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Abstract

In this paper, we focus on increasing the spectrum awareness of cognitive radio users through statistical processing of
spectrum sensing data, obtained via wideband energy-detection-based sensing techniques. Based on observations
over real spectrum power measurements, we advocate the existence of correlation properties in the sensed power of
measured neighboring channels and propose an inference methodology for exploiting them towards acquiring a
more accurate view of the underlying wireless environment. To highlight the benefits of the proposed
correlation-based inference methodology on cognitive radio systems, we emphasize on enhancements of white
space discovery and channel selection processes, while we thoroughly discuss the impact of our findings on existing
relevant approaches. Based on a systematic wireless spectrum survey in the metropolitan area of Athens, Greece, we
validate our proposed methodology and assess the achieved performance improvements through the obtained
measurement data, confirming its potential value in future cognitive radio networks.
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1 Introduction
The traditional static allocation of wireless spectrum
applied by federal committees around the world has been
lately questioned due to the nowadays documented spec-
trum under-utilization [1,2]. Cognitive radio (CR) tech-
nology was developed as a remedy to the aforementioned
problem, conceptually increasing the utilization factor of
the existing wireless resources. Specifically, CR-enabled
secondary users (SUs) capitalize on spectrum sensing
techniques for detecting unoccupied spectrum portions
(i.e., white spaces) and leverage their collected informa-
tion for opportunistically exploiting them, without caus-
ing harmful interference to the entrenched primary users
(PUs).
In the currently established CR context, SUs have to

examine wide frequency ranges in order to accurately
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discover appropriate white spaces. Towards that, various
sensing techniques have been proposed for examining
holistically these ranges [3]. However, their application
has been proven complex, expensive and, thus, prohibitive
in practical terms [2]. Alternative approaches split the
wide frequency bands into multiple narrower ones and
examine them through narrowband sensing techniques
[4]. Among them, approaches based on energy detection
constitute the most preferable sensing techniques, regard-
ing practical implementation, since they do not take for
granted any knowledge on the specific characteristics of
underlying PU signals and/or the formation of secondary
channels. According to that technique, a wide frequency
range of interest is divided into narrower bands, namely,
frequency bins (Figure 1), which are sequentially exam-
ined (swept) to determine their occupancy, i.e., presence
or absence of PU signal transmissions. However, splitting
wide frequency bands into narrower ones and exhaus-
tively examining them alone is not sufficient for sustain-
ing the performance requirements of current and future
networks.
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Figure 1Measurement versus real spectrum environment.

1.1 Paper contributions and outline
In this study, we present and experimentally validate a
generic methodology which could significantly enhance
approaches that adopt energy detection as their sens-
ing technique. The main objective of this work is to
enable SUs to infer valuable characteristics of their other-
wise unknown operating spectrum environment through
statistical processing of acquired sensing data and with-
out relying on knowledge obtained from external entities
such as spectrum databases. As will be explained later
(Section 5), this can have significant benefits in the oper-
ation and performance of cognitive radio networks.
The cornerstone for our study is the observed cor-

related behavior of frequency bins spanned by a single
technology-specific PU channel (Figure 1). In particu-
lar, when a PU channel (e.g., a GSM one) spans several
frequency bins, their measured power exhibit correlated
behavior. Although important, such correlation properties
have not been sufficiently studied and exploited in the lit-
erature where relevant, but simplistic and not practically
validated, assumptions dominate. In this paper, we advo-
cate that SUs can raise and exploit their awareness on their
underlying transmission environment by estimating the
statistical correlation of acquired power measurements of
adjacent frequency bins, and then clustering the highly
correlated ones into distinct groups. In this manner, SUs

will be capable of efficiently detecting frequency regions
that present coherent behavior and define sets of fre-
quency bins that are uniformly affected by a single PU.
Therefore, SUs become able to infer the ranges of typically
unknown technology-specific channels that are defined by
primary systems, thus managing to reconstruct the land-
scape of their underlying spectrum environment, with the
benefits that will be explained in Section 5.
The detection of frequency ranges that are affected by

the primary system in a specific manner can be practi-
cally exploited at large. In this work, we highlight practical
sensing techniques, like the well-known coarse-fine ones
[5,6], that can significantly benefit from the resulting SU
ability to extrapolate the occupancy decision of one bin
to the entire coherent group it belongs to. Furthermore,
we show how the added knowledge regarding cohesive
frequency regions can enable SUs to select more stable
white spaces, yielding eventually reduced reconfiguration
overhead and additional benefits. Finally, our proposed
methodology and obtained results can act supplementary
to the existing and future studies that incorporate rele-
vant theoretic assumptions, rendering them more viable
for practical applications.
Both the described inference methodology and its

potential benefits are experimentally validated using a
state-of-the-art sensing architecture, which however, can
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be commercially realized as well. Prior to any experiment,
we thoroughly evaluated the suitability of the local spec-
trum environment for CR implementation by conducting
a spectrum occupancy survey in the Athens’ metropolitan
area in Greece. Then, focusing on the more challenging
cases for CR spectrum exploitation, we first experimen-
tally demonstrate high correlations between neighboring
frequency bins. By applying the proposed methodology,
we highlight that the inferred correlated blocks align
with the underlying PU technology channels allocation.
Finally, we demonstrate the performance improvements
that can be achieved by coarse-fine sensing techniques
when exploiting the acquired knowledge, as well as the
obtained benefits in terms of reconfiguration overhead
during the channel selection process.
The rest of this paper is organized as follows. In Section

2 we present some background technical details of the
employed framework, while Sections 3 and 4 describe
and validate through real experimentation, respectively,
the suggested correlation-based inference methodology.
In Section 5 exploitation scenarios for our proposed
methodology are presented and evaluated. Finally, the past
and current state-of-the-art approaches in each of the
involved fields are described in Section 6, while Section 7
concludes the paper.

