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Abstract

This paper addresses energy-efficient design for uplink multiuser SIMO systems with imperfect channel state
information (CSI) at the base station (BS). Since the CSI at the BS is always imperfect due to the channel estimation
error and delay, the imperfectness of the CSI needs to be considered in practical system design. It causes interuser
interference at the zero-forcing (ZF) receiver and makes it difficult to obtain the globally optimal power allocation that
maximizes the energy efficiency (EE). Hence, we propose a non-cooperative energy-efficient uplink power control
game, where each user selfishly updates its own uplink power. The proposed uplink power control game is shown to
admit a unique Nash equilibrium. Furthermore, to improve the efficiency of the Nash equilibrium, we study a new
game that utilizes a pricing mechanism. For the new game, the existence of a Nash equilibrium and the convergence
of the best response dynamics are studied based on super-modularity theory. Simulation results show that the
proposed schemes can significantly improve the EEs of the mobile users in uplink multiuser SIMO systems.

Keywords: Energy efficiency; Multiuser; Multiple-input and multiple-output; Uplink; Channel state information;
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1 Introduction
Multiple-input multiple-output (MIMO) has been consid-
ered as one of the key technologies for wireless communi-
cation systems due to its potential to achieve high spectral
efficiency (SE) as well as increased diversity and inter-
ference suppression [1]. For this reason, many research
on MIMO has focused on increasing the SE [2-6]. On
the other hand, the rapid increase in the wireless data
traffic has caused dramatic increase in energy consump-
tion of wireless communications, which results in massive
greenhouse gas emission and high operation cost [7].
Thus, energy-efficient communication system design is
becoming more important in preserving the environment
and reducing operation cost. Moreover, energy-efficient
design is also important for prolonging the battery life
because the development of battery technology has not
kept up with the increasing demand on the energy supply
for the mobile communications.
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For this reason, recent research on MIMO systems
has also considered energy-efficient designs [8-19] as
well as spectral-efficient designs. For example, in [8], a
single-user MIMO system, where the MIMO channel is
converted to parallel independent subchannels through
singular value decomposition (SVD) and then the trans-
mit power is allocated across the subchannels tomaximize
the energy efficiency (EE) of the system, is considered.
In [9], an energy-efficient precoder design is investigated
according to the type of fading, i.e., static, fast, and slow
fading. In [10], power allocation and antenna selection are
jointly optimized to maximize the EE. In [11], the uplink
of aMIMO system is considered, and a mechanism for the
mobile terminals to switch between MIMO and single-
input multiple-output (SIMO) to increase their EE is pro-
posed. In [12], the downlink of a multiuser MIMO system
is considered, and the optimal power allocation that max-
imizes the EE of the base station (BS), which employs
zero-forcing (ZF) beamforming, is designed. In [13], the
EE capacity for uplink multiuser MIMO system is defined,
and a low-complexity uplink power allocation algorithm
that achieves this capacity is proposed. In [15], the optimal
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number of mobile users in uplink multiuser MIMO sys-
tems and the optimal power allocation that maximize the
EE are discussed. In [17], the energy-efficient link adapta-
tion for uplink coordinated multi-point (CoMP) systems
is investigated.
The above research assumes perfect channel state infor-

mation (CSI) at the transmitters and/or the receivers.
However, CSI is always imperfect due to channel esti-
mation error and delay, and therefore, it is important to
consider the impact of imperfect CSI for practical wire-
less communication system design. So far, only a few
research has considered imperfect CSI in EE design for
MIMO. In [20], energy-efficient subcarrier and power
allocation in the uplink of a multi-carrier interference net-
work are addressed, where only statistical CSI is available
at the transmitters. In [21], bandwidth, transmit power,
active transmit/receive antenna number, and active user
number are adjusted to improve the system-wise energy
efficiency in the downlink multiuser MIMO systems
assuming imperfect CSI at the BS.
In this paper, we address energy-efficient power control

