method achieves a
better performance, in both average error of estimation,
and deviation of errors. Furthermore, all the fingerprint
data were harvested from the actual measurement of RF
fingerprints in Seoul's Gangnam district. We built an ef-
fectively filtered fingerprint DB for the entire area of Seoul
and applied position estimation. These trials show the
practical usefulness of the proposed methodology.

Appendix
The higher number of gj provides more information for
precise position estimation. On the other hand, it also
generates larger deviation (i.e., the deviation is gradually
increased according to increment of gj). The following
statistical implication shows the negative effect (i.e., large
deviation on position estimation) by the increment of gj.
The similarity of two patterns is usually determined by

the Euclidian distance of two different patterns. That is,
the statistical difference between two fingerprints is
based on the square of the Euclidean distance (d2(i, j))
between two fingerprint pairs (fi,fj) as d2(i, j) = (fi − fj)

2,
where fi = {RSSIAP1

i , RSSIAP2
i ,…, RSSIAPn

i }, fj = {RSSIAP1
j ,

RSSIAP2
j ,…,RSSIAPn

j }. Each value of RSSIAPk
i (RSSI for APk

in fingerprint fi) is a random variable and has a
measurement error that tends to follow a normal distri-
bution. Thus, each element of vector fi − fj also follows a
normal distribution. By transforming the elements of
vector fi − fj to the standard normal distribution, d2(i, j)
tends to follow a chi-square distribution with a degree of
freedom n (i.e., d2 i;jð Þeχ2 nð Þ). Generally, the χ2(n) has a
mean n and variance 2n. The value of n is determined
by gj, then, deviation of position error is increased by the
increment of gj (i.e., if n is increased, variance (2n) is also
increased).
Now, we have to find the tradeoff relation between

‘deviation caused by higher gj’ and ‘information density
obtained by higher gj’. We adopt an empirical experi-
ment to find the proper number of gj. Figure 16 shows
three representative illustrations for position estimation
error.
This figure shows the position estimation error for three

test districts: (1) residential-oriented district (district 2 in
Table 4), (2) commercial-oriented district (district 5 in
Table 4), and (3) neutral district (district 10 in Table 4).
Despite of small difference, significant range of gj can be
found; 9 ~ 11 APs are sufficient numbers for position esti-
mation. From the knowledge of empirical experiments, we
can apply proper gj to practical reference DB management.
Note that this empirical experiment cannot give an abso-
lute value of gj for all cases. The repetitive experiments are
required to guarantee the effectiveness of the empirical
method.
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