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Abstract

This paper proposes a method of detecting the number of persons in an area, along with their locations and breath
patterns, using ultra-wideband (UWB) radars. A time-of-arrival type of location estimation was performed in this study
not only using techniques introduced in the existing study results of detecting biomedical signals using a UWB radar
but also by applying an initial screening method for redundancy reduction and a maximum likelihood
observation-target association technique. This paper also introduces radar measurements conducted under a variety

of scenarios and presents the results of applying the proposed algorithm to the measured data. The test results
showed that the number of targets was accurately estimated with an average positioning accuracy of 12.7 cm.

Keywords: Ultra-wideband radar; Multi-target localization; Respiration detection

Introduction

Recently, significant attention has been paid to the non-
invasive detection technology of human movement or
biomedical signals for the purpose of patient monitoring
and search and rescue. An ultra-wideband (UWB) radar
is advantageous in terms of being able to sense slow and
tiny movement of a human body, as compared to existing
Doppler radars [1-3]; therefore, it is regarded as a suit-
able solution for these application areas. There have been
many studies on the technique of detecting not only the
human breath but also the heartbeat using a UWB radar
[4-9]. It has been found through experimental results that
the breath or the heartbeat can be detected not only when
there is no obstacle between the radar and the human
but even under a situation where the path between the
two is blocked by walls [10-15]. Some study results have
presented not only single-target detection but also dual-
target detection [15-17]. In addition, literature regarding
the estimation of the target location as well as distance to
a target can be found [15,18].

To this end, generally, techniques of time-frequency
analysis, correlation detection, and static clutter removal
have been widely used. Along with them, additional signal
processing techniques have been introduced to improve
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the performance of estimation. In order to remove non-
stationary clutter, which is a cause of false alarms, Baboli
et al. [19] used a wavelet transform, whereas Zaikov [18]
applied a filtering technique. Lazaro et al. [20] and Sharafi
et al. [21] showed that biomedical signals can be detected
even for a moving target by introducing techniques for
movement compensation. The breathing signal generates
harmonic components owing to its periodicity [22], which
cause false alarms. Lazaro et al. [20] utilized a trap filter to
remove them.

This study aims to detect a breathing pattern of one
or more persons who breathe at a fixed position and
their locations in a two-dimensional space. First, radar
scans were obtained in various scenarios in an indoor
environment. Most of the radar measurements previ-
ously reported in the literature were obtained in sce-
narios where the front of a person was directed to an
antenna. In this study, however, data measured with the
side or back of a person directed towards the antenna
were also obtained. Although the signals obtained in such
scenarios were significantly weak, they could be used suc-
cessfully for the estimation process. Then, the general
detection techniques mentioned above were applied to
detect changes in a signal due to a target’s movement. At
this step, measurements at each radar may include false
alarms that could be caused by target movement regard-
less of breathing, harmonics, and indirectly reflected
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signals [17]. Next, an initial screening is conducted to
reduce the number of false alarms by analyzing the
frequency characteristics of the detected signals. Then,
observation-target association is carried out, for which
we used a classical maximum likelihood (ML) approach
[23]. This approach requires a large number of com-
putations, so a more computationally efficient method
must be employed considering practicability. However,
this study attempted to show the feasibility and useful-
ness of the technique, using the distance information and
breath frequency information of the target simultaneously
in the data association step, using the optimal ML tech-
nique. Finally, the number of targets is determined, and
the estimates of target locations and breath frequencies
according to the determined number is obtained as a final
result.

Radar measurements
UWB radar measurements were carried out using the
Pulson P400 monostatic radar module manufactured by
Time Domain, Inc. (Huntsville, AL, USA) in an indoor
environment. In order to prevent false alarms, we tried
to remove the sources of non-stationary clutter, such as
persons walking into an area near the radar, swaying cur-
tains, and running fans, as much as possible. Each radar
has two omnidirectional dipole antennas attached so as
to transmit and receive UWB pulses. The three radars
were arranged in known locations and fixed on a foam
pad to be placed at a height of about 0.7 m, which is
near the average height of the chest of a sitting adult.
In addition, one to three people were positioned around
the radars so that the breathing pattern and location of
each person would be estimated. The location of each
person was also determined in advance to evaluate the
accuracy of the estimation. The relative location of each
radar and person was measured using a laser distance
measuring device for performance evaluation. The reso-
lution of the used laser distometer was 0.1 mm. Ten sets
of measurements were taken: five sets with one target,
four sets with two targets, and one set with three targets.
Figure 1 shows a photograph of the experimental environ-
ment depicting measurement set numbers 1, 7, and 10 for
a single person, two persons, and three persons, respec-
tively. As shown in the figure, the relative orientation
between a person and an antenna can be different depend-
ing on the location of the person. In some cases, a per-
son’s chest was directed towards the antenna, whereas in
other cases, the side or back may be directed towards the
antenna.

