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Abstract

When estimating channel parameters in linearly modulated communication systems, the iterative
expectation-maximization (EM) algorithm can be used to exploit the signal energy associated with the unknown data
symbols. It turns out that the channel estimation requires at each EM iteration the a posteriori probabilities (APPs) of
these data symbols, resulting in a high computational complexity when channel coding is present. In this paper, we
present a new approximation of the APPs of trellis-coded symbols, which is less complex and requires less memory
than alternatives from literature. By means of computer simulations, we show that the Viterbi decoder that uses the
EM channel estimate resulting from this APP approximation experiences a negligible degradation in frame error rate
(FER) performance, as compared to using the exact APPs in the channel estimation process.
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1 Introduction
When the channel between a source and destination node
is not known, it is primordial for the destination to esti-
mate this channel in order to decode the transmitted
information. Typically, the source assists the destination
with this task by transmitting known pilot symbols along
with the unknown data symbols. Making use of only these
pilot symbols, the destination is able to estimate the chan-
nel. The drawback of this pilot-aided method is that the
channel information contained in the data part of the sig-
nal is not harvested during the estimation. Hence, in order
to obtain an accurate channel estimate, a large number
of pilot symbols should be present, yielding a substantial
reduction of both power and bandwidth efficiency.
To accommodate these problems, the iterative expec-

tation-maximization (EM) algorithm [1,2] can be used to
also exploit the signal energy associatedwith the unknown
data symbols during the channel estimation; this way,
much less pilot symbols are needed to achieve a given
estimation accuracy. Application of the EM algorithm
requires that at each iteration the a posteriori probabil-
ities (APPs) of these data symbols be calculated. When
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using a trellis code to map the information bits on the
data symbols, the Viterbi algorithm [3] minimizes the
frame error rate (FER) by performing maximum likeli-
hood (ML) sequence detection. The exact APPs of the
trellis-coded data symbols are obtained by means of
the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [4], which
however is roughly three times as complex as the Viterbi
algorithm [5].
Several low-complexity approximations of the BCJR

algorithm have been proposed in the literature, mainly
in the context of iterative soft decoding of concatenated
codes, referred to as turbo decoding. Among them are the
max-log maximum a posteriori probability (MAP) algo-
rithm [5] and the soft-output Viterbi algorithm (SOVA)
[6], which are roughly twice as complex as theViterbi algo-
rithm [7], and the soft-output M-algorithm (SOMA) [8],
which reduces complexity by considering only theMmost
likely states at each trellis section. Some improvements
of the SOVA algorithm in the context of turbo decoding
have been presented in [9-13]. Whereas these referenced
papers make use of the approximate APPs inside the iter-
ative decoder, we focus on using the approximate APPs
only in the iterative estimation algorithm and use the
standard Viterbi algorithm (which does not need symbol
APPs) for decoding. Because an accurate approximation
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of the true APPs is less critical for the proper operation
of the EM algorithm, we propose a simpler approximation
of the APP computation with roughly half the complex-
ity of max-log MAP and with substantially less memory
requirements. We compare the resulting EM algorithm
in terms of estimation accuracy and FER of the Viterbi
decoder, with the cases where the EM estimator uses
either the true APPs, or the APPs resulting from SOMA,
or the APPs that are computed under the simplifying
assumption of uncoded transmission.

1.1 Notations
All vectors are row vectors and in boldface. The Hermi-
tian transpose, statistical expectation, the mth element,
the first m elements, and estimate of the row vector x are
denoted by xH , E [x], xm, x1:m, and x̂, respectively.