2 Background details of our experimentally
driven approach

Energy-detection-based spectrum sensing is character-
ized by low implementation and computational complex-
ity, as well as high detection speed and independence from
the detected signal, i.e., it does not require prior knowl-
edge of the PU signal. Despite some restricted cases of
documented poor performance [4], this spectrum sens-
ing approach is currently supported by the majority of the
existing cognitive radio platforms [7], hence, allowing new
outcomes to be exploited in a practical manner.
Towards employing energy-detection-based spectrum

sensing in practice, the utilized equipment should attain
high-speed frequency sweep capabilities that enable rapid
collection of power measurements in frequency bins of
wide frequency ranges. In this paper, we use a vector
signal analyzer (provided in Figure 2) connected to a
wideband omnidirectional discone antenna via a low-loss
coaxial cable. We have selected such a high-end accu-
racy equipment for providing the most accurate picture of
the measured spectrum, thus revealing the realistic prop-
erties of the wireless environment that can be further
exploited. Even though our used spectrum analyzer can
obtain very accurate measurements, it should be noted
that the outcomes of our study are not restricted by its
specifications, but can be straightforwardly exploited by
any energy detection-capable device, perhaps at the cost
of some tolerable accuracy loss. For instance, we could

have well used the less heavy and bulky CR-enabled USRP
devices, or even experimental hardware implementations
of spectrum analyzer substitutes (e.g., [8]) characterized
by almost handheld dimensions and low cost (US$200 to
US$500).
Figure 3 depicts the block diagram of the employed

energy detection implementation for a continuous-time
received signal r(t). In particular, the anti-aliasing fil-
ter is incorporated to eliminate the effect of aliasing and
attenuate the frequency components at and above half
the sampling frequency when the continuous-time sig-
nal is digitized by sampling. Next, a finite duration 7-
term Blackman-Harris window is applied to r(n) selecting
finite-length segments (K samples), denoted by y(n), and
the corresponding frequency coefficients Y (n), as well as
the spectrum energy (or the power spectrum density mea-
sured in watt per Hertz), are estimated through the fast
Fourier transform (FFT) and squaring module [9]. Finally,
averaging is used to improve the estimation of powermea-
surement due to the presence of noise. More specifically,
within an observation time interval N, a data sequence
y(n) is divided intoM data segments (by windowing) such
that N = K × M, and the averaged spectrum power
for each frequency coefficient is computed by averaging
over theM data segments. Based on the described imple-
mentation, the number of K FFT points (defining the
frequency bin resolution) and the number of averages M
have been appropriately configured, as noted in Table 1,
to improve the energy detector performance.
Mathematically, the problem of energy detection can

be formulated as a binary test of the following two
hypotheses:{

H0 : y(n) = ϑ(n) if signal is absent

H1 : y(n) = s(n) + ϑ(n) if signal is present,
(1)

where s(n) and ϑ(n) denote the discrete-time PU’s sig-
nal and the additive noise respectively (n = 1, . . . ,N). As
proven by Parseval’s theorem, the energy evaluation can
be performed both in time and frequency domains. Thus,
the averaged periodogram, namely, the averaged power
spectrum density (PSD), for each frequency bin k can be
estimated as follows:

P(k) = 1
M

∑
M

1
K

|Y (k)|2 k = 0, . . . ,K − 1 (2)

and a decision problem is formulated with test statistic
Tk = P(k) for each frequency bin k, i.e.,

{
Tk ≤ γ determines that the frequency bin is idle

Tk > γ determines that the frequency bin is busy
(3)

where γ denotes a pre-selected decision threshold.
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Figure 2 Terrestrial sensing and spectrum analyzer infrastructure.

The performance of the energy detector depends on the
probabilities of miss detection Pmd and false alarm Pfa,
which are expressed as follows:

Pmd = Pr(Tk ≤ γ |H1) (4)

Pfa = Pr(Tk > γ |H0). (5)

The decision threshold γ can be theoretically estimated
based on (4), (5), and Neyman-Pearson lemma [10]. How-
ever, for practical cases other alternative approaches, such
as the m-dB and probability of false alarm (PFA) cri-
terion, are considered leveraging real measurements for
γ -selection [1]. Both approaches examine γ for each fre-
quency bin independently, requiring the prior collection
of corresponding noise samples through antenna replace-
ment with a matched (passive) load. In the former, γ is

chosen equal to m-dB above the average noise level mea-
sured to the corresponding frequency bin, while in the
latter andmore advancedmethod, the detection threshold
is selected such that the maximum fraction of noise sam-
ples found above the value of γ for the corresponding bin
is equal to Pfa.

