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Abstract

Motivation: In recent years, researchers have developed a large and growing set of protocols and algorithms to
improve the throughput and capacity of wireless networks. These schemes span the physical (PHY), medium access
control (MAC), and higher layers of the protocol stack. Most effective innovations however require cross-layer
modifications of both PHY and higher layers. To date, the verification of those designs has been limited to simulations
or small setups relying often on off-line processing of the results. MAC layer results that rely on even the tiniest
modification of the PHY can only be verified under simplified networking assumptions. Similarly, novel PHY algorithms
are typically only verified for a single wireless link, avoiding complex scenarios. Most importantly, there is almost no
cooperation between PHY and networking communities, as the tools and testbeds they use are incompatible.

Contributions: In this paper, we propose a methodology for fully flexible PHY, MAC, and network layer verification
that is designed to (a) reuse existing software components from PHY and network communities, (b) enable both
simple- and expert-level modification and configuration of all components, (c) have real-time performance
benchmarked with off-the-shelf systems, and (d) enable large networking experiments including off-the-shelf nodes
for rapid experimentation, testing, and comparison. The main contribution of this paper is the introduction of an
approach that enables the realization of full software-defined radio (SDR) sensor nodes, all running on a single
field-programmable gate array and reusing PHY layer SDR tools and typical operating systems such as Contiki OS.
Subsequently, the paper will illustrate the strengths of the proposed approach by demonstrating communication
with off-the-shelf sensor nodes. This allows fair benchmarking with state-of-the-art or off-the-shelf solutions. Finally,
some cross-layer improvements are proposed and compared with the baseline off-the-shelf system. This proves our
claims that the proposed platform is a very useful tool for cross-layer experimentation, in that it allows full cross-layer
control of the PHY and network layers, and moreover enables elegant comparison with state-of-the-art designs. This
architecture is provided to the open source community (http://claws.be/), in order to become a framework for
validating and benchmarking wireless cross-layer innovations.
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1 Introduction

The flexibility and ubiquity of wireless communication
solutions played a very significant role in the tremen-
dous growth of mobile devices such as smartphones and
tablet PCs and as such has been an important driver for
technology breakthroughs in the last decade. The next,
fifth generation of communication solutions (5G) and
the Internet-of-Things will require a radical rethinking of
the wireless communication landscape to keep improv-
ing the spectral and energy efficiency at acceptable cost.
State-of-the-art communication solutions already operate
close to Shannon capacity. Therefore, in order to support
ever-increasing throughput requirements, modern solu-
tions mainly employ two strategies. The first strategy is
to use more frequencies which requires increased flexi-
bility at the radio layer, enabled by software radio. The
other strategy is to use a more distributed approach; this
means that networks are built using many very small cells
that cooperate. This, naturally, requires complex network-
ing protocols. Future 5G communication innovations will
hence revolve around joint innovation across all layers of
the protocol stack, strongly requiring a robust approach
for performance evaluation of such complex cross-layer
designs. By their very nature, cross-layer communication
solutions require mixing different disciplines. As a result,
modeling, design, and testing should jointly consider ana-
log, digital, baseband, RF, hardware, and software, result-
ing in high system complexity even at the level of a single
radio. Comparing cross-layer solutions is often achieved
by comparing algorithm A on hardware X with algorithm
B on hardware Y in non-real-time ideal lab settings. Con-
sequently, performance comparisons are confusing and
only hold as far as the calibration methods and assump-
tions hold. In addition to that, implementation of full
communication systems requires a very broad expertise,
and it becomes impossible for a single researcher to know
sufficiently well all aspects relevant for cross-layer design
and implementation.