2 System description
A source transmits to the destination a frame consisting
of a sequence of Kp pilot symbols cp and a sequence of K
data symbols c; the latter is obtained by applying Kb infor-
mation bits b to a trellis encoder [5]. We assume that the
pilot symbols have a constant magnitude

√
Es and that the

data symbols satisfy E
[|cm|2] = Es, with Es denoting the

average symbol energy at the transmitter. Considering a
channel that is characterized by a channel gain h that is
constant over the frame and a noise contribution n, the
signal received by the destination rt = (rp, r) is defined by

rp = hcp + np, (1)
r = hc + n. (2)

The elements of np and n are independent zero mean
circular symmetric complex Gaussian random variables
with variance N0. The destination produces a chan-
nel gain estimate ĥ and uses a Viterbi decoder to
obtain the ML information bit sequence decision b̂ =
argmaxb̃ p

(
r|b = b̃, h = ĥ

)
with b̃ belonging to the set of

all 2Kb information bit sequences of length Kb. If the esti-
mate ĥ were equal to the actual channel gain h, the Viterbi
decoder would minimize the FER given by Pr

[
b̂ �= b

]
.

As the operation of the Viterbi decoder is well docu-
mented in the literature [3], we only briefly recall its main
features. The decoder makes use of the fact that the trel-
lis encoder can be described as a finite-state machine. At
the start of the mth symbol interval, the encoder accepts
a vector um of Nb information bits (the information bit
sequence b is partitioned as b = (u1, · · · ,uK )) and out-
puts a coded data symbol cm which is given by the output
equation cm = g(Sm,um); here Sm denotes the encoder
state at the start of the mth symbol interval. At the end
of the mth symbol interval, the encoder has reached the
state Sm+1 given by the state equation Sm+1 = f (Sm,um).

For any m, Sm belongs to the set � = {σ1, · · · , σL}, with
L denoting the number of encoder states. The resulting
trellis code has a rate of Nb information bits per coded
symbol. The Viterbi algorithm recursively computes the
sequences ĉ1:m (σl) and their log-likelihood for all σl ∈ �,
and m = 1, · · · ,K ; here, ĉ1:m (σl) is the ML sequence
consisting of m data symbols that yields Sm+1 = σl. The
log-likelihood of ĉ1:m (σl) is given by−�m (σl) /N0, where
the path metric �m(σl) satisfies the following recursion:

�m (σl) = min
σj,c̃

(
�m−1(σj) + λm(c̃)

)
(3)

and (Sm+1, Sm, cm) = (
σl, σj, c̃

)
must be consistent with

the encoder operation (i.e., a bit vector ũ, satisfying both
c̃ = g

(
σj , ũ

)
and σl = f

(
σj, ũ

)
, must exist). The quantity

λm(c̃) denotes the branchmetric corresponding to cm = c̃,
which is given by

λm (c̃) = |rm − ĥc̃|2. (4)

The value of c̃ that results from (3) is ĉm (σl), the last ele-
ment of ĉ1:m (σl). The recursion starts from�0 (σl), which
is determined by the a priori distribution of the initial
state S0. The ML data sequence decision is given by ĉ =
ĉ1:K

(
ŜK+1

)
, where ŜK+1 = argminσl∈� �K (σl). The ML

decision b̂ is the information bit sequence consistent with
ĉ, ŜK+1, and the encoder operation. The Viterbi decoder
operation requires the storage of L data symbol sequences
of length K. The above is straightforwardly extended to (i)
multidimensional trellis coding, where a transition from
state Sm to state Sm+1 gives rise to multiple data symbols,
and (ii) the presence of termination bits at the encoder
input to impose a known final state SK+1.

3 Estimation strategy
As mentioned before, the source transmits pilot symbols
cp to assist the destination with the channel estimation
process. The ML pilot-based estimate of h that uses only
rp is given by [14]

ĥ = argmax
h̃

p
(
rp|h̃

)
= rpcHp

KpEs
. (5)

The estimate (5) gives rise to amean-squared estimation
error (MSE) that is equal to

E

[
|ĥ − h|2

]
= N0

KpEs
. (6)

Hence, for given Es, the estimation accuracy is improved
by increasing Kp.
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When exploiting also the data part of the received signal,
i.e., r, the ML estimate of h is given by

ĥ = argmax
h̃

p
(
rt|h̃

)
(7)

= argmax
h̃

∑
c

p
(
rt|c, h̃

)
Pr [c] . (8)