3 Correlation discovery as an inference
methodology

Although the generality of energy-detection-based sens-
ing is appropriate and convenient for various practical
implementations, its simplicity poses additional chal-
lenges that should be addressed in a more sophisticated
manner. More specifically, it is a fact that a cognitive radio
user is inherently unaware of the underlying real spec-
trum environment that is mostly determined by primary
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Figure 3 Block diagram of energy detector.
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Table 1 Equipment operation parameters

Parameter Values

Frequency span 50 MHz

Central frequencies from 325 to 2, 675 MHz

Resolution bandwidth 10 kHz

Frequency bin size 4.02 kHz

Detection type RMS

No. of averages 10

Reference level −30 dBm

Sensing interval 30 s

systems. Especially, in case of autonomous infrastruc-
tureless networks, SUs might be unable to communicate
with external sources that retain information about PU
characteristics. Even if this could be feasible, full knowl-
edge of real characteristics is difficult to be obtained
and requires information fusion (i.e., official frequency
allocation on a per country/region case, applied pro-
tocols per band, protocol specifications) from multiple
heterogeneous sources. Moreover, the unknown margins
of available secondary channels adversely affect the effi-
ciency of energy detection sensing in practice, since it
results in exhaustively examining the occupancy of a large
amount of frequency bins. Therefore, since it is a basic
CR technology principle that spectrum knowledge is not
expected in the general case to be obtained by external
sources, SUs are solely responsible to create such valuable
knowledge through intelligently processing their observa-
tions (sensing data). In this manner, they can exploit this
knowledge towards driving their decisions for fast sens-
ing, efficient resource allocation, optimal frequency band
selection, etc.
As depicted in Figure 1, the real spectrum environment

entails PU transmissions (unknown to SUs) at technology-
specific channels, e.g., a GSM cellular band, which
typically span over a number of measured frequency
bins. Consequently, the corresponding frequency bins are
expected to exhibit high correlation and similar avail-
ability characteristics, as perceived by an independent
observer. In fact, it is exactly these correlation properties
that can well be exploited by SUs towards inferring char-
acteristics of the underlying spectrum environment.Moti-
vated by this fact, in this study we propose a framework
that enables SUs to gain knowledge on their unknown real
environment by inferring coherent frequency regions that
constitute potential technology-specific channels through
appropriate frequency bin grouping (clustering). Towards
this direction, each SU leverages historical sensing data,
and thus, the proposed methodology does not actually
intervene with the SU operation, nor does it decrease the
performance of their devices.

In our suggested inference methodology, the set of
power sensing data collected independently by a SU is
considered as a series of observations that has been
obtained for each frequency bin within the respective
examined measurement interval I . In a practical oper-
ational scenario, these data are collected by each SU
during its conventional energy-detection-based spectrum
sensing (for detecting spectrum holes in the underlying
spectrum) and are representatives of PUs behavior as well
as robust to incidental factors. We assume that for every
frequency bin, there is a continuous random variable Xf ,
characterizing its energy, with value xf ∈ �. We also
point out that correlation properties are estimated in the
raw form of power measurements instead of frequency
bins occupancy, thus, remaining robust to the employed γ

threshold (and as a result, to the miss detection and false
alarm errors) which could jeopardize the accuracy of the
obtained results. In order to investigate the dependency
between two random variables Xf1 and Xf2 , the Pearson
product-moment correlation coefficient (ρ) is used and it
is expressed by

ρXf1Xf2
= cov(Xf1 ,Xf2)

σXf1
· σXf2

. (6)

It is noted that cov(Xf1 ,Xf2) = E[(Xf1 −mXf1
)·(Xf2 −mXf2

)]
is the covariance of the corresponding random variables,
while mXf and σXf denote the expected value (mean)
and the standard deviation of the random variable Xf ,
respectively.
The Pearson correlation coefficient can sufficiently

measure the linear dependence between two random vari-
ables when the probability distributions of the respective
populations are known. However, for practical cases, as
in our study, where only a sequence of measurements
are known regarding a frequency bin Xf (denoted by
the time series {x(1)

f , x(2)
f · · · x(I)

f }), the sample correlation
coefficient r is used as an estimation of the population
correlation:

rf1f2 =
∑

i (x
(i)
f1 − x̄f1) · (x(i)

f2 − x̄f2)√∑
i (x

(i)
f1 − x̄f1)2 · ∑

i (x
(i)
f2 − x̄f2)2

(7)

and x̄f = x(1)
f +x(2)

f +···+x(I)
f

I . By abuse of notation, we here-
after use the symbols ρ and r to denote, respectively,
the correlation coefficient (Equation 6) and the sample
correlation coefficient (Equation 7) for any pair of fre-
quency bins. The correlation coefficient value can range
from−1 (perfect negative correlation) to +1 (perfect pos-
itive correlation), while r = 0 implies that the examined
random variables are uncorrelated (but not necessarily
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independent), and thus the corresponding frequency bins
are not possible to belong to the same technology-specific
channel.
By computing the correlation coefficient between any

frequency bins pair of interest, a SU can next cluster
sequential frequency bins together into discrete bands
based on their correlation value and, thus, create groups
of frequency bins that present coherent behavior. As
explained earlier, each such group essentially corresponds
to a technology-specific channel and thus the underly-
ing spectrum environment picture can be successfully and
effectively reconstructed with various benefits explained
in the sequel.