In this paper, a Cross-Layer Adaptable Wireless System
(CLAWSYS) is proposed that enables gradual improvement
and evaluation of cross-layer design innovations. CLAWS
is a fully flexible communication node and constructed by
combining research tools from both the physical (PHY)
and networking community. CLAWS is designed to be
user-friendly. Simple experiments can be performed with
little knowledge, while experts can still access and mod-
ify the core functionality. At the PHY level for example,
it is possible to (1) tune parameters of existing functional
blocks or (2) add novel functional blocks which requires
more experience with the PHY layer (field-programmable
gate array (FPGA)) tools. A similar approach can be
followed when considering the medium access control
(MAC) and network layers, which allow for improved pro-
tocol implementations on a default PHY or alternatively
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take advantage of the extended PHY functionality. By
doing so, the radio can emulate (1) an off-the-shelf radio
when standard functional blocks and parameter settings
are chosen or (2) a cross-layer improved radio when
parameters of existing functional blocks are tuned or
novel functionality is added. In this paper, a relevant cross-
layer design will be introduced that relies on a novel PHY
block for digital mixing or frequency shifting, which is
then exploited in user space by a multi-channel MAC. The
novel protocol is easily realized in CLAWS, with mini-
mal development effort, and elegantly compared with the
single-channel state of the art using the same hardware
and network context. This enables effective and correct
performance evaluation of the functional improvement,
independent from hardware or context calibration errors.

In summary, the proposed methodology in this paper
promises to facilitate and benchmark cross-layer radio
designs in various large-scale distributed setups. Below,
we first detail the state of the art with respect to exper-
imental performance evaluation of wireless solutions.
Then, in Section 3, the proposed sensor node architec-
ture is introduced. Section 4 discusses the performance
of our design, and Section 5 finally presents a small yet
relevant cross-layer improvement that could be imple-
mented extremely fast and benchmarked elegantly using
our setup.

2 State of the art for user-friendly cross-layer
experimentation

To enable realistic and repeatable verification of cross-
layer innovations, spanning PHY, MAC, and network lay-
ers, it becomes necessary to test the cross-layer improved
setup and compare it with an off-the-shelf setup in a sim-
ilar context. In addition, the methodology should reuse
and combine as much as possible research and proto-
typing tools from PHY and networking communities.
Below, we summarize the state of the art with respect to
software-defined-radio (SDR) experimentation and exper-
imentation using off-the-shelf radios. Having made this
comparison, we illustrate how our methodology wants to
improve on that.

2.1 Software-defined radio approaches

At the core, our methodology relies on SDR [1]. Typical
software-defined radios can operate in almost any fre-
quency bands using almost any wireless communication
standard. They use a combination of FPGAs, digital sig-
nal processors (DSPs), and versatile analog/RF designs to
achieve this level of system performance across a range
of radio standards. The SDR’s core functionality can be
changed by modifying the software and firmware on top
of the hardware. Various research groups are embracing
the availability of off-the-shelf SDR solutions as a means
of showing the ideas and algorithms at work [2]. Many
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recent innovative ideas have been proven or introduced
by means of SDR solutions, e.g., full duplex [3]. These
experiments are however, typically, limited to small setups
and involve off-line processing of the results, as state-of-
the-art SDR approaches do not allow meeting stringent
delay requirements and/or often do not implement the
full physical layer. To the best of our knowledge, we are
not aware of any SDR implementation that allows net-
working with off-the-shelf radios (allowing to scale up
the size of the experiments to hundreds or thousands of
nodes at reasonable cost) which requires (a) a real-time
PHY implementation and (b) compatibility with common
protocol stacks.

Real-time SDR operation is challenging because of pro-
cessing and data communication delays. In its simplest
form, a SDR can be used as an analog front end to convert
the radio signal to digital samples. A FGPA then processes
the samples further. Most SDRs have a small FPGA that
only implements digital filtering and down-conversion.
These digital samples are sent over a connection (USB,
Ethernet, PCle, etc.) to a host PC to be processed, which
causes long delays (communication delays and process-
ing delays). The measured latencies range from 1 ms up
to 30 ms [4]. Obviously, these high latencies limit the
response time and precise timing control needed in a
MAC design (e.g., the default acknowledgment (ACK)
timeout is 48 ps in IEEE 802.11b and 864 us in the
2.4 GHz IEEE 802.15.4). As such, the communication
latency between SDR and host prohibits the development
of time-critical MAC solutions.