Because of the summation over all possible 2Kb data
sequences, obtaining from (8) the ML estimate for large
Kb is computationally complex. Fortunately, the EM algo-
rithm [1] allows to compute the ML estimate iteratively.
For the problem at hand, the EM channel estimate ĥ(i)

during the ith iteration is obtained as

ĥ(i) = rpcHp + r (
µ(i))H

KpEs + ∑K
m=1 E

(i)
m
, (9)

where μ
(i)
m and E(i)

m denote the a posteriorimean of cm and
|cm|2, respectively:

μ(i)
m =

∑
α

α Pr
[
cm = α|r, ĥ(i−1)

]
, (10)

E(i)
m =

∑
α

|α|2 Pr
[
cm = α|r, ĥ(i−1)

]
. (11)

When the data symbols have a constant magnitude, the
numerator of (9) reduces to (Kp +K)Es. The iterations are
initialized with the pilot-based estimate from (5), which
we denote as ĥ(0).
The APP Pr

[
cm = α|r, ĥ

]
(for notational convenience,

we drop the iteration index) of cm can be expressed as

Pr
[
cm = α|r, ĥ

]
∝

∑
c,cm=α

p
(
r|c, ĥ

)
Pr [c] , (12)

where ∝ means equal within a normalization factor, and
the summation is over all valid codewords with cm equal
to α. Making use of the finite-state description of the
encoder, the APPs (12) can be computed efficiently for
m = 1, · · · ,K by means of the BCJR algorithm [4]. How-
ever, its complexity is still about three times that of the
Viterbi algorithm [5]. Hence, assuming that the EM algo-
rithm converges after I iterations, the BCJR algorithm
must be applied I times, after which, the Viterbi algo-
rithm (with ĥ = ĥ(I)) is used to detect the information bit
sequence. The resulting complexity is 3I + 1 times that of
a single use of the Viterbi decoder.
The MSE resulting from (8) cannot be obtained in

closed form. Therefore, we resort to themodified Cramer-
Rao bound (MCRB) [15], which is a fundamental lower
bound on theMSE performance of any unbiased estimate.
For the observation model (1)-(2), the MCRB reduces to

E

[
|ĥ − h|2

]
≥ N0(

K + Kp
)
Es

(13)

Comparison of (6) with (13) indicates the possibility
of substantially reducing the MSE when also including
the data portion r of the observation in the estimation
process, especially when K � Kp.

4 Complexity reduction
In order to avoid the computational complexity asso-
ciated with the BCJR algorithm (or the max-log MAP
or SOMA approximations), we consider two reduced-
complexity approximations for computing the APPs. In
the first algorithm (A1), we do not exploit the code prop-
erties and compute the APPs as if the transmission was
uncoded. The second algorithm (A2), which exploits the
path metrics from the Viterbi decoder to approximate the
APPs, represents our main contribution.

4.1 Algorithm A1
A trivial low-complexity approximation is obtained by
simply ignoring the code constraint during the EM itera-
tions. More specifically, it is assumed that the data sym-
bols are statistically independent, which implies that the
received samples rk with k = 1, . . . ,K and k �= m do not
contain any information about cm. In (12), we can thus
replace r by rm. This yields

Pr
[
cm = α|r, ĥ

]
=Pr

[
cm = α|rm, ĥ

]
(14)

∝ exp
(−λm(α)

N0

)
, (15)

where λm(α) follows from (4).

4.2 Algorithm A2
Here, we present a new low-complexity approximation to
the APP computation, that makes use only of the Viterbi
decodermetrics {�m (σl)} of the surviving paths. TheAPP
approximation makes use of the following simplifications:

(i) We ignore future observations. More specifically, we
approximate the APP Pr

[
cm = α|r, ĥ

]
of a symbol

cm by conditioning on only the past and present
observations r1:m. This APP is obtained by simply
replacing in the right-hand side of (12) the vectors r
and c by r1:m and c1:m, respectively:

Pr
[
cm = α|r, ĥ

]
≈ Pr

[
cm = α|r1:m, ĥ

]
(16)

∝
∑

c1:m,cm=α

p
(
r1:m|c1:m, ĥ

)
Pr [c]

(17)