4 Real experimentation and validation
Towards validating the aforementioned statements in the
real-world, we use a spectrum sensing architecture whose
main component is a National Instruments PXI-5661 RF
Vector Signal Analyzer (National Instruments Corpora-
tion, Austin, TX, USA) [11] with sensing range that spans
the 9 kHz to 2.7 GHz frequency band, hosted by the NI
PXI-1042Q chassis and controlled by the Labview 8.5 soft-
ware. Our spectrum analyzer was placed in a protected
room and connected to a high-performance wideband
(300 to 3,000 MHz) omnidirectional discone antenna
(specifically the Sirio SD 3000N model; Sirio Antenne,
Volta Mantovana, Verona, Italy) using a 10-m low-loss
RG213-U coaxial cable (see snapshot in Figure 2). The
mounting location of our antenna (Figure 2) was com-
pletely unobstructed from all directions and with unhin-
dered view to the city center as well as one of the main
TV broadcasting centers of Athens (located in Ymetous
mountain) and various transmitters (e.g., GSM, 3G, etc.).
Table 1 summarizes the operation parameters of the uti-
lized sensing architecture.
To avoid the weaknesses of relevant works (e.g., [12,13]),

where frequency bins span parts of different technology
channels and, thus, fail to acceptably reproduce the real
spectrum environment, we employ high spectral resolu-
tion sensing by setting the resolution bandwidth param-
eter in the utilized spectrum analyzer equal to 10 kHz.
This value sets correspondingly the frequency bin size
equal to 4 kHz, which combined with the increased sen-
sitivity of our spectrum analyzer (thermal noise floor
below −140 dBm/10 kHz), allows for the detection of
even narrowband practical transmitted signals. To balance
the trade-off between overestimating and underestimat-
ing spectrum utilization in our measurement setup, γ

threshold is determined for each frequency bin indepen-
dently, by combining the 5-dB criterion approach [1] and
the PFA 1% criterion [1] (see also Section 2). In addi-
tion, we should note that the 300 to 2,700 MHz frequency
band was split to 50 MHz sub-bands that were swept
sequentially every 30 s.

4.1 Athensmetropolitan area spectrumoccupancy survey
To obtain a better insight on the local spectrum environ-
ment, as well as identify frequency bands which are most
appropriate and challenging for opportunistic secondary
exploitation, we first conducted a wideband spectrum
occupancy survey in the metropolitan area of Athens,
Greece. In line with relevant surveys performed in vari-
ous locations worldwide [1], the occupancy state of certain
bands of interest was periodically determined (for 7 days)
through energy detection, using the aforementioned sens-
ing architecture. Special attention was paid on the 300 to
2,700 MHz frequency range, usually referred to as sweet
spot due to its intrinsic characteristics and significant ser-
vices already deployed, which is attractive for SUs and
poses significant challenges to the operation of CR net-
works, mainly regarding spectrum usage and available
white space opportunities.
Considering the spectrum allocation formally enacted

in Greece by the Hellenic Telecommunication and Post
Commission [14], we determined the minimum, maxi-
mum, and average occupancy percentage of each nominal
band through processing the entire 7-day measurements
set. As clearly depicted in Figure 4, spectrum is signifi-
cantly under-utilized even in the crowded metropolitan
area of Athens (of a 4-million population), hence, enabling
the potential application of CR systems in a feasible and
attractive manner for users and operators. However, two
distinct patterns in the utilization of the examined bands
were identified. On the one hand, there are bands - like the
TV ones - whose sub-bands were found either completely
unused or constantly occupied over time. On the contrary,
bands like those allocated to the downlink of the Global
System for Mobile communications (GSM-900), the Digi-
tal Cellular System (DCS-1800) and the Universal Mobile
Telecommunication System (UMTS/3G) present signifi-
cantly more volatile and challenging behavior. Specifically,
some base stations are switched off at night - when user
demands are not so intensive - for protecting the cor-
responding equipment, setting idle significant spectrum
blocks. This disruptive nature of spectrum occupancy fits
better the CR technology principles, while rendering the
secondary exploitation of the resulting white spaces really
challenging in practice. In light of these results, in the
rest of this paper, we pay extra attention on the latter
bands, and in particular to the GSM-900, for developing
and validating the presented correlation-based inference
methodology and its benefits.

4.2 Demonstration of the correlation-based inference
methodology

Focusing on frequencies that according to our conducted
spectrum survey present volatile and, thus, challenging
behavior, hereinafter, we examine a 5-MHz spectrum
chunk owned by GSM providers. Figure 5 exhibits the
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Figure 4 Spectrum occupancy obtained for bands of interest (bands expressed in megahertz).

observed correlation among the corresponding frequency
bins, assuming power measurement data collection for
a single day (i.e., 5,760 samples per bin). Clearly, signif-
icantly high power correlation is observed within some
sequential frequency bins, thus, validating our initial
expectations as described in Figure 1. Precisely, high cor-
relation occurs in consecutive frequency bins spanned
by a single technology specific PU channel, whereas the
observed correlation sharply decreases at its boundaries.
This behavior can be attributed to the fact that the existing
licensed transmissions are in their majority served by con-
tiguously allocated frequency bands, while the computed
correlation of power measurements sharply decreases
(tends to zero) for frequency bins at which the impact
of noise is significant. In this manner, consecutive fre-
quency bins can be clustered together into discrete groups
by properly inferring their underlying dependency.
The interpretation of the correlation coefficient and the

respective threshold rthr, above which strong dependency

can be inferred, mainly relies on the context and pur-
poses of each examined measurement set. In our case,
this dependency does appear since each PU signal spans
a superset of frequency bins (i.e., a 200-kHz GSM chan-
nel spans over multiple 4 kHz bins), with each such block
constituting a nominal channel assigned to a PU. There-
fore, as shown in the example of Figure 5, the power values
of frequency bins that correspond to the same technol-
ogy channel present extremely high correlation values and
thus, the selection of a high threshold rthr, e.g., 0.75, allows
for inferring correlated blocks of consecutive frequency
bins with well-defined boundaries.
As already stated, among the key objectives of this

work is to infer and decide stable channels consisting of
multiple frequency bins with coherent availability behav-
ior clustered together. Based on the already acquired
power measurements within the previously examined 5-
MHz spectrum chunk, Figure 6 presents the power values
detected at the corresponding frequency bins within the