Nychis et al. [5] present a split functionality for stream-
ing SDR platforms. They have concluded that time-critical
radio or MAC functions should not be placed on the
host but as close to the radio as possible. They annotate
the sample stream with timestamps and control informa-
tion, allowing them to avoid some, but not all, latency
problems. Their design only allows slotted MAC imple-
mentations for streaming implementations, as turnaround
times cannot be optimized with their approach, making
more dynamic networking conditions where nodes con-
tend in real-time impossible. A similar approach is taken
by Puschmann et al. [6], where a MAC framework is built
on top of the IRIS SDR testbed. While interesting, these
approaches only allow experimental verification of some
networking scenarios, limited to a small number of expen-
sive SDR nodes and often not in real-time. This limits
the possibilities for exploring most non-trivial higher layer
protocols.

Bloessl et al. [7] created a GNU Radio-based [8] IEEE
802.15.4 implementation using the USRP N210 hard-
ware. They implement the PHY, MAC, and network layer
in GNU Radio which runs on the host PC. This setup
requires relatively cheap RF hardware but offloads all
computation to a host computer via a gigabit Ethernet
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connection. A very powerful computer is required to
fully exploit the flexibility. The USRP N210 is able to
stream 25 MHz of I and Q samples in both directions,
but processing this amount of data is extremely compu-
tationally intensive. Moreover, the implementation is not
complete as they did not implement carrier sensing and
the carrier sense multiple access with collision avoidance
(CSMA/CA) protocol.

To address these issues, parts or even all of the process-
ing can be done by the FPGA on the SDR platform. This
approach completely mitigates the latency and processing
issues but introduces other shortcomings as program-
ming these devices requires a very deep understanding of
the underlying hardware and they require domain-specific
knowledge (HDL programming, signal processing exper-
tise). As protocol experts often lack knowledge of hard-
ware programming languages or baseband functionalities,
it is hard for them to use these platforms or even change
the physical layer. While SDR approaches that expose
MAC functionality exist, such as WARP, the developed
drivers and MAC protocols are platform dependent [9].
Furthermore, these drivers and protocols are provided by
the SDR or physical layer community and, since they are
often custom non-standard protocols, not widely known
to the networking research community. These designs are
often considered too limited in functionality for protocol
researchers, which are used to working with full protocol
stacks, e.g., interoperability with a whole range of off-
the-shelf radios is expected, and extended protocol tuning
options are desired. Ideally, the SDR should be compatible
with existing protocol stacks developed in other commu-
nities, enabling to combine innovative PHY designs from
the PHY-SDR community with protocol developments
from the networking community. This avoids duplicating
development work and allows each community to leverage
upon its own tools and strengths.

The above constraints limit the use of these SDR plat-
forms towards research on the PHY layer, potentially
combined with very simple, not time critical, MAC layers.
As such, the basic promise of SDRs (reconfigurable con-
nectivity) is still unobtainable: (a) full open SDR protocol
stacks that include MAC protocols are still missing; (b)
full operation with complete networking layers (includ-
ing MAC and routing) is not realizable; and (c) real-time
SDR interaction allowing benchmarking with off-the-shelf
nodes and the realization of large testbeds has currently
not been achieved.

A similar approach as proposed in this paper was pro-
posed in [10], which is a real-time 802.11g PHY and
MAC implementation on FPGA. The design focuses on
design reusability, and many of the relevant parameters
were chosen to be easily configurable. By using Blue-
spec, user-friendly hardware programming is achieved. A
CSMA/CA MAC is implemented on the FGPA, as well as
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a soft processor that can possibly run higher layer proto-
col stacks. While this design is in principle very similar
to the method we propose here, they never verified that
their design can work with off-the-shelf radios and never
ported higher layer protocol stacks on the SDR. In this
paper, we provide a full 802.15.4 PHY and MAC layer
and also a hardware abstraction layer that allows porting
most OS or protocol stacks on our PHY. In addition, we
benchmark our design with off-the-shelf radios and real-
ize a relevant cross-layer improvement to illustrate the key
benefits of the proposed approach.

2.2 Off-the-shelf radio approaches

In addition to PHY layer testbeds, wireless communica-
tion test facilities with hundreds of radios exist, such as
the ORBIT testbed [11] or the w-iLab.t testbed [12]. The
wireless communication nodes consist of off-the-shelf
communication solutions such as IEEE 802.11 with little
or no flexibility as this is constrained by flexibility offered
by the chip implementation. As a result, these testbeds
can only be used for higher layer protocol or application
research. Key in those approaches is the selection of the
appropriate OS and protocol stack for higher layer net-
working research; often, the challenge is obtaining fast and
fine-grained control of the various possible radio chipsets
available.