of uplink multiuser SIMO systems with imperfect CSI at
the BS. The imperfect CSI causes interuser interference at
the ZF receiver andmakes it difficult to obtain the globally
optimal power allocation that maximizes the EE. Hence,
instead of using a conventional optimization-theoretic
approach, we propose a non-cooperative energy-efficient
uplink power control game, where each user selfishly
updates its own uplink power to maximize its own EE.
It is shown that the proposed uplink power control
game admits a unique Nash equilibrium. Furthermore, to
improve the efficiency of the Nash equilibrium, we study a
new game that utilizes a pricing mechanism. For the new
game, the existence of a Nash equilibrium and the conver-
gence of the best response dynamics are studied based on
super-modularity theory. Simulation results show that the
proposed schemes can significantly improve the EEs of the
mobile users in uplink multiuser SIMO systems.
The rest of the paper is organized as follows: In

Section 2, we describe the system model. In Section 3, we
define the EE of each mobile user. In Section 4, a non-
cooperative energy-efficient uplink power control game is
formulated, the existence and the uniqueness of the Nash
equilibrium are discussed, and a pricing mechanism is
introduced to improve the efficiency of the Nash equi-
librium. The numerical results are reported in Section 5,
while the concluding remarks are given in Section 6.
Notations: Superscripts (·)T , (·)∗, and (·)H stand for

transpose, complex conjugate, and complex conjugate
transpose operations, respectively. Uppercase boldface
letters are used to denote matrices, whereas lower-
case boldface letters are used to denote vectors. I
stands for an identity matrix. ‖x‖ = √

xHx; CN
(0, σ 2I) denotes zero-mean circularly symmetric, complex

Gaussian distribution with covariance matrix σ 2I. E[·]
represents expectation. [A]ij signifies the i-th row, j-th col-
umn element of matrix A. x � y denotes componentwise
inequality between vectors x and y. projVx denotes the
projection of a vector x on a subspace V .

2 Systemmodel
Consider the uplink of a multiuser SIMO system consist-
ing of a BS and K users, where the BS has M antennas
while each user has a single antenna. The received signal
vector at the BS can be expressed as

y =
K∑

k=1

√
βkhkxk + n (1)

where
√

βk is the large-scale fading coefficient from the
kth user to the BS assumed to be known a priori, hk ∼
CN (0, I) is the M × 1 channel vector from the kth
user to the BS, xk is the symbol of the kth user, and
n ∼ CN (0, σ 2I) is the M × 1 zero-mean additive white
Gaussian noise (AWGN) vector.
The BS estimates hk ’s using the minimum mean

square error (MMSE) estimator. Also, there exists a delay
between channel estimation and its actual use. From [22],
the relationship between the actual channel hk and its
estimate ĥk can be written as

hk = ρkĥk + ek

where ρk is the correlation coefficient between the actual
channel and its estimate and ek ∼ CN

(
0,
(
1 − ρ2

k
)
I
)
.

Note that ĥk and ek are Gaussian and orthogonal to
each other from the orthogonality principle [23], which
implies that ĥk and ek are independent. Then, the BS
applies zero-forcing receiver A =

(
ĤHĤ

)−1
ĤH based

on the estimated channel Ĥ =
[
ĥ1, . . . , ĥK

]
. Denote aTk

to be the normalized version of the kth row of A. Then,
the ZF receiver output for the kth user can be written
as

rk =
signal︷ ︸︸ ︷√

βkρkaTk ĥkxk +
intersymbol interference︷ ︸︸ ︷√

βkaTk ekxk

+
K∑

j=1,j �=k

√
βjaTk ejxj

︸ ︷︷ ︸
interuser interference

+ n′
k︸︷︷︸

noise

,

where n′
k = aTk n. Note that there exist both interuser

interference and intersymbol interference due to the
channel estimation error. The instantaneous signal-to-
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interference-plus-noise ratio (SINR) of the kth user can be
written as

γk = ckρ2
k |aTk ĥk|2pk

ck|aTk ek|2pk +
K∑

j=1,j �=k
cj|aTk ej|2pj + 1

, (2)

where pk = E
[|xk|2] and ck = βk/σ

2 are transmission
power and the channel-to-noise ratio (CIR) of the kth user,
respectively. Then, the instantaneous rate of the kth user
is given bya rk = log (1 + γk).