Figure 5 Correlation of power measurements of frequency bins.
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Figure 6 Correlated blocks of frequency bins based on power measurements. Dashed lines denote clustered frequency bins constituting
potential SU-friendly white spaces.

sensing interval, while the dashed lines highlight groups
of bins where the power correlation coefficient between
each pair is greater than 0.75. Notably, the discovered
correlated datasets are in line with the underlying pri-
mary system technology channel allocation with some
boundary overlaps due to adjacent channel power leak-
ages. Therefore, the analyzed correlation-based inference
methodology can eventually serve as a tool for SUs to
raise their wireless environment awareness and accurately
reconstruct the spectrum landscape at their specific local
areas.
It should be noted that assuming a correlated block

of N frequency bins, all entries of the corresponding
N × N correlation matrix have to be greater than our
pre-defined threshold. Even though the correlation matri-
ces are always symmetric, hence in practice requiring the
computation only of half of their entries, the computa-
tional overhead for such a procedure is of complexity
O(N 2). This overhead can be further reduced in prac-
tice (especially for cases similar to our wideband sensing
experimentation where the total number of examined fre-
quency bins,N , is extremely large) by leveraging problem-
specific observations, such as from Figure 5. In particular,
considering that a correlated block consists of consec-
utive frequency bins and assuming a maximum finite
number of bins W (dubbed “window”) that a PU sig-
nal could span, correlation properties can be intelligently
computed following a sliding window approach. In this
manner, by progressively scanning the wideband-sensed
spectrum, correlation properties are locally estimated for
frequency bins residing in the current ‘window,’ thus,
reducing the computational overhead toO(N ·W ), where
W << N .
Finally, since the sample correlation coefficient, r, is

affected by the sample size, we further analyze our estima-

tions towards ensuring the validity of the inferred statisti-
cal correlations. To compute a confidence interval estima-
tion of r with respect to the size of the paired samples and
the correlation coefficient ρ (Equation 6), a large sample
approximation can be used based on Fisher’s transfor-
mation [10]. More specifically, let us consider Fisher’s
transformation

z = 1
2
ln

1 + r
1 − r

= artanh(r) (8)

and assume that the number of samples, I , is large. It
can be shown that the distribution of random variable z
is approximately normal [10] with mean mz � 1

2 ln
1+ρ
1−ρ

and variance σ 2
z � 1

I−3 . Therefore, the γ−confidence
interval for the sample correlation coefficient, r, can be
approximately estimated by

Pr{ρ1 < r̂ < ρ2} = γ , (9)

where

ρ1 = exp 2z1 − 1
exp 2z1 + 1

and ρ2 = exp 2z2 − 1
exp 2z2 + 1

(10)

z1 = mz −
z 1+γ

2√I − 3
and z2 = mz +

z 1+γ
2√I − 3

, (11)

and z 1+γ
2

denotes the normal percentile.
Based on Equations 9, 10, and 11 and assuming col-

lected data of a single day (i.e., 5,760 samples), we can
calculate the confidence intervals for the sample correla-
tion coefficient at different γ confidence levels. However,
even though Fisher’s transformation is commonly used
in statistical packages, the asymptotic variance of z is
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independent on ρ only for particular structure of the
parent bivariate distribution (namely, the underlying dis-
tribution of the data), e.g., bivariate normal distributions
[15,16]. To validate the accuracy of our estimation, we
have also estimated confidence intervals using the boot-
strap method [16,17]. Table 2 demonstrates indicative
results for correlation confidence intervals when applying
both of the aforementioned techniques on the acquired
power measurement data. It is observed that our sam-
ple size is sufficiently large such that ρ is appropri-
ately estimated by r and therefore, valid results can be
obtained.

5 Inference methodology exploitation scenarios
By exploiting correlation properties and assembling
groups of frequency bins characterized by coherent
behavior, SUs can be efficiently assisted on discovering
more and larger white spaces that are also characterized
by potentially lower reconfiguration overhead. This in
turn can enable cumulative increase of spectrum utiliza-
tion, as well as higher quality of service capabilities for SU
applications. In the following, we explain such obtained
benefits within the framework of our proposed inference
methodology.