The template waveforms of the radar signals can be
approximated by [24]

s(t) = Aexp (—at?)sin (b7), 1)
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Figure 1 Photograph of the experimental environment. The
experimental setup of measurement set numbers 1 (top), 7 (middle),
and 10 (bottom) are shown.

where a = 5.55x10'8, b = 26.15x10°, and A is a constant.
The signal received at the ith radar can be expressed as

K-1
rD (1) = Z “/((i)(t)s (r - ﬂ;ﬁi)(t))+n (1), i=1,2,3,
k=0

(2)

where the superscript (i) indicates the index for the radar,
7 denotes the propagation delay of a reflected waveform
(fast time) and contains the distance information of a tar-
get, K is the number of multipath signals, and ¢ denotes

the measurement time (slow time). In addition, a,((i) () and
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B ,El) () exhibit the scale and time delay of multipath signal
components received at the ith radar, respectively. Sig-
nal s(7) is the template signal defined in (1) and # (7) is
the noise. The multipath signal components of a received
signal include not only the signal components reflected
from the human body but also the signal components
reflected from other background objects. Each radar uses
its unique pseudo-random code, and thus, the signal
transmitted from each radar is assumed to have no inter-
ference with the signals received at other radars. When
measuring received signals, each radar adopts an average
for the transmission of 4,096 pulses, thereby increas-
ing the signal-to-noise ratio of the received signal, and
samples were taken every 0.2 s.

Multi-target localization

The overall flow of the multi-target detection algorithm
proposed in this paper is shown in Figure 2. First, dis-
tance information between each reference radar and the
potential target and the target’s breath frequency infor-
mation are detected from the radar scans obtained by
the method introduced in the previous section. The data
detected at this step may include false alarms, which are
generated by the indirect reflection and harmonic com-
ponents of a breathing pattern. To reduce the number
of false alarms, an initial screening process is conducted
via frequency analysis of the detected signals. Through
this process, it is possible to remove all or part of the
false alarms. Using the measurements left after conduct-
ing this process, data association is carried out. This is a
process to determine which target’s movement generated
which measurements obtained at each radar. To this end,
the ML method, which searches all the possible combi-
nations exhaustively, is employed, and the estimation of
locations of targets and breath frequencies is also per-
formed in this process. Finally, the number of targets is
determined by examining the cost function.

Detection
When the person to be detected takes a breath, a por-
tion of body parts such as the chest and/or abdomen
also moves according to a breathing pattern. This can
change the structure of a multipath channel between the
transmitting and receiving antennas of the radar, and as
a result, the receiving signal also changes. Here, a gen-
eral motion filtering technique [20,25,26] was applied to
remove the static background signal and to observe the
signal movement. However, the received signal at a spe-
cific time, rather than the average of all measurement
signals, was used as a reference signal. Without a loss of
generality, the signal at ¢ = 0 is selected as the reference
signal as follows:

ri(@) = r(x;0). 3)

ref
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Figure 2 Block diagram of the estimation process.
Observation-target association is carried out along with position
estimation.

In addition, the difference signal at a random moment ¢
can be defined as

@ (z;0) = rP(;0) — ’"ng (7). (4)
When a measurement was performed while the chest of
a person was directed towards the antenna, strong differ-
ence signals were observed. On the other hand, when the
back or side was directed towards the antenna, very weak
signals were obtained. Now, if matched filtering is per-
formed for the timing detection of multipath signal com-
ponents, the following correlation function is obtained:

RO (At;t) = / 20 (;t)s(x — Avydr. ()

—00
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In addition, by taking the Fourier transform of
R;?(Ar; t) with respect to variable ¢, cross-spectral den-
sity S,(fs) (AT; 1) is obtained as

[e¢]
SO (AT;A) = / RO (AT; e 7ML, (6)
—00

where A denotes the frequency. Signal x® (z; ¢) also con-
tains components that are not related to breathing, for
example, head movement other than periodical move-
ment of the chest or abdomen due to breathing. These
signal components cause a hindrance in detecting a
breathing pattern. Thus, a bandpass filter, which corre-
sponds to a general human breath frequency band, was
used to filter out these movements [11,26,27]:

SV p (AT 1) = SO (AT GO, @)

Subscript ‘BP’ indicates that the spectral density has been
bandpass filtered and G(A) is the transfer function of the
filter. Our analysis used a Butterworth filter in the fre-
quency band of 0.1 to 1.2 Hz. The filtered correlation
function can be expressed by

R pp(AT; ) = / RO(AT;8)g(t — &)dE, (8)
where
g = / - G . (9)

Figure 3 shows the measured results of measurement set
number 1 when a single person was breathing. The figure
RffiBP (r; t)‘ measured at the ith
reference radar, where parameter r is the value that con-
verts At into distance. The figure on the right shows a plot
of

on the left shows a plot of

S(i)BP (r; A)‘ corresponding to the figure on the left. In

XS,
the plot of R;(i,)BP (r; t)
m, which is the distance between the radar and the per-
son. Additionally, a similar movement is detected at 5.1,
6.2, and 6.6 m, which was caused by the multiple reflec-
tions that include the target and other objects on their
reflection paths [17]. This phenomenon is also conspicu-

ously observed in the frequency domain (see the plot of

Sp (132

The distance to a potential target and breath frequency
are determined by the following two steps. First, the val-

ROy i0)|is
concentrated, are determined. This can be accomplished

0o 2
by finding values of r where / SgBP (r; A)‘ d) has

, a periodic signal is observed at 3.2

ues of distance r, where the energy of signal

local peaks in the region where it exceeds the specific
threshold [26]. Then, denoting the value of the distance
obtained here by r;, find the values of frequency A where
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S(i)’Bp (Vj; K)‘ has local peaks in the region satisfying

XS,
Sa(cls),BP (55 %)

old. The points indicated by the circle in the figures on
the right column represent the distance and frequency
information detected using the method described in the
above. Among the several points detected, only one con-
tains the information on the actual target distance and
breath frequency, whereas the other points are all erro-
neously detected. Figure 4 illustrates this phenomenon. In
the figure, path number 1 is the direct path reflected by
a human body, path number 2 receives static background
signals, and path number 3 contains multiple reflections
from a human body and background objects together.
When the reference signal is subtracted from the received
signal, the indirectly reflected signal received via path
number 3 cannot be removed, whereas the static back-
ground signal can be removed. Because of this, a system
might falsely detect another target other than the actual
target.

Figure 5 shows the measured results of measurement set
number 7, when two persons were breathing. In the plot

of

at almost the same range from radar 1, while they breathe
at different frequencies. In this case, the two people can
be distinguished only by their breath frequencies and not
by their ranges. At this distance, other frequency compo-
nents are also detected along with the two targets’ breath
frequencies, which is indeed the detection of the har-
monic components due to the regular movements of the
human body as a result of breathing. The measured results
of measurement set number 10, where three persons were
breathing, also show false alarms due to the harmonics as
well as indirect reflections. In this study, additional filter-
ing was not applied to remove the harmonic components
at a detection step, which was performed in the study of
[20]. Instead, it was possible to remove the false alarms
due to the harmonic components at the data association
step. If two persons breathe with almost the same fre-
quency at different distances from the radar, two targets
can be distinguished using the distance information. How-
ever, if two persons breathe with similar frequencies at a
similar distance from the radar, it would be very difficult
to distinguish them.

The values detected through the above process at the ith
radar can form a matrix

M 50
(A" 2")

M 50
RO _ (’2 A2 )

(o)

, where « is a thresh-

S;QBP (r/; )»)‘ > K-max;

Sf;,)BP r; X)) ‘, it is noted that the two people are located

(10)
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Figure 3 Plots of

R)((';)’BP r; t)| (left) and

C

S)({'s) Bp (r;k)l (right) for measurement set number 1. The circles indicated by the arrows in the plots on

the right-hand column represent the distance and breath frequency of the actual target, whereas the remainder indicate false alarms. (a) Results of
the measurements at radar 1. (b) Results of the measurements at radar 2. (¢) Results of the measurements at radar 3.
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where each row vector in the matrix indicates a detected
point and it is assumed to satisfy ril) < ré’) <...< r,(:,), Vi.
The number of observation vectors is denoted by k;.