3 Energy efficiency
To obtain the distribution of γk , we consider the following
properties, which are proved in [24].

Property 1. Consider a M × 1 Gaussian random vec-
tor g ∼ CN (0, I) and a M × 1 unit norm random vector
u (‖u‖ = 1) which is independent of g. Then, |gTu|2 ∼
Exp(1) where Exp(θ) denotes exponential distribution
with mean θ .

Property 2. Consider a vector space V with dim(V) =
m. Also, define a = b

‖b‖ , where b = projVh, and assume
the elements of h are i.i.d complex Gaussian random vari-
ables with unit variance. Then, |hHa|2 ∼ 1

2χ
2
2m where χ2

θ

denotes chi-square distribution with degree of freedom θ .

Using the above properties, we have

|aTk ej|2 ∼ (1 − ρ2
j )Exp(1), j = 1, . . . ,K , (3)

and

|aTk ĥk|2 ∼ 1
2
χ2
2(M−K+1), k = 1, . . . ,K . (4)

Assuming that the channel is ergodic so that each code-
word spans over a large number of realization of the
small-scale fading channel, the ergodic achievable rate of
the kth user Rk is given by

Rk = E [rk] = E
[
log(1 + γk)

]
(5)

Since finding a closed form expression of (5) is not easy,
we resort to a lower bound of Rk obtained in the following
theorem.

Theorem 1. A lower bound of the ergodic rate of the kth
user in (5) is given by

Rk ≥ Rlower
k = log

⎛
⎜⎜⎜⎜⎝1 + skpk

ikpk +
K∑

j=1,j �=k
ijpj + 1

⎞
⎟⎟⎟⎟⎠ ,

(6)

where sk = (M − K)ck|ρk|2 and ik = ck(1 − |ρk|2), for
k = 1, . . . ,K.

Proof. See Appendix 1.

Note that the above lower bound assumes the regime
where the number of BS antennas exceeds the number
of user, i.e., M > K . Many recent researches advocate
using sufficiently large number of antennas at the BS to
increase EE as well as SE [25]. Using large number of
antennas at the BS can reduce the transmit power of the
mobile users in the uplink and slow down the battery
power consumption. For example, in massive MIMO, the
BS employs massive number of antennas, say a hundred
or a few hundreds of antennas, to improve the EE of users
or BS [26].
The EE of the kth user is defined as the average number

of information bits that can be reliably conveyed over the
channel per unit energy consumption, i.e.,

ηk = Rk
pk + pc

, (7)

where pc denotes the circuit power which is independent
of the transmission power [27]. Using the lower bound of
Rk , the EE ηk can be approximated by

ηk ≈
log
(
1 + skpk

ikpk+Ik

)
pk + pc

, (8)

where Ik =
K∑

j=1, j �=k
ijpj + 1.

The EE of the uplink multiuser SIMO system η is

defined as the sum of the EEs of the users, i.e., η =
K∑

k=1
ηk ,

which is a function of
{
pk
}K
k=1. To maximize the system

EE, we need to solve the following problem:

maximize
p

η

subject to 0 ≤ pk ≤ pmax, ∀k = 1, . . . ,K
(9)

where p = [
p1, . . . , pK

]T denotes the uplink power vec-
tor of the users. Finding the optimal p that maximizes the
system EE using the conventional optimization theory is
difficult because the objective function η is not concave in
p. Larger number of users K in the system will result in
more local maximums, and searching for the globally opti-
mal power allocation for the users would be a daunting
task. Hence, in this paper, we consider a game theoretic
approach, where each user finds its own uplink power in a
distributed fashionb.
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4 Energy-efficient uplink power control based on
pricing

Denote p−k = [
p1, . . . , pk−1, pk+1, . . . , pK

]T to be the
power vector of the other users than the kth user. Then,
the non-cooperative energy-efficient uplink power con-
trol game G can be written as

G
(
K, {Qk}Kk=1 ,

{
ηk
(
pk ,p−k

)}K
k=1

)
, (10)

where K = {1, . . . ,K} is the set of players (users), Qk ={
pk|0 ≤ pk ≤ pmax

}
is the set of strategies (power lev-

els) available to the kth user, and ηk
(
pk ,pd,−k

)
is a util-

ity function (EE) the kth user seeks to maximize. The
game G can be also expressed as the following K coupled
problems.

maximize
pk

ηk(pk ,p−k) k = 1, . . . ,K

subject to pk ∈ Qk , k = 1, . . . ,K .