5.1 Improving white space discovery
As already explained, in energy-detection-based sens-
ing, spectrum is typically sensed in a single stage
by sequentially and exhaustively examining the occu-
pancy of consecutive frequency bins. In order to avoid
falsely estimating spectrum occupancy, the size of these
bins is required to be small [1], which however, slows
down the overall procedure (as shown in Figure 7).
Although the selection of larger frequency bins accel-
erates sensing, it significantly affects the resulting sens-
ing quality, since larger frequency blocks have higher
probability to be determined occupied. For instance, a
large frequency block (bin) that includes only a nar-
rowband PU transmission would be determined occu-
pied (since the detected energy is greater than the
respective threshold) even if it is idle for most of its
frequency range. Coarse-fine sensing approaches [5,6]

Table 2 Examples of correlation confidence intervals at
95% confidence level

Measurement r Fisher’s Bootstrap
bins Value transformation

1 and 910 0.0263 0.0004 < ρ < 0.0521 − 0.0018 < ρ < 0.0509

800 and 910 0.5020 0.4824 < ρ < 0.5210 0.4795 < ρ < 0.5237

900 and 910 0.9404 0.9374 < ρ < 0.9433 0.9355 < ρ < 0.9448

909 and 910 0.9894 0.9889 < ρ < 0.9900 0.9883 < ρ < 0.9904

emerge as the most appropriate for balancing the afore-
mentioned conflicting objectives. In the general case,
these approaches operate by initially sweeping the spec-
trum with large-sized (coarse) frequency bins for quickly
detecting those for which there exist strong indications
that they are idle (e.g., by relaxing the decision crite-
rion for spectrum occupancy). Algorithm 1 provides the
pseudo-code for a conventional coarse-fine sensing imple-
mentation. To regain some lost accuracy, a secondary
stage with finer sensing, i.e., sweeping with smaller-sized
frequency bins or even applying more advanced feature
detection-based sensing schema, is performed on idle
coarse bins for obtaining spectrum occupancy estima-
tion with higher confidence. Algorithm 1 describes the
basic idea of these techniques, even though slight vari-
ations have been proposed to date in the literature (see
Section 6.2).

Algorithm 1 Conventional coarse-fine sensing
Input: Spectrum, CoarseBinSize, FineBinSize, Coarse-

BinNoiseLevel, FineBinNoiseLevel
Output: Set of FineBin found Idle

Coarse sensing:
1: Divide Spectrum to CoarseBins acc. to CoarseBinSize
2: for each CoarseBin do
3: measure Power
4: if Power < CoarseBinNoiseLevel then
5: CoarseBin found Idle
6: end if
7: end for

Fine sensing:
8: for each Idle CoarseBin do
9: Divide CoarseBin to FineBins acc. to FineBinSize
10: for each FineBin do
11: measure Power
12: if Power < FineBinNoiseLevel then
13: FineBin found Idle
14: end if
15: end for
16: end for

Although already efficient, coarse-fine sensing app-
roaches could further benefit from the correlation-based
inference methodology proposed in this work. In partic-
ular, when a frequency bin is detected idle during the
coarse sensing stage and it does fall into a sub-band that is
inferred coherent (and thus occupied by a single PU chan-
nel) by our mechanism, the fine sensing step should be
applied over this entire sub-band (rather than the coarse
bin), since it is more likely for the entire sub-band to be
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Figure 7 Sweep duration against frequency bin size (examining 50-MHz spectrum chunk using the available sensing architecture).

idle. This modification, presented in detail in Algorithm 2,
can provenly enable coarse-fine sensing approaches to
detect significantly larger amounts of white spaces, as
well as larger contiguous - and thus more appropriate for
secondary exploitation - spectrum holes.

Algorithm 2 Enhanced coarse-fine sensing
Input: Spectrum, CoarseBinSize, FineBinSize, Coarse-

BinNoiseLevel, FineBinNoiseLevel, InferredTechChan-
nels

Output: Set of FineBin found Idle

Coarse sensing:
as in Algorithm 1.

Enhanced fine sensing:
8: for each Idle CoarseBin do
9: if CoarseBin spans inside a InferredTechChannel

then
10: Divide InferredTechChannel to FineBins acc. to

FineBinSize
11: else
12: Divide CoarseBin to FineBins acc. to FineBinSize
13: end if
14: for each FineBin do
15: measure Power
16: if Power < FineBinNoiseLevel then
17: FineBin found Idle
18: end if
19: end for
20: end for

For demonstration purposes, we focus on a 400-kHz
part of the spectrum chunk examined in Section 4.2, at
which the proposed correlation-based inference method-
ology has been employed resulting in frequency bins clus-
tering. Subsequently, we collect new sensing data based
on both the conventional and enhanced coarse-fine sens-
ing approaches in order to compare their performance
and confirm the improvement in discovery of white spaces
induced by the acquired knowledge.
As depicted in Figure 8, the proposed methodology has

successfully detected a group of frequency bins that pre-
sent coherent behavior (represented by the dashed lines)
which corresponds to an underlying GSM technology-
specific channel that is indeed included in the examined
power spectrum block. At first, we apply the conventional
coarse-fine sensing technique presented in Algorithm 1,
employing frequency bins of size equal to 50 and 4 kHz
for the coarse and fine sensing steps, respectively. In par-
allel, the enhanced version presented in Algorithm 2 is
applied (adopting equal frequency bin values) and thus,
the entire coherent spectrum band (denoted by dashed
lines) is examined, inside which a coarse bin is found idle
at the first coarse step. Figure 8 depicts the performance of
the involved steps, by which it is evident that in the former
case the actual spectrum occupancy is poorly approxi-
mated, while in the latter, a more educated view of the
underlying spectrum environment is obtained with sig-
nificantly more white space bands being detected. In this
manner, our suggested enhancement can result in less lost
transmission opportunities, while the larger sizes of white
spaces render them more attractive for practical exploita-
tion by SUs, especially in quality of service demanding
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Figure 8 Performance improvement employing correlation study outcomes.

applications. Finally, Figure 8 demonstrates the cumula-
tive amount of detected white spaces (with respect to
the total sensing duration), comparing the overall perfor-
mance of each method when applied to the entire 5-MHz
spectrum chunk mentioned above.