In an effort to solve this challenge, generic flexible
MAC approaches, originating from the SDR philosophy,
have been proposed, which can be interpreted on the
device itself [13,14]. Based upon the analysis of CSMA,
TDMA, and hybrid MAC protocols, the decomposable
MAC frameworks define a set of MAC functionalities
(blocks) as a library. By combining these blocks using
a wiring engine, a wide range of protocols can be real-
ized, nevertheless limited to the predefined MAC blocks
in the library. These blocks are however mostly limited
by the PHY capabilities, and more powerful MAC innova-
tion would be possible if selected PHY layer implementa-
tions would be available such as interference analysis, full
duplex or flexible bandwidth, and frequency tuning.

To maximize MAC innovation capabilities, approaches
exist that try to expose as much of the PHY flexibility as
possible to the user space. This is not straightforward as it
requires extensive knowledge of the specific OS, hardware
platform, and radio controller implementation. A project
that pioneered in the development of a possible solution
is the FLAVIA project [15]. The project investigates how
to execute MAC and (a subset of) PHY commands with-
out the need to access the firmware of the radio device.
This way, the construction of the MAC and some PHY
commands can be implemented in highly reusable mod-
ules and functionalities. Furthermore, virtualization of
radio resources was investigated such that several wire-
less network stacks could operate in parallel over the same
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wireless link. The approach should be extended towards
SDR, where more control of the radio is possible, and
virtually unlimited MAC design freedom is possible.

Considering sensor networks specifically, an OS for
low-power embedded devices is often used to manage
wireless devices, using protocols such as IEEE 802.15.4.
TinyOS [16] and Contiki [17] are commonly used oper-
ating systems for wireless sensor nodes. Many useful and
well-known higher layer protocol innovations are already
implemented in these operating systems, and the develop-
ment effort is mainly shifted to the radio-specific control
interface. Many developers have made their own set of
customizations in order to optimize the control of the
radio chipset, but these are obviously not interoperable
between chipsets. These customizations are often stored
in private repositories and are not made publicly available.
In this paper, we show that it is possible to write a generic
SDR interface layer that allows running the Contiki SDR
stack on top of our SDR PHY.

3 The CLAWS architecture

The CLAWS platform enables cross-layer experimenta-
tion and benchmarking at various levels of configuration
complexity. In this section, we will describe the different
modules of CLAWS, starting with a high-level overview of
the architecture.

3.1 Overview
The architecture of the CLAWS platform is given in
Figure 1. It is clearly shown how the radio front end,
baseband PHY, MAC, and control functionalities are split.
The baseband PHY is written in LabVIEW FPGA [18]
and implemented on the FPGA to ensure real-time per-
formance. This PHY is interfaced to a MAC processor
which forms a bridge between the PHY and a Microb-
laze FPGA-mapped softcore processor [19]. This generic
SDR interface layer provides full control over the PHY, as
is needed for cross-layer innovations. In our implementa-
tion, we have ported Contiki OS to this Microblaze core in
order to provide experimenters with a standard and com-
monly used network layer environment. Hence, we can
leverage all features and innovations provided by Contiki
OS. When doing pure PHY layer research, the Microb-
laze subsystem is not needed and can be disabled. The
management application running on the host computer
then listens on a TCP socket that allows direct control
of the radio physical layer by sending low-level control
commands through our command processor, as further
explained in Section 3.5. This host control can be used for
automated performance testing of the PHY and link layers
when networked tests are not needed.

To build our prototype, we used the NI USRP-2942 [20]
which contains a Xilinx Kintex 7 FPGA. The front end has
an RF range from 400 MHz to 4.4 GHz and a sample rate
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Figure 1 CLAWS architecture. CLAWS architecture showing the RF/PHY/networking functionality.

of 120 MS/s. The FPGA is connected to the host PC by
a PCle connection. Since our architecture is generic, the
hardware is not fixed. It is possible to easily port the PHY
layer to any other equivalent NI hardware. All functional-
ity above the PHY, such as the Microblaze subsystem or
the MAC processor, can be easily ported to other Xilinx
FPGA-based SDRs as they do not depend on LabVIEW
FPGA.