Given the uplink power of the other users, p−k , the best
response of the kth user is given by

pok = Bk
(
p−k

)
� arg max

0≤pk≤pmax
ηk
(
pk ,p−k

)
, (11)

where ηk is a function of both pk and p−k . The varia-
tion of uplink power of one user impacts those of the
other users. Equilibrium is the condition in which com-
peting influences are balanced. The most commonly used
solution concept in game theory is that of the Nash equi-
librium [28]. A Nash equilibrium for the game G can
be described as a fixed point of the following non-linear
equation:

p∗ = B(p∗), (12)

where B(p∗) �
[
B1(p∗−1),B2(p∗−2), . . . ,BK (p∗−K )

]T . For
more details on the Nash equilibrium, we refer interesting
readers to [28].
The game G has a unique Nash equilibrium. The exis-

tence and the uniqueness of the Nash equilibrium can be
shown by using the results in [29] because the utility in
(8) has the same form as the one used in [29]. Note that
[29] discusses a game in a relay-assisted network where
K transmitter-receiver pairs communicate by means of an
AF relay. If the direct links between the transmitters and
the receivers are ignored, the SINR expression in [29] has
the same form as the SINR in (2). An interesting charac-
teristic in the SINR expressions in (2) and [29] is that both
SINR expressions have a common term in the denomina-
tor that depends on the kth user’s signal power (or the kth
transmitter’s signal power) pk . While this term is due to
the channel estimation error in (2), it is due to the transmit
power normalization at the relay in [29].
Now, we discuss the techniques on how to improve

the efficiency of the Nash equlibrium of the game G.
In the game G, each player only aims to maximize its

own EE by adjusting its own power, but it ignores the
interference it generates to the other players. Thus, the
Nash equilibrium of the game G may be inefficient in
the Pareto sense [30]. We say that a strategy profile p1 is
more efficient than another strategy profile p2 if, for all
k ∈ K, ηk(p1) ≥ ηk(p2) and for some k ∈ K, ηk(p1) >

ηk(p2).
To improve the efficiency of the Nash equilibrium of

the game G, we study a new game with the pricing
mechanism, namely game Gc. By introducing pricing to
the player’s utility functions, the player now voluntarily
cooperates with each other to improve the system perfor-
mance. We adopt a simple linear pricing policy that each
player needs to pay the price that linearly increases with
the amount of uplink power consumption. The new game
Gc can be expressed as

Gc
(
K, {Qk}Kk=1 ,

{
ηck
(
pk ,p−k

)}K
k=1

)
, (13)

where

ηck
(
pk ,p−k

) = ηk
(
pk ,p−k

)− cpk (14)

is the utility of the kth player that incorporates pricing
factor c > 0. Then, we discuss the existence of a Nash
equilibrium of the game Gc. Note that ηck is the sum
of two quasi-concave functions, which is not necessarily
quasi-concave. Here, we resort to super-modularity the-
ory [31] to show the existence of a Nash equilibrium.
The formal definition of a supermodular game is provided
below.

Definition 1. A non-cooperative game Gc
(
K, {Qk}Kk=1 ,{

ηck
(
pk ,p−k

)}K
k=1

)
is a supermodular game if for all

k ∈ K,

1. Qk is a compact subset of R
2. ηck

(
pk ,p−k

)
is upper semi-continuous in p

3. For all p−k � p′
−k , the quantity

ηck(pk ,p−k) − ηck(pk ,p
′
−k) is non-decreasing in

pk ∈ Qk .

The game Gc in (13) satisfies conditions 1) and 2),
but it violates condition 3). Therefore, the game Gc

is not a supermodular game. However, if the strategy
spaces of players are modified appropriately according to
Theorem 2, the resulting game becomes supermodular.