5.2 Enhancing the channel selection process
As stated in [18], the time-varying nature of PU activ-
ity causes channel availability variations at SUs and, thus,
triggers frequent network reconfigurations that entail
service disruptions, quality of service and experience
reduction, lost transmission opportunities, and spectrum
under-utilization as well as packet losses. SUs could
avoid such demanding reconfigurations and increase their
overall performance by showing preference in selecting
secondary channels that are less prone to PU activity
alterations.
However, the definition of a secondary channel (namely,

the pair of central frequency (fc) and bandwidth (BW),

which in turn can be mapped into a set of frequency bins)
is not trivial within an opportunistic unlicensed spectrum
access model and without assuming a priori knowledge of
the primary system transmission details. Since the result
of spectrum sensing characterizes the instantaneous spec-
trum availability, it is hard to select/predict sets of bins
(i.e., secondary channels) that will be in long term robust
to PU alterations.
Towards this direction, our proposed methodology can

be directly exploited since the secondary channels can be
selected/defined as the inferred blocks of bins that exhibit
high correlation and are affected by a single PU. In this
manner, each defined secondary channel can be oppor-
tunistically exploited by SUs according to the correspond-
ing (unique) PU activity. On the contrary, an alternative
secondary channel that spans over multiple technology-
specific channels is inevitably affected by multiple inde-
pendent PUs and thus, it must be released whenever one
of the respective PUs is activated. Even though the real
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availability depends on the activity of the respective PUs,
defining secondary channels at the shadow of multiple
PUs contributes, in general, to lower channel availabil-
ity, aggravating the secondary network performance. It is
noted that similar observations have been theoretically
proven in [19], where cohesive white spaces are preferred
for SUs, since they exhibit more stable behavior.
To validate in practice the benefits of our presented

methodology on secondary channels selection/definition,
Table 3 demonstrates indicative experimental results for
1-day duration in the previously examined 400-kHz spec-
trum chunk. In particular, we denote with central fre-
quency fc and bandwidth BW the secondary channel that
is defined according to our inferred correlated group of
frequency bins and then, we modify the secondary chan-
nel selection by slightly shifting it in the frequency domain
as well as re-adjusting its bandwidth. Notably, the comple-
ment of the observed duty cycle of the secondary channel,
namely, the probability to find it idle, is greater (almost
double) when the central frequency is equal to fc. The
main reason is that by slightly shifting the secondary chan-
nel in frequency domain, the availability of the involved
frequency bins is affected by the activity of more than one
independent PU. Additionally, it is obvious that when the
bandwidth of a secondary channel is within the ranges
of the inferred coherent sub-band, the complement of
its observed duty cycle remains significant, while when
increasing its width more than the coherent region it is
significantly reduced, since the channel is affected by the
activity of multiple PUs. Therefore, exploiting the pro-
posed methodology and recognizing the frequency mar-
gins of PU transmissions, SUs are able to select coherent
secondary channels, hence, achieving increased expected
availability and experiencing less reconfiguration costs.

5.3 Impact on theoretical approaches
Several theoretical approaches rely on the existence of sec-
ondary channels, which can be opportunistically accessed.
However, in practical cases and without assuming exter-
nal knowledge, spectrum holes are dynamically formatted
(both in size and spectrum location), rendering difficult
the definition of convenient secondary channels. Such
an obstacle can be overcome by obtaining knowledge on
the initially unknown PU spectrum allocation and conse-
quently, ourmethodology can efficiently contribute to this

direction. This knowledge also enables SUs to estimate
the expected length of white spaces that could poten-
tially be detected at each band of interest and hence,
determine transmission policies based on their communi-
cation needs. For instance, inferring technology channels
of length equal to 200 kHz (e.g., GSM case) allows SUs to
expect larger white spaces only at the cost of significantly
higher reconfiguration overhead due to reasons explained
in Section 5.2.
In addition, the proposed correlation-based inference

methodology can also act supplementary to any existing
or future approach that is based on correlation assump-
tions in frequency domain. Studies like [20] and [21] aim
at accelerating the overall spectrum sensing procedure by
assuming the occupancy of adjacent frequency bins cor-
related. However, both works do not deal with practical
considerations regarding the methodology for obtaining
full knowledge on the respective correlation coefficients
values. Similar issues hold even in more advanced stud-
ies, like [19], where correlated occupancy is manually
validated by observation on adjacent bins for a lim-
ited frequency range. To shed some more light on these
assumptions, our methodology delves into the correlated
behavior of neighboring frequency bins in a more edu-
cated and realistic manner and, thus, allows for any future
work to exploit relevant observations with higher confi-
dence. Additionally, it drives future approaches towards
reflecting reality in a more accurate fashion, as well as
avoiding assumptions like those made in [22] regard-
ing the absence of any correlation in the occupancy of
neighboring frequency bins.

6 Related work
6.1 Correlation properties in the frequency domain
Although numerous studies in modern literature exploit
the correlation properties of channels in the time or space
domains, only a few works have actually considered such
properties in the frequency domain.
More specifically, in [12] the correlated occupancy state

of neighboring channels was practically validated, with the
ulterior view to accurately predict their future behavior.
Using a spectrum analyzer, employing energy detection, as
well as focusing on the GSM band, the occupancy state of
subsequent 200-kHz-sized GSM channels was first deter-
mined. In the sequel, the correlation coefficients between

Table 3 Probability to find idle various selected/definedsecondary channels

Bandwidth Central frequency

fc − 80 kHz fc − 40 kHz fc fc + 40 kHz fc + 80 kHz

BW − 40 kHz 0.3142 0.5046 0.5578 0.3282 0.2590

BW 0.3062 0.3890 0.5394 0.2606 0.2588

BW + 40 kHz 0.2934 0.3140 0.3282 0.2588 0.2586
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the resulted occupancy time series of every two neigh-
boring such channels were computed, yielding that the
occupancy of all GSM channels allocated to the GSM
band is highly correlated. In [19] the correlated occu-
pancy of adjacent channels was also examined towards
optimizing channel selection procedure. However, the
occupancy correlation was onlymanually determined (i.e.,
no formal methodology was applied) by employing energy
detection and observing real trace data collected over a
limited frequency range. In [13] the behavior of the duty
cycle (occupied-unoccupied behavior) of neighboring fre-
quency bins that belong to certain parts of PU signals was
practically determined as correlated through real-world
experiments.
The main weakness of the abovementioned approaches

is that both channel occupancy and duty cycle data are
sensitive to the employed γ threshold and, thus, prone
to miss detection and false-alarm errors jeopardizing
the accuracy of the obtained results. A more accurate,
and closer to our work, estimation is employed in [23],
since correlation properties are estimated over the mea-
sured power spectral density values. However, all these
approaches have investigated the underlying correlation
properties in the frequency domain from a different per-
spective and not by aiming at frequency bin grouping
and inferring the ranges of typically unknown technology-
specific channels that are defined by primary systems.
In addition, contrary to our study, the majority of the
above approaches consider large frequency bins in their
experiments, which increases the potential failure to dis-
cover correlation properties, since different PU signals can
occupy different parts of a single frequency bin.
It should be finally noted that in works like [20] and

[21], which propose new sensing schemes of increased
performance, the occupancy of adjacent channels is sim-
ply assumed correlated, while none of them validates this
assumption in practice or even define a formal methodol-
ogy towards this direction.

6.2 Coarse-fine sensing approaches
The first coarse-fine sensing approaches that emerged in
the literature were exclusively based on the energy detec-
tion technique and, thus, were called multi-resolution
techniques, due to their sole sensing resolution difference.
Although based on unrealistic assumptions, the work in
[5] proves that a two-stage approach can outperform com-
mon one-stage high-resolution sensing techniques, under
certain circumstances. In [6] two-stage sensing is fur-
ther accelerated by using multiple antennas, at the cost
of increased implementation and hardware complexity.
Works in [24] and [25] were among the first of such
multi-resolution studies, where the coarse-fine spectrum
sensing was conducted in the analog domain (based on
the wavelet transform coefficient). However, FFT-based

approaches are generally more preferable in practice due
to their simpler hardware implementation. In line with the
latter statement, in [26] a more efficient and less com-
putationally complex FFT is proposed, which is suitable
for application in two-stage spectrum sensing procedures.
Even the IEEE 802.22 task force has identified the impor-
tance and suitability of such techniques, having already
evaluated their benefits for possible integration in the
respective cognitive radio-enabled protocol [27]. In a sim-
ilar manner, a relevant technique [28] is proposed in the
context of LTE protocol - which realizes practically cogni-
tive radio concepts - for enhancing the white space detec-
tion procedure, introducing novel sensing techniques
for both coarse and fine stages. Finally, works like [29]
aim at determining the optimal frequency block size for
both coarse and fine sensing stages while requiring prior
knowledge on the parameters of the utilized equipment,
the used sensing algorithm, and the expected signals to
be sensed. However, the imposed requirements are con-
sidered quite restrictive, thus rendering their application
difficult in practice.
In another major category, coarse sensing is based on

energy detection, while fine stage on more advanced fea-
ture detection techniques. For instance, in [30] spectrum
is divided in pre-defined channels and the channel with
the lowest energy (as determined in the coarse stage) is
examined by applying an advanced cyclostationary feature
detection sensing technique. In [31] channels are exam-
ined sequentially, and every channel whose energy in the
coarse stage does not exceed a pre-defined threshold is
immediately examined in detail using a cyclostationary
feature detection sensing technique. In a similar manner,
in [32] energy detection and cyclostationary feature detec-
tion are applied in the coarse and fine sensing stages,
respectively, but the latter is omitted when the decision
at the former is sufficient to characterize the channel’s
occupancy with significant confidence.

7 Conclusions
In this paper we presented and experimentally validated
a methodology for improving SU operation by raising
knowledge regarding the real spectrum environment. The
correlation properties in power measurements among
neighboring frequency bins are the cornerstone of our
study, while their intelligent exploitation can enhance
significantly white space discovery and improve the selec-
tion of appropriate secondary channels. Conducting a
real spectrum occupancy survey, we utilized real data
towards validating the proof-of-concept of our method-
ology and evaluating its potential benefits. According
to this real experimentation, our study aims at raising
practical issues in the field of cognitive radio networks,
while allowing for future approaches to further utilize the
obtained outcomes.
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