3.2 User-friendly FPGA-based PHY

Both the transmitter and receiver of our baseband
PHY implementation are written in LabVIEW FPGA.
The provided functional blocks are parameterized, and
these parameters can be tuned by the host or embed-
ded controller without recompilation. In addition, expert

upgrades of the PHY are possible, to provide novel or
improved functionality, but this requires updates in the
LabVIEW FPGA code and recompilation of the design.
We will first discuss the transmitter and then the receiver
functional blocks.

3.2.1 FPGA PHY transmitter

Figure 2 shows the proposed modular PHY transmit-
ter implementation of IEEE 802.15.4. Table 1 lists the
configuration parameters that are provided to the embed-
ded MAC protocol or to the host. To emphasize the
configurability and flexibility of the design, the parame-
ters are split in ‘Standard parameters’ which are available
on most off-the-shelf chipsets and ‘Extended parameters’
which are provided in CLAWS, as we believed they were

PSDU

Load packet data Create packet

PPDU

Chips

Convert symbols to Perform O-QPSK

from memory Add FCS chipping sequences modulation
Modulated
Digital waveform chips

Analog waveform
RF Signal Digital to analog
Upconverter =

converter <=—— Perform pulse shaping

Figure 2 LabVIEW FPGA PHY TX. Block diagram of the PHY transmitter.
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Table 1 FPGA PHY TX parameters

Standard parameters Extended parameters

Read from memory Origin of data
Form packet Packet length Change CRC
Add CRC Change SFD

Maximum packet length
Symbol to chip
OQPSKmod

Chipping sequence
Modulation type

Pulse shaping Pulse shape

Sampling Sampling rate

Upconvert Channel number Any frequency

These are all parameters that can be changed on the CLAWS transmitter. The
first column corresponds to the blocks of Figure 2. If a cell is empty, this means
nothing can be changed to this block.

relevant for most cross-layer experimentation, beyond the
constraints of the IEEE 802.15.4 standard. By relying on
the more capable SDR technology, we can allow a range
of analog and digital front end parameters, such as the
sampling rate of the digital-to-analog converter, oversam-
pling ratio and carrier frequency. These parameters are
only bounded by the hardware specifications of the analog
front end. By doing so, we can optimize spectrum use by
changing channel and bandwidth adaptively.

Our proposed implementation (Figure 2) first reads the
PSDU (physical layer service data unit) data from mem-
ory, which can be a FIFO coming from the host com-
mand processor or an internal memory emulated by the
MAC processor. Next, the packet data is used to form
the PPDU (PLCP protocol data unit) packet, where we
can choose to change the start-of-frame delimiter, add a
cyclic redundancy check (CRC), change the CRC algo-
rithm or polynomial, and change the maximum length of
the packet. The symbol-to-chip mapping block allows us
to modify the chipping sequence, which could allow for
non-standard spreading codes for, e.g., strengthened pri-
vacy. The modulation is performed using OQPSK with
configurable constellation and pulse shape.
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In addition to the configuration parameters, it is
possible to add functional blocks, such as extra filters
for multi-band spectrum aggregation or digital mix-
ers for multi-channel operation. As mentioned before,
this requires modifications to the LabVIEW FPGA pro-
gram and a recompilation of the code. While this is
still relatively user friendly because of the graphical
user interface, it involves some more advanced PHY
layer knowledge, especially when targeting advanced PHY
functionality. Gradually, more PHY functional blocks will
become available.

3.2.2 FPGA PHY receiver
Figure 3 shows the current receiver implementation of
IEEE 802.15.4, which is again a library of parameters and
functional blocks. Table 2 lists all the parameters of the
receiver, including both standard compliant modes and
extended configuration modes, similarly as for the trans-
mitter. The receiver first downconverts the signal, where
a large range of possible sampling frequencies and carrier
frequencies is possible, only constrained by the RF front
end and analog-to-digital converter. The baseband sam-
ples are then used to calculate the received signal strength
indicator (RSSI), which is reported to the MAC proces-
sor for evaluating the clear channel assessment (CCA).
The CCA threshold is parameterized and can hence be
controlled by the command processor or embedded con-
troller. The receive datapath then continues first with
carrier frequency offset (CFO) compensation, after which
the signal is MSK demodulated. The receiver next corre-
lates the demodulated chips with the chipping sequences
to produce the symbols. The system subsequently syn-
chronizes on the start of frame delimiter and extracts
the packet. Again, these blocks should be configured to
be compatible with the transmitter. For example, if the
CRC is changed on the transmitter side, it must be made
compliant on the receiver side. The resulting packets are
then transferred to either the PC or the embedded system.
Similar to the transmitter, it is also possible to replace or
upgrade the available functional blocks, e.g., to add other