Initial screening

As already mentioned, matrix R® defined in (10) can
contain signal components received by indirect as well
as direct reflections from the human body. In order to

distinguish these signal components, an initial screening
process is performed by analyzing the characteristics of
the signal frequency. The rationale is as follows: the
human body movement due to breathing is significantly
slower than the propagation delay of a signal, so it is highly
probable that the movements of directly and indirectly
reflected signals from the human body are synchronized.

For example, assuming that (r;i), }”1@> and (rl(i), )»Ei)> are
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Figure 4 Different reflection scenarios. Path number 3 indicates an indirect reflection.

vectors detected from the movement of the same person
and r;') < rl(l), then we can assume that A;') ~ A;’).
Furthermore, because these two points are where

S;QBP (r; A)‘ has local peaks, it can be assumed that both

SJ(CQBP (Atj;4;) and SJ(C?,BP (At A;) have the same phase or
phase difference of as large as . Therefore, we can assume
that two vectors that satisfy the following conditions are

due to the movement of the same person and thereby
remove (r(i) )L(i))~
L")

L =] <6,

2. ‘45;?,13? (s ) & 28,0 (5:00)| < 6,

where 65 and 6, are thresholds, respectively. When more
than two observations that satisfy the above conditions
exist, a vector detected at the closest distance is chosen,
and the others are removed by an assumption that they
were detected because of indirect reflections. Now, a new
matrix R is obtained by the result,

(+.37)

(r.3¢)
(79, 39)
ki ki

where k; is the number of remaining observations left due
to indirect reflections. Even if this initial screening process

R = (11)

has been conducted, false alarms due to indirect reflec-
tions can still remain. In addition to this, as shown in
Figures 5 and 6, there can exist vectors generated because
of the harmonic components of the signal, and the ini-
tial screening process cannot eliminate false alarms due to
these vectors. For example, in the measurement set num-

~ T
ber 1, k3 = 4 and k3 = 2 are obtained when 6, = 2% and

05 = 0.004. It is noted that /~<3 is still greater than the actual
number of targets. The false alarms left after the initial
screening can be eliminated further in the post-processing
presented in the next sections.

Data association and parameter estimation
Now, an observation-target association process is con-
ducted, in which observations included in matrices

. .13
{’R(’)]' | are partitioned into the combination of the
1%

number of targets. First, a combination that maximizes
the likelihood of the observed measurements is searched
for, assuming that the number of targets is known as 7,
and the joint distribution of the measurement errors of the
parameters to be estimated is also known. This process is
conducted with regard to all possible # values, and during
this process, not only the optimal combination but also
the optimal values of the location of a target and breath
frequency are also found.
If the number of potential targets is #, # satisfies

(12)
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Figure 5 Plots of S)({"s)’BP r; A)l for measurement set number 7.
The circles indicated by the arrows represent the distance and breath
frequency of the actual targets, whereas the remainder indicate false
alarms. (a) Results of the measurements at radar 1. (b) Results of the
measurements at radar 2. (€) Results of the measurements at radar 3.
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If the location of the jth target is ¢;, 1 < j < n, and
the two-dimensional spatial point in which the ith radar is
located is &, the distance between the jth target and ith
radar, namely d]@, can be defined as

4" =a -] 1

Here, we try to estimate the locations of » targets,

{q)]} ~, using observation matrices RDs. Given observa-
j=

7~€(i)} , the following combinations can

i=1
be considered. Firstly, there is tpe number of cases in
which 7 vectors are selected from k; observations obtained
from the ith radar. If we let this number be Q;, then

Qi = (ki),
n

and the number of cases that select # observations from
3

tion matrices {

(14)

each R®s becomes l_[ Q:. Now, we can make (n!)? dif-
ferent configurationsl, x%vhich is the number of cases that
makes # groups comprising three vectors by selecting one
vector from each R¥. Therefore, when the number of
potential targets is assumed to be n, the possible total
number of combinations, M,,, becomes

3 i(
M, = (n!)Z-]_[(n’>.

i=1

(15)

Here, among the total M,, possible combinations, one
particular combination can be represented as the follow-
ing assignment matrix:

1 1 1
( izm’ b(131m> (af(ﬂz 51”)1””)
2 2 2
CVI,WI: (ﬂgy),m: bg,),m)¢¢(£131m b}(q}lm) ’ (16)
3 3 3
( izm’ bi;rr:) (a’(“l ’(1”)1”’”)

where the ith row is the permutation of n vectors selected
from the matrix ﬁ’,(i), while the first row is arranged such
that ailr)lm < aélzm < ... < ﬂ%,m, that is, each row in
matrix Cy,,, consists of observations with regard to » tar-
gets obtained in a single radar, while each column consists
of three vectors, each vector is obtained in three radars,
and these three vectors are assumed to be generated from
the same target. Observations that are not included in
matrix Cy,,, are assumed to be false alarms. Index m is the
index that indicates one of M,, possible combinations and

satisfies 1 < m < M,,. Therefore, the total possible num-
N

ber of the matrix C,,;, becomes ZM"’ which means the
n=1
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number of ambiguities. The error between the estimated
and measured distances, 6 (n . can be defined as

(@) (l) (D)
jmm T ],nm - d/,n m’ (17)
where '? is the measured distance between the ith

j,n,m
radar and jth target designated by matrix C,,,,,.

Now, the optimal data association index, 1, is searched
for according to the ML criterion. First, let us assume
that the distance measurement errors are independently
and identically distributed (iid) random variables, each
of which has fs (8) as its marginal density. Likewise, let
us assume that the measurement errors of the breath
frequencies are iid random variables having f; (¢) as a
marginal density, and the distance measurement error and
the breath frequency measurement error are independent
of each other. Then, the optimal data association index,
[y, can be calculated as

- ® i_
el R (1 O
" (PP ,xn)]l_”_! Lmm™ j
0]
X fé <bj,n,m - )“/)
(18)

Here, not only an optimal partition but also optimal val-
ues of the location and breath frequency of each target are
also searched. If we further assume that the distance mea-
surement error and breath frequency measurement error
are mean-zero Gaussian random variables having 052 and

03 as variances, respectively, then u, can be given as

Uy = argmin L (n, m), (19)
m

where cost function £ (1, m) is defined under the Gaus-
sian setup as

. 2
L (n,m)= min < Y] Ha(l)_q,.H)
2
0
+ = (b,fnm —x,«) } .
(20)

Figure 7 shows a scatter plot of cost function £ (n, m) for
measurement set number 7.

Determination of the number of targets

Finally, the number of targets, », should be determined.
Finding the optimal value of # is a difficult task. When
the value of n exceeds the number of actual targets, a
large increase in the cost function £ (1, u,) can be pre-
dicted. This is because it is highly probable that a false
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Figure 7 Scatter plot of the cost function for measurement set number 7. The marked point on the far left with respect to each value of n

10° 10

alarm occurring in one radar does not match the detec-
tion results in the other radars. In light of this, the present
study obtained the estimate of #, namely v, by calculat-
ing the rate of L (n, u,) according to n and applying a
threshold as follows:
1
V = arg max ;E (n, y) <61, (21)
n

where 6y, is the threshold value. For example, in the case
of measurement set number 10 shown in Figure 8, as the

1
value of # increases from 3 to 4, the value of — L (1, u,,)
n

is shown to be significantly greater than 6;, = 20. Once
parameter v is obtained, the estimate of the location and
breath frequency of the jth target can be determined as
follows:

IA

3
. , 2
¢ = argngnz [aﬁ,uv - H(x(l) - (pH:I ,1<j<v,
i=1

(22)

10

L(n,un)/n

threshold ;..o A

2

3 4
number of targets (n)

Figure 8 Rate of £ (n, up) according to n for measurement set number 10. The dotted line indicates the threshold 6.
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Figure 9 Estimated location and resulting breathing pattern for measurement set number 1. The result was obtained with 052 =25x10

20 25 30

-3

03 =25 x 107°,and 6, = 20. (a) Estimated location of the target. (b) Breathing pattern of the target.

and
3 , 2
fy=argminy_ (b, —2), 1<j=v @3
i=1
respectively.

Summary of the estimation algorithm
The estimation process of the number of targets, location,
and breath frequency can be summarized as follows:

1.

Cross-spectral density SiQBP (At; 1) is calculated

from signal {r(i) (t; t)}?=1 measured at each
reference radar.

Distance and breath frequency information of
potential targets is detected from SfchP (AT; A).
Using the observations obtained at this step, matrix
R® is generated.

. Among the observations detected at each radar,

those that have a high probability of being generated
by indirect reflections are searched and removed.
These can be searched by comparing the frequency
information of the observation and phase of the
corresponding spectral density.

. Using the observations left, matrix R(?) is generated.

Here, if the number of the observations included in
R is k;, the number of potential targets, n, satisfies

1 <n <N = min k.
1<i<3

. Letn=1.

(a) With regard to all the possible combinations
that create n groups, each group consists of
three observations selected from matrices

~ .13
=

m=1 L

generated.
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Figure 10 Estimated locations and resulting breathing patterns for measurement set number 7. The result was obtained with
052 =25x% 10‘3,062 =2.5x 107, and . = 20. (a) Estimated locations of the targets. (b) Breathing pattern of target 1 (upper) and target 2 (lower).

(b) The optimal data association index, 1y, is
searched for according to the ML criterion.

6. Increase n by 1. If n < N, go to step 5a; otherwise, go
to step 7.

7. By finding a value of n where a ratio of £ (1, uy,)
according to n is increased above a specific threshold
value, this value is selected as the estimate, v, of the
number of targets.

v A v
8. The ML estimates, {(?)]} and {X,‘]‘ , of the

j=1 j=1
location and breath frequency of v targets are

determined, respectively.

Test results

The data association and estimation algorithm described
in the previous sections was applied to 10 sets of measured
data. The data association and estimation algorithm
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Figure 11 Estimated locations and resulting breathing patterns for measurement set number 10. The result was obtained with
552 =25x 1073, 03 =25 x 107°,and 6, = 20. (a) Estimated locations of the targets. (b) Breathing pattern of target 1 (upper), target 2 (middle),
and target 3 (lower).




Table 1 Summary of the test results on 10 experiment sets

Measurement Number Number of Number Estimated number Location Estimate of breathing
number of targets observation vectors of ambiguities of targets error (m) frequency (Hz)
k1 ka ks kq ko ks Target 1 Target 2 Target 3 Target 1 Target 2 Target 3
1 1 3 6 4 3 2 2 24 1 0.1393 - - 0.23 - -
2 1 4 5 3 2 2 2 12 1 0.1397 - - 0.21 - -
3 1 3 7 1 3 7 1 21 1 0.1709 - - 0.20 - -
4 1 3 2 2 2 1 1 2 1 0.1239 - - 0.26 - -
5 1 4 5 4 1 1 4 4 1 0.0634 - - 0.30 - -
6 2 5 3 7 3 3 6 1314 2 0.0831 0.1134 - 023 044 -
7 2 6 5 6 6 3 6 17,208 2 0.2087 0.1583 - 041 0.17 -
8 2 3 4 3 3 3 3 171 2 0.0350 0.2501 - 0.21 042 -
9 2 3 2 4 2 2 3 24 2 0.0184 0.0221 - 0.24 0.24 -
10 3 6 M 6 5 1 4 1,201,420 3 0.0572 03174 0.1334 0.26 048 0.18
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described in the previous sections was applied to 10
sets of measurement data. Figures 9, 10, 11 show the
detected results of the target location and breath pat-
terns measured at measurement set numbers 1, 7, and 10.
Part (b) in each figure shows the results of finding loca-
tions of targets using combinations selected through the
observation-target association process. Additionally, the
breath pattern of each target shown in part (c) of each
figure shows one of the results obtained at three radars.
Table 1 shows the summary of the test results on 10
experiment sets. The average positioning error is approx-
imately 12.7 cm, which is very small. It was found that
as the number of targets increases, in particular, under
the presence of many false alarms, the number of ambi-
guities becomes very large. For example, in the case of
measurement set number 10, 1,201,420 ambiguities were
obtained.

Conclusions

The present study proposed a detection technique for the
location and breathing pattern of an unknown number of
people. The algorithm proposed in this study was applied
to 10 data sets measured in an indoor environment and
exhibited a significantly high level of estimation accuracy.
Through the initial screening process via frequency anal-
ysis, a considerable number of false alarms occurring at
the detection process could be removed. More remark-
ably, false alarms, which were not removed by the initial
screening, were removed effectively at the data associ-
ation process. The test results of 10 experimental sets
introduced in this study show that all of the false alarms
were removed completely. It is an interesting finding of
this study that not only the distance information but also
breath frequency information of the target can be highly
useful in data association.

Because we employed a brute-force approach for data
association, the number of ambiguities increased combi-
natorially as the number of targets increased, in particu-
lar, under the presence of many false alarms. Moreover,
because the experiments introduced in this study were
conducted in a well-controlled environment, they are
likely to have more false alarms in a complicated envi-
ronment such as search-and-rescue situations than in our
experimental environment. This will create a heavy com-
putational load, so an application with a more efficient
data association technique will be required for future
work.
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