(ii) From all paths yielding Sm+1 = σl (l = 1, 2, . . . , L),
we only keep the most likely path that corresponds to
the symbol sequence ĉ1:m(σl); the likelihood of the
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other, non-surviving, paths is assumed to be zero.
This yields the approximation

Pr
[
cm = α|r, ĥ

]
∝

∑
σl ∈ �

ĉm (σl) = α

p
(
r1:m|ĉ1:m (σl) , ĥ

)
Pr [c]

(18)

(iii) We replace in (18) the summation over the valid
symbol sequences by a maximization and finally
obtain the approximation

Pr
[
cm = α|r, ĥ

]
∝ max

σl ∈ �

ĉm (σl) = α

p
(
r1:m|ĉ1:m(σl), ĥ

)

(19)

Hence, from all surviving sequences ĉ1:m(σl) with
ĉm(σl) = α, only the sequence with the highest
likelihood contributes to the APP approximation
(19). Taking into account the relation between the
Viterbi decoder path metric �m(σl) from (3) and the
likelihood of ĉ1:m(σl), we obtain from (19) the
approximation

Pr
[
cm = α|r, ĥ

]
∝ exp

(−�m,min(σl)/N0
)
, (20)

with

�m,min(σl) = min
σl ∈ �

ĉm(σl) = α

�m(σl) (21)

Hence, when the surviving path with the largest
likelihood at the end of the mth trellis section has
cm = α, our APP approximation for the symbol cm is
largest for cm = α. Approximating the APPs
Pr

[
cm = α|r, ĥ

]
form = 1, · · · ,K using (21) yields a

complexity similar to that of the Viterbi algorithm.
Hence, assuming that the EM algorithm converges

after I iterations, the complexity as compared to a
single use of the Viterbi decoder is I + 1 times for
algorithm A2, whereas it is 3I + 1 times when the
APP computation is according to the BCJR
algorithm. Note that unlike the Viterbi algorithm, the
computation of the APP (21) of cm does not require
to store the data symbol decisions ĉn(σl) for n < m,
so that algorithm A2 uses considerably less memory
than the Viterbi algorithm does.
Whereas simplifications similar to (ii) and (iii) have
also been applied to APP algorithms from literature
(e.g., max-log MAP), this is not the case for
simplification (i). As the APP algorithms from the
literature also make use of future observations, the
APP of cm requires updating each time future
observations rm+1, rm+2, . . . become available,
yielding a higher computational complexity and more
memory requirements. Hence, approximation (i) is
crucial for obtaining a very simple APP computation.

5 Numerical results
We consider a trellis encoder consisting of an eight-state
rate 1/2 (15,17)8 convolutional encoder with known initial
and final states, followed by Gray mapping of the convolu-
tional encoder output bits to 4-QAM symbols. Each frame
contains Kp = 5 pilot symbols and K = 200 data symbols
(including four termination symbols). We consider both
an Additive white Gaussian noise (AWGN) channel with
h = 1 and a Rayleigh fading channel with E

[|h|2] = 1.
We investigate the performance of the estimator and the
Viterbi decoder by means of Monte-Carlo simulations, in
terms of MSE and FER, respectively. The EM algorithm
has essentially converged after only one iteration, i.e.,
I = 1; for I = 1, the complexity reduction obtained by
computing the APPs using the new algorithm A2 instead
of the BCJR algorithm is about a factor of 2. In the fol-
lowing, we consider the APP computation according to

Figure 1MSE for a (15,17)8 convolutional code: AWGN channel.
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Figure 2MSE for a (15,17)8 convolutional code: Rayleigh channel.

the BCJR algorithm, the SOMA (M = 4) version of the
exact APP algorithm from [16] and the above A1 and A2
algorithms.
The MSE performance for the AWGN channel and

the Rayleigh fading channel is depicted in Figures 1
and 2, where the MCRB (13) is used as benchmark. The
MSE performance of the EM-based channel estimators (a)
converges to the MCRB with increasing signal-to-noise
ratio (SNR) and (b) outperforms the system where only
pilot symbols are used to estimate h. Ranking the APP
algorithms according to the resulting MSE, we see that
BCJR (which computes exact APPs) performs best, SOMA
(which takes past, present, and future observations into
account) is a very close second, and A2 (which ignores
future observations) is only slightly worse than BCJR and
SOMA; A1 (which uses only the present observation) is
considerably worse than BCJR, SOMA, and A2 for low
and medium SNRs.
Figures 3 and 4 show the FER of the Viterbi decoder

for the AWGN channel and the Rayleigh fading channel

as a function of Eb/N0, with Eb denoting the energy per
information bit. Hence,

Es
Eb

= Nb · K − Kter
K + Kp

, (22)

where Kter is the number of termination symbols. As
benchmark, we use the FER of a reference system with(
K ,Kp

) = (200, 0) where the channel coefficient h is
known to the receiver. Hence, as compared to this refer-
ence system, the system with

(
K ,Kp

) = (200, 5) suffers
from an irreducible power efficiency loss of 10 log10

205
200 =

0.11 dB because of the presence of pilot symbols; the
actual degradation will exceed 0.11 dB because of chan-
nel estimation errors. We observe that (a) the A2, SOMA,
and BCJR algorithms yield essentially the same FER per-
formance and require, for given FER, about 0.11 dB more
Eb/N0 than the reference system: for these algorithms,
the channel estimation is sufficiently accurate so that the
degradation is mainly determined by the power efficiency

Figure 3 FER for a (15,17)8 convolutional code: AWGN channel.
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Figure 4 FER for a (15,17)8 convolutional code: Rayleigh channel.

loss caused by the pilot symbol insertion. (b) The A1 algo-
rithm performs worse than the A2, SOMA, and BCJR
algorithms because ignoring the code constraints when
computing the APPs yields less accurate channel esti-
mates. (c) The FER performance is worst when only pilot
symbols are used to estimate h. Hence, from a computa-
tional complexity and memory requirement point of view,
it is advantageous to compute the trellis-coded symbol
APPs in the EM algorithm by means of the new algorithm
A2 (that ignores future observations) rather than the con-
sidered APP algorithms from the literature (that take also
future observations into account).

6 Conclusions
EM-based channel estimation in the presence of trellis-
coded modulation requires the use of the BCJR algorithm
to efficiently compute the exact symbol APPs. As the
computational complexity of the BCJR algorithm is about
three times that of the Viterbi algorithm which we use
for decoding, we have proposed a new approximation to
the APP computation that beats the main APP algorithms
from the literature in terms of computational complexity
and memory requirements. By means of computer sim-
ulations, we have pointed out that when using the new
APP computation instead of the exact APPs from the
BCJR algorithm, the resulting Viterbi decoder FER perfor-
mances are essentially the same. Hence, this motivates the
use of the new APP approximation in the context of EM
channel estimation for trellis-coded modulation.
So far, we have limited our attention to a time-invariant

channel, i.e., the channel gain takes a constant value h dur-
ing a frame. For time-varying channels, a similar approx-
imation of the symbol APPs can be derived. Denoting by
hm the channel gain associated with the data symbol cm,
the branch metric corresponding to cm = c̃ becomes

λm (c̃) = |rm − ĥmc̃|2, (23)

Note that (23) is obtained by replacing in (4) ĥ by ĥm,
which denotes the estimate of hm. Collecting the channel
gain estimates at the data symbol positions into the vector
ĥ, the likelihood p

(
r|c, ĥ

)
can be decomposed as

p
(
r|c, ĥ

)
=

K∏
m=1

p
(
rm|cm, ĥm

)
, (24)

where p
(
rm|cm, ĥm

)
∝ exp (−λm(cm)/N0), with λm(c̃)

given by (23). Hence, the symbol APP approximations for
time-varying channels are simply obtained by replacing
in the APP approximations A1 and A2 for time-invariant
channels the quantity λm(c̃) by the right-hand side of (23)
instead of (4). The resulting approximated symbol APPs
can be used in, for instance, a MAP EM channel estima-
tion algorithm that exploits the correlation between the
time-varying channel gains [17].
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