Analog waveform

Digital waveform Demodulated chips

RF Signal

MSK Demodulator

Downconverter Analog to dl-gltlll with CEO/SCO ) Cf)rre]ate to
converter . chipping sequences
compensation
Symbols
CCA Detect SFD
PSDU PPDU
Write packet Extract packet
to memory Verity FCS

Figure 3 LabVIEW FPGA PHY RX. Block diagram of the PHY receiver.
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Table 2 FPGA PHY RX parameters

Standard parameters Extended parameters

Downconvert Channel number Any frequency
Sampling Sampling rate

CCA Limited threshold range  Any threshold
OQPSK demod Modulation type
Chip to symbol Chipping sequence
Sync Other SFD

Extract packet Change CRC

Maximum packet length

Write to memory Change destination

These are all parameters that can be changed on the CLAWS receiver. The first
column corresponds to the blocks of Figure 3. If a cell is empty, this means
nothing can be changed to this block.

synchronization or CFO compensation schemes, imple-
ment other OQPSK demodulators or add totally novel
blocks such as filters for multi-channel bonding, spectrum
sensing, or digital mixers for multi-channel operation.

3.3 MAC processor
A programmable system has been implemented for con-
verting high-level commands from the network stack,
such as ‘send a packet] into bit-level instructions for
the PHY hardware blocks. This system consists of a
small programmable processor dedicated to running the
lower MAC tasks. Therefore, it is easy to get sufficiently
deterministic real-time performance without impacting
the application layers, as would be the case if this was
done on the main CPU. The program memory can be
updated on-the-fly by the host, which allows for easy
switching of the MAC algorithms in use. The interface
to the main CPU is by means of a shared memory that
both the MAC and main CPU can write to and read
from.

To complete the picture, we will explain the tasks per-
formed by the MAC processor when CLAWS is receiving
a packet:

e PHY receives a start-of-frame delimiter. The PHY
sends an interrupt to the MAC processor, which
starts the receive routine.

e PHY receives data bytes. They are transferred to the
MAC processor, which stores them in the shared
memory. A copy of the packet header is also kept in
the local memory of the MAC processor.

e Packet is finished. All bytes have been received, and
the MAC processor signals to the main CPU that a
complete packet is available in the shared memory.
When frame check sequence (FCS) checking is
enabled, the signaling is only done if the FCS is
correct.
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e MAC processor checks the header of the packet to
see if an acknowledgement is required. If not, the
MAC is now idle again. If it is enabled, it continues
with the next steps.

e Start PHY TX. The packet length is three and a FCS
should be appended.

e Deliver bytes for transmission. When the PHY asks
for a byte to transmit, the MAC will deliver it.

e Transmission ended. The ACK has been sent and the
MAC is now idle. An event could be sent to the main
CPU if desired.

3.4 Networking and OS layer

It is our strong belief that to fully realize the promises of
SDR as a wireless innovation platform also for the net-
working community, it is required to develop fully embed-
ded systems including software and tools common to the
networking community. Most sensor nodes consist of a
processor connected to a radio chip and one or more sen-
sors or actuators. To emulate this, our IEEE 802.15.4 radio
is complemented with a softcore processor. The chosen
softcore processor is the Xilinx Microblaze [19], but alter-
natives exists, for example, OpenRISC. The Microblaze
processor can be programmed in C, which most sensor
network researchers will be familiar with since this lan-
guage is also used for programming the processor in most
common off-the-shelf sensor nodes (often a MSP430 or
AVR). Furthermore, many sensor node platforms use an
operating system to allow smooth development. The stan-
dard operating system, Contiki OS, was ported to our
platform.