Theorem 2. Denote the modified strategy space for the
kth user asQc

k �
{
pk|pmin,k ≤ pk ≤ pmax

}
, where

pmin,k =
ik +

√
i2k + 2skikImax,k

skik
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with Imax,k =
K∑

i=1,i�=k
ijpmax +1. Then, the modified energy-

efficient uplink power control game with pricing

Gc
(
K,
{
Qc

k
}K
k=1 ,

{
ηck
(
pk ,p−k

)}K
k=1

)
(15)

is a supermodular game.

Proof. See Appendix 2.

It is well known that a supermodular game has at least
one Nash equilibrium [31]. Denote SNE to be the set of
Nash equilibria of a supermodular game. Then, all Nash
equilibria of the supermodular game p∗ ∈ SNE satisfy
p∗
S � p∗ � p∗

L, where p∗
S and p∗

L are the smallest and
the largest Nash equilibria in SNE, respectively. Using the
best response dynamics with the smallest strategy vector
p = [

pmin,1 . . . pmin,K
]T , the strategy vector converges to

p∗
S [32].

Algorithm 1
1. Set step size 	c > 0, and initialize pricing factor c = 0.

2. Set the initial uplink power vector pk = pmin,k for all
k ∈ K.

3. Get ηk for all k ∈ K at the Nash equilibrium of the
game Gc;
Set ηbestk = ηk for all k ∈ K;
Set cbest = c;

4. Increase c = cbest + 	c.

5. Get ηk for all k ∈ K at the Nash equilibrium of the
game Gc.

6. If ηk ≥ ηbestk for all k ∈ K,

1) Update ηbestk = ηk for all k ∈ K;
Update cbest = c;

2) Go to Step 4.

Else

1) Return cbest.
2) Terminate algorithm.

Now, we propose an algorithm that finds the pricing fac-
tor c that improves the system performance of the game Gc

in the Pareto sense, which is summarized in Algorithm 1.
The same mechanism in [30] has been used in Algorithm
1; we first obtain the utilities {ηk}Kk=1 at the Nash equilib-
rium of the game Gc with no pricing, i.e., c = 0, which
is equivalent to playing the game G. Then, the game Gc

is played again after incrementing the price by a posi-
tive vale 	c. If the utilities at this new equilibrium with

some positive price c improve with respect to the previous
instance, the pricing factor is incremented and the proce-
dure is repeated. This process is repeated until an increase
in c results in utility worse than the previous equilibrium
values for at least one player. We declare the last value of
c with Pareto improvement to be the best pricing factor,
cbest. As will be shown in our simulation, this technique
performs very well in improving the efficiency of the Nash
equilibrium.

5 Numerical results
In this section, we present the performance of our energy-
efficient uplink power control scheme obtained by sim-
ulations. The system parameters used for simulation are
as follows: system bandwidth W = 10 kHz, noise power
spectral density N0 = −174 dBm/Hz, noise power σ 2 =
N0W = −134 dBm, and maximum transmit power of
users pmax = 23 dBm and circuit power of users pc =
115.9 mW.
Figure 1 illustrates the convergence of the best response

dynamics p(i+1) = B
(
p(i)) of the game G when the BS has

M = 8 antennas and there are K = 4 users. The initial
uplink power vector is chosen as p(0) = 0. As shown in the
figure, the uplink powers of the users obtained by the best
response dynamics converges to the Nash equilibrium
within a few iterations. Here, we choose ρ = 0.9995 when
the CSI is imperfect. According to [22], the correlation
coefficient between the actual channel and its estimate
can be written as ρ = ρeρd, where 0 ≤ ρe ≤ 1 and
0 ≤ ρd ≤ 1 are due to the estimation error and the delay,
respectively. From Jakes’ model, ρd = J0(2πTdfd), where
Td and fd are the time delay and the maximal Doppler fre-
quency, respectively. Assuming ρe = 1, Td = 1/14 ms,
and the speed of the user is 5 km/h, we can obtain 0.9995.
Next, we compare the energy-efficient uplink power

control game G and the spectral-efficient uplink power
control game Gs, which can be expressed as

Gs
(
K, {Qk}Kk=1 ,

{
usk(pk ,p−k)

}K
k=1

)
,

where the utility of each player usk = Rlower
k is the lower

bound of the ergodic rate in (6). It is clear that the Nash
equilibrium of the game Gs is p∗ = [

pmax · · · pmax
]T

because Rlower
k is monotone increasing in pk .

Figures 2 and 3 show the cumulative distribution func-
tion (CDF) of instantaneous EE rk/(pk + pc) and the
instantaneous rate rk of the K = 4 users, respectively. As
expected, the EE of the proposed scheme is better than
that of the spectral-efficient uplink power control scheme
for each user as shown in Figure 2. It is interesting that
the average rate of the proposed scheme is also better
than that of the spectral-efficient uplink power control
scheme as shown in Figure 3. This can be explained as
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Figure 1 Convergence of the best response dynamics of the gameG.M = 8, K = 4, and β1 = −85 dB, β2 = −90 dB, β3 = −95 dB,
β4 = −100 dB and ρ1 = ρ2 = ρ3 = ρ4 = 0.9995.

Figure 2 CDF of instantaneous EE.M = 8, K = 4, and ρ1 = ρ2 = ρ3 = ρ4 = 0.9995.
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Figure 3 CDF of instantaneous rate.

Figure 4 Nash equilibrium of the gameG for different channel certainties ρks.M = 8, K = 2, and β1 = −90 dB, β2 = −95 dB.
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Figure 5 EE at the Nash equilibrium versus the number of BS antennas. K = 4 and β1 = −85 dB, β2 = −90 dB, β3 = −95 dB, β4 = −100 dB
and ρ1 = ρ2 = ρ3 = ρ4 = 0.9995.

follows. Since log x is an increasing function in x > 0,
the best response of the proposed scheme in (11) can be
equivalently written as

pod = arg max
0≤pk≤pmax

log
(
ηk
(
pk ,p−k

))
= arg max

0≤pk≤pmax
logRlower

k − log(pk + pc),

which implies that the energy-efficient uplink power con-
trol game G can be regarded as a variation of the spectral-
efficient game Gs with a pricing. Since the game G applies
a penalty to a power consumption, the players in G tend
to use the power in a conservative way. This reduces the
interference to the other players and the average rate of
the users can be improved.

Figure 6 Nash equilibrium of the gameG and the gameGc.M = 8, K = 2, and β1 = −90 dB, β2 = −95 dB and ρ1 = ρ2 = 0.9995.
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Figure 7 Transmit powers of users at the Nash equilibria.

Figure 4 considers K = 2 users and plots their transmit
powers and EEs obtained by the best response dynam-
ics of the proposed game for different values of channel
certainty measure in correlation coefficient ρk . As shown
in the figure, when the BS has higher ρks, less transmit
powers are required and higher EEs can be achieved for
the users. Figure 5 shows the EE versus the number of BS
antennas. Since the receive beamforming gain increases as
the number of transmit antennas increases, the EEs of the
users increase accordingly.
Figures 6 and 7 show the effect of the pricing on the

Nash equilibrium of the game Gc. Figure 6 plots the Pareto
boundary of (η1, η2) and locates the Nash equilibriums of
the game G and the game Gc. Figure 7 shows the corre-
sponding transmit powers of the users. The Nash equilib-
rium of the game Gc achieves a Pareto improvement over
that of the game G. This increase in the efficiency of the
Nash equilibrium is due to the fact that the players of the
game Gc spend less power motivated by the price than
those in the game G, which is more favorable to the other
players’ EE.

6 Conclusions
We have considered energy-efficient transmit power con-
trol for uplink multiuser SIMO systems when the BS
has imperfect CSI using a game-theoretic approach. The
proposed energy-efficient uplink power control game is
shown to have at least one Nash equilibrium. Further-
more, the uniqueness of the Nash equilibrium as well
as the convergence of the best response dynamics is
shown. To improve the efficiency of the Nash equilibrium,

we propose a new game that utilizes a pricing mecha-
nism. For the new game, the existence and the conver-
gence of the best response dynamics is also investigated
by using the super-modularity theory. Finally, we pro-
pose a simple algorithm to find the pricing factor that
improves the system performance in the Pareto sense.
From the simulation results, we can see that the proposed
energy-efficient power control schemes significantly
enhance the EE of the users in uplink multiuser SIMO
systems.

Endnotes
aIn this paper, metrics are computed in units of nats/s

to simplify the expressions and analysis, with 1 nats/s =
1.443 bits/s.

bThere are some low-complexity optimization methods
that can reduce the complexity of the exhaustive search.
For example, monotonic optimization [33] effectively
reduces the feasible region when the object function to
be maximized is increasing.

Appendices
Appendix 1
Proof of Theorem 1
Using Jensen’s inequality [34] and the convexity of
log
(
1 + 1

x
)
, we have a lower bound of Rk ,

Rk = E
[
log
(
1 + 1

1
γk

)]
≥ log

⎛
⎝1 + 1

E
[

1
γk

]
⎞
⎠ . (16)
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From (2) and the independence of ĥk and ej, we have

1

E
[

1
γk

] = E

⎡
⎣ck|aTk ek|2pk +

∑
j �=k

cj|aTk ej|2pj + 1

⎤
⎦

︸ ︷︷ ︸
(a)

×E
[

1
ck|ρk|2|aTk ĥk|2pk

]
︸ ︷︷ ︸

(b)

. (17)

Using (3), (a) can be written as

(a) = ck(1 − ρ2
k )pk +

∑
j �=k

cj(1 − ρ2
j )pj + 1. (18)

From (4), we can see that (b) is the expectation of an
inverse gamma distributed random variable [35]. There-
fore, (b) can be written as

(b) = 1
(M − K)ckρ2

k pk
. (19)

From (17) to (19), (16) is given by

Rlower
k = log

⎛
⎜⎝1 + skpk

ikpk + ∑
j �=k

ijpj + 1

⎞
⎟⎠ ,

where sk = (M − K)ckρ2
k and ik = ck(1 − ρ2

k ).

Appendix 2
Proof of Theorem 2
We find the modified strategy space Qc

k that makes the
game Gc satisfy condition 3), i.e., we findQc

k such that

g(pk) = ηck(pk ,p−k) − ηck(pk ,p
′
−k) (20)

is non-decreasing in pk ∈ Qc
k for p−k � p′

−k . Note that
(20) can be written as

g(pk) = w(pk)
v(pk)

, (21)

where v(pk) = pk + pc and

w(pk) = log
(
1 + skpk

ikpk + Ik

)
− log

(
1 + skpk

ikpk + I ′k

)

with Ik =
K∑

j=1,j �=k
ijpj + 1 and I ′k =

K∑
j=1,j �=k

ijp′
j + 1. We

observe that 1
v(pk) is positive and decreasing in pk > 0.

Also, we observe that w(pk) < 0 for pk > 0 because
Ik ≥ I ′k for p−k � p′

−k . Then, we find Qc
k such that w(pk)

is increasing in pk ∈ Qc
k , i.e.,

∂w
∂pk ≥ 0, or equivalently,

ap2k + 2bpk + c ≥ 0 (22)

for pk ∈ Qc
k , where a = skik(Ik − I ′k), b = ik(I ′k − Ik), and

c = I ′2k − I2k . By solving the quadratic Equation in (22), we
see that if

pk ≥ δk �
ik +

√
i2k + skik(Ik + I ′k)

skik
, (23)

then b(pk) is increasing. Since Ik + I ′k ≤ 2Imax,k , where

Imax,k =
K∑

j=1,j �=k
ijpmax + 1, we have

pmin,k �
ik +

√
i2k + 2skikImax,k

skik
≥ δk .

Since 1) 1
v(pk) > 0 is decreasing in pk > 0 and 2)w(pk) <

0 is increasing in pk ≥ pmin,k , it is clear that g(pk) is non-
decreasing in pk ≥ pmin,k .
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