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Abstract

An improved adaptive filtering (IMPNLMS+) algorithm has been proposed for non-sparse impulse responses by
incorporating an adaptive parameter μ of the μ-law compression into the improved μ-law PNLMS algorithm
(IMPNLMS) algorithm. It not only achieves optimal step-size control factors but also overcomes that the convergence
of classical μ-law PNLMS (MPNLMS) is even slower than conventional NLMS algorithm for dispersive channels. In this
paper, we propose IMPNLMS++ algorithm, where normalized algorithm is analyzed to reduce computational
complexity of proposed improved μ-law PNLMS (IMPNLMS+) algorithm. The validity has been proved by the
simulation results.
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1. Introduction
In echo cancelation systems, the adaptive filters are used
to identify the impulse responses for echo paths. How-
ever, the impulse responses are usually sparse in nature
[1-3]. For these systems, the classical normalized least-
mean-square (NLMS) algorithm which assigns the same
step-size to all filter coefficients converges slowly. Some
adaptive algorithms exploiting the sparse nature of the
impulse response have been proposed to resolve this
problem.
The proportionate NLMS (PNLMS) algorithm [4] pre-

sented by Duttweiler converges slowly dramatically after
the initial fast period. The μ-law PNLMS (MPNLMS) al-
gorithm [5] was proposed to solve this problem. Although
it achieves optimal proportionate step size, it converges
even slower than the classical NLMS algorithm in disper-
sive channels. The improved MPNLMS (IMPNLMS) algo-
rithm [6] for non-sparse impulse responses was proposed
to improve the performance of MPNLMS with an auto-
matic adjustable parameter. If the convergence speed of
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IMPNLMS algorithm can be further improved, this algo-
rithm will get a good application in time-varying environ-
ment. In [7], we have presented the improvement of the
IMPNLMS algorithm using a variable parameter μ instead
of the constant value. As a consequence, the convergence
features of the MPNLMS algorithm are improved
significantly.
In this paper, the improved IMPNLMS algorithm,

referred to as IMPNLMS + algorithm all over the paper,
is reviewed. The computational complexity is then
compared with other adaptive filter algorithms. Non-
normalized algorithm is analyzed to bring down the
computational complexity of the IMPNLMS+; the
feasibility is confirmed by numerical situations.
This paper is organized as follows. In Section 2, the

IMPNLMS + algorithm is reviewed. In Section 3, in order
to lower computational complexity, the non-normalized
technology is analyzed. In Section 4, numerical simula-
tions confirm the computational complexity of IMPN
LMS+ is lower without normalization. Finally, Section 5
presents conclusions.
2. Review of the improved IMPNLMS algorithm
For non-sparse response, we have proposed an
IMPNLMS + algorithm [7] by applying time variable
parameter μ, which does not perform worse than
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Table 1 The computational complexity of each filter coefficient update equation of NLMS

Algorithms Addition Multiplication Division Comparison Logarithm Prescribing

NLMS L 2 L + 1 1 0 0 0

PNLMS 2 L − 1 4 L + 1 2 2 L 0 0

IPNLMS 3 L 4 L + 1 2 0 0 0

MPNLMS 2 L − 1 4 L + 2 2 2 L L 0

IMPNLMS 5 L + 2 5 L + 5 3 0 L 1

IMPNLMS+ 5 L + 3 5 L + 8 4 0 L 2
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NLMS even for dispersive channels. It can be applied
in time-varying environment as well. In this section,
the IMPNLMS + algorithm is recalled.
The steepest descent algorithm with step-size control

matrix using μ-law [4] in IMPNLMS + algorithm can be
written as:

w∧ k þ 1ð Þ ¼ w∧ kð Þ þ βG k þ 1ð Þx kð Þe kð Þ
xT kð ÞG k þ 1ð Þx kð Þ þ δ

ð1Þ

The step-size control matrix (L x L):

G k þ 1ð Þ ¼ diag g
1
k þ 1ð Þ g

2
k þ 1ð Þ … g

L
k þ 1ð Þ� �

ð2Þ
The lth coefficient gl (k) has been presented in [6]:

gl kð Þ ¼ 1−α kð Þ
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Where, logarithmic function in IMPNLMS + differs
from [6]:

F w
∧
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kð Þ

��� ���� �
¼ ln 1þ μ kð Þ w∧

l
kð Þ

��� ���� �
ð4Þ

Here, μ (k) [8] is a time variable parameter instead of
constant:
Figure 1 Gaussian input with sparseness degree 0.80.
μ kð Þ ¼ 1
ε kð Þ ð5Þ
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ð6Þ

γ kð Þ ¼ ηγ k−1ð Þ þ 1−ηð Þe2 k−1ð Þ ð7Þ
The parameter α (k) in IMPNLMS + can be described

as:

α kð Þ ¼ 2ξ kð Þ−1 ð8Þ

ξ kð Þ ¼ 1−ρð Þξ k−1ð Þ þ ρξw kð Þ; 0 < ρ≤1 ð9Þ
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In IMPNLMS + algorithm, thanks to the adaptation
of μ (k), the algorithm is more flexible to minimize the
MSE related to the time-varying μ (k). The IMPNLMS+
algorithm can achieve better convergence even in time-
varying environment where the echo path changes obvi-
ously. However, the computation of step-size control
matrix with μ-law in IMPNLMS + algorithm is expensive.



Figure 2 Gaussian input with sparseness degree 0.60.
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In the next section, we analyze the computational com-
plexity based on IMPNLMS+ algorithm. Non-normalized
technology is discussed to reduce the computational com-
plexity of IMPNLMS+, which can be also applied to all
proportionate NLMS algorithms.

3. The analytical solution of computational
complexity
In general, the computational complexity of adaptive al-
gorithms can be visualized as the number of additions,
multiplications logarithm calculations, etc. per iteration. In
Table 1, we compare the computational complexity of each
filter coefficient update equation. The computation of the
filter coefficient update equation in IMPNLMS+ algorithm
is expensive. It adds three L + four additions, L + six multi-
plications, two divisions, and two prescribing per iteration
Figure 3 Gaussian input with sparseness degree range from 0.90 to 0
in addition to the computational load of MPNLMS. In this
section, we improve the IMPNLMS+ algorithm, termed
IMPNLMS++, by reducing normalization. The possibility
of lowering IMPNLMS+ computational complexity by re-
ducing normalization is discussed.
In [4], the denominator of coefficient update equation

in PNLMS is xT (k) x (k), Duttweiler normalized the
step-size control factors gl (k) to avoid direct influence
of target impulse response amplitude (i.e., |hm| ) on effi-
cient step-size parameter β gl (k). Thus, the value of
final efficient step-size assigned to filters is only propor-
tional to parameter β. However, when the denominator
is xT(k)G(k + 1)x(k), normalization can be skipped. The
analysis can be described as follows.
For the coefficient update equation whose denomin-

ator is xT (k) G (k + 1) x (k), molecular and denominator
.80.
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are multiplied by the non-zero real number c at the
same time:

βG k þ 1ð Þx kð Þe kð Þ
xT kð ÞG k þ 1ð Þx kð Þ þ δ

¼ β cG kð Þ½ �x kð Þe kð Þ
xT kð Þ cG k þ 1ð Þ½ �x kð Þ þ cδ

ð11Þ

Where δ is a small positive number only to prevent the
algorithm from stalling when denominator equals zero.
Hence, in general, xT(k)[cG(k + 1)]x(k)≫ cδ, the operation
(11) which is just the same as normalization does not
affect the coefficient update item dramatically. Therefore,
the absence of normalization has little effect on adaptive
algorithms, but also reduces L divisions. This thesis is
applicable to MPNLMS and IMPNLMS as well.

4. Numerical simulations
In this section, the proportionate algorithm IMPNLMS+
is simulated to confirm the little influence on algorithms
without normalization. The input of the simulation sys-
tem, which is similar as [7], is described as follows.

The coefficients of the unknown system w0
∧

and the

adaptive filter w
∧
is 100 (L = 100). The signal-to-noise ratio

(SNR) is 40 dB, and the disturbance z (n) is a Gaussian sig-
nal. The constant step size β is 0.5. The initial value of ξ is
0.96. The forgetting factor ρ used to estimate channel
sparseness is 0.1. In IMPNLMS+ algorithm, η = 0.99, and
ν = 1,000.
Similarly, to evaluate the IMPNLMS + algorithm per-

formance, the normalized misalignment measure (in dB)
[1] is used:

K kð Þ ¼ 10 log10
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−w kð Þ
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����

����
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∧

����
����
2

2
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In simulations, the input of the simulation system is
white Gaussian noise with zero mean and unit variance.
The sparseness degrees of channel are 0.80 and 0.61 and
from 0.90 to 0.80, respectively. The IMPNLMS+ and
non-normalized IMPNLMS+ (MPNLMS++), are com-
pared as Figures 1, 2, and 3.
In Figures 1, 2, and 3, with the increasing of iterations,

IMPNLMS+ and IMPNLMS++ converges gradually in
1,000 iterations. Furthermore, the lower the sparseness
degree is, the faster IMPNLMS+ and IMPNLMS++ con-
verge. As illustrated in figures above, IMPNLMS++ per-
forms nearly the same as the normalized IMPNLMS+.
However, the computational complexity of IMPNLMS++
is L divisions less than normalized IMPNLMS+ .
5. Conclusions
In this paper, we first recall the improved IMPNLMS
algorithm for non-sparse impulse response. The com-
plexity of each filter coefficient update equation is then
compared. To reduce computational complexity of the
IMPNLMS + algorithm, the possibility of employing
the non-normalization technique is verified through
theoretical derivations. Simulation results have proven
the effectiveness and feasibility of the non-normalized
IMPNLMS + algorithm.
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