Of course, most real-world applications require more
than a system that is just pingable, and many benefits
arise from selecting Contiki OS for our platform. First,
this allows experimentation with the variation of net-
work layer adaptations that have already been developed
for Contiki OS. These innovations can be validated not
only on a network of SDRs, but also on a heteroge-
neous network consisting of off-the-shelf sensor nodes
and SDRs. Porting Contiki OS to CLAWS makes oper-
ating the system turn-key. Indeed, if a suitable network
border router is nearby, one can start CLAWS and obtain
6LoWPAN connectivity immediately, relying on the func-
tionality provided by Contiki OS. Contiki OS also helps
with further development by providing a full IPv6 stack
that for example allows transmitting sensor values over
UDP to a computer or even an embedded webserver. The
MAC processor we proposed connects the PHY hardware
blocks to the Contiki-based system running on the main
processor. Since this MAC processor is separated from
Contiki OS, other operating systems, or if needed bare-
metal networking code, could be ported to CLAWS by
extending the MAC processor where needed. This means
that the architecture is not limited to Contiki OS only, yet
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we believe Contiki OS is a good starting point to tap into
the networking communities.

3.5 Host control and PHY benchmarking framework

It is understood that not every experiment will require
real-time control by the embedded processors, and link
or PHY layer experiments, as typically carried out by the
PHY community, should still be enabled. To meet this
demand, a command interface has been developed. This
interface with the host computer is written in LabVIEW.
With this interface, the host can transmit and receive
packets and control the parameters of the datapath via
the PCle interface. Since the computationally intensive
DSP PHY implementation is still executed on the FPGA,
the load for the computer is very low. The interface is a
standard TCP/IP connection using a command/response
protocol, as seen on Figure 1.

Exploiting this interface, we have developed a bench-
marking framework that can measure bit and packet error
rates over arbitrary communication channels. It has been
used to compare our PHY implementation against other
off-the-shelf PHY solutions. This command/response
protocol is generic and can also be implemented on other
devices, as has been done for the Zigduino to enable a
PHY comparison framework.

4 Functional validation and performance results
For our performance evaluation, we will first compare our
radio design with off-the-shelf implementations to prove
that similar performance can be obtained and that the
radio can form a network with those implementations. For
PHY testing, we use our PHY benchmarking framework
with the host command/control protocol. For network
testing, we use the CLAWS nodes with the Contiki OS
embedded control in a network. These results will also
show that it is very difficult to compare performance of
different hardware solutions in exactly the same scenar-
ios, due to the differences in hardware (independent from
the functionality). This motivates the need for a universal
radio, which can emulate off-the-shelf performance and
can hence compare various algorithmic improvements
at the PHY/MAC layer, independent of pure hardware
specs.
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4.1 Experimental setup

For our PHY experiments, the setup as shown in Figure 4
was used, consisting of the proposed command/control
PHY layer benchmarking framework. To ensure PHY
layer measurements that can be repeated independently of
ambient interference, we connect all nodes with a coaxial
cable. In addition to the transmitter and receiver, an exter-
nal noise generator is added. The noise generator, which is
implemented on an additional USRP, is used to create an
artificially high noise floor, which allows emulating vari-
ous signal-to-noise ratios (SNR) without being impacted
by receiver sensitivity limits.

We have used commercially available Zigduino
nodes [21] to benchmark our implementation. The
Zigduino is a board with an Atmel CPU and 802.15.4 radio
system-on-chip (ATMEGA128RFA1). These Zigduino
nodes run software developed for this project that imple-
ments the same command protocol as CLAWS. Since the
Zigduino only has a serial port (USB-based, provided via
a FTDI UART chip), a TCP-to-serial-port proxy, ser2net,
is used. All experiments have been done on channel 26,
which corresponds to a frequency of 2.48 MHz. Transmit
power measurements have been performed over a 5 MHz
bandwidth. One of the advantages of our system is that
transmit power control is very linear and over a wide
range. The power control of the off-the-shelf radio we
used is rather non-linear, requiring the measurements
using the Zigduino as transmitter to be done in different
output power ranges with attenuators added and removed
manually, illustrating how hard it can be to compare vari-
ous hardware platforms with the same functionality over
the same scenario (SNR range in this case).

4.2 PHY layer SDR performance

In Figure 5, we plot the bit error rate (BER) performance
comparison between our CLAWS transceiver and the off-
the-shelf Zigduino transceiver. It can be seen that a similar
BER behavior can be achieved in terms of receiver PHY
performance. With similar BER performance, we mean
that for high SNR, a similar and low BER is achieved. How-
ever, in terms of transmitter PHY performance, we see a
4 dB difference; this is mainly due to signal power mea-
surement errors (as noted before, it was not possible to

Spectrum
Analyser
Noise o ) .
generator —=t -30dB —=t Directional Cou])l-el]()dB —=r -10dB —=t Splitter [ RX
TX
Figure 4 Experimental setup. Setup used for the BER/SNR experimental results.
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Figure 5 BER performance comparison. Bit error rate comparison between CLAWS (C) and Zigduino (2).

test the transmitters in the same power range due to lim-
ited output power of the Zigduino). In general, a 4 dB
performance difference is small enough to test all higher
layer improvements. We can conclude that the CLAWS
transceiver performance is within the acceptable range of
the Zigduino performance, although not identical.

4.3 Network layer performance

To evaluate the full system performance, we will mea-
sure round-trip delay which is one of the most important
parameters. For these measurements, an IPv6 network is
set up using a Zigduino as border router (see Figure 6).
The border router is connected to the host computer via
the USB serial port provided by the Zigduino. The USB
connection is configured for a bitrate of 1 Mbps. The
network was set up to use RPL (IPv6 Routing Protocol
for Low power and Lossy Networks), which is a standard
routing protocol designed for low-power wireless net-
working that is often employed for sensor networks. Of
course, a network with a single node is not suitable for
evaluating the routing aspects of RPL. This is not the point

of this test; we mainly want to demonstrate interoperabil-
ity with the standard networking technology. To measure
the delay, ping packets (ICMP Echo, 37 bytes payload) are
sent to and received from CLAWS or Zigduino nodes.
Figure 7 shows a timeline of the events that happen dur-
ing the ping test. First, the packet has to be processed
by the USB connection and border router . Next the
packet is transmitted over the IEEE 802.15.4 over-the-air
channel @. In the third step, the target device (CLAWS
or Zigduino) executes the networking code to produce a
reply packet @. The fourth step is transmission of the
reply packet back to the border router @. Finally, the
border router has to process the packet and forward it
to the host PC ®&. The complete round-trip time to the
Zigduino is 12.9 ms, while the CLAWS system clocks in
at 11.9 ms. Again, we see that the performance of the
Zigduino and CLAWS is almost identical. The processing
phase of CLAWS is slightly shorter due to the faster CPU.
One should note that the radio air-time is longer than
what one would expect for 37-byte-long ping packets.
This is caused by 6LoWPAN/ICMP protocol overhead,

|

| | 6LOWPAN TX
!

: USB Border \

| router ‘

|

|

|

Figure 6 Network testing setup. Setup used for the network latency tests.
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Figure 7 Ping timeline. Measured round-trip time for different targets split into the subparts from Figure 6.

t(ms)

and the downlink packet is 104 bytes, while the uplink
packet is 103 bytes long. To demonstrate that RPL rout-
ing is also working, we have built a setup consisting of two
CLAWS nodes and the border router. Due to the extra
hop, the round-trip time to the last node was measured as
19.8 ms; this is not shown in Figure 7.

While Contiki OS in the configuration we used for these
tests does not use IEEE 802.15.4 ACKs, we have observed
the minimum time required by our system to send an
ACK. This was significantly faster (8 ps) than allowed by
the standard (192 ps) and serves as an indicator that real-
time performance can be achieved with this architecture,
potentially for much more demanding protocols, like IEEE
802.11.

5 Cross-layer design and benchmarking

From the previous sections, it is clear that the CLAWS
performance on both the PHY and MAC layer is compa-
rable to off-the-shelf nodes, making it suited for testing
changes in both layers and comparing with the default
functionality (on the same hardware, avoiding calibration
errors). As indicated in the introduction, we believe most
groundbreaking research requires a cross-layer approach.

Due to the way CLAWS is built, it is perfectly suited for
implementing innovative solutions requiring changes to
be made to more than one layer, leveraging also on tools
commonly known to the PHY or networking communi-
ties (SDR and Contiki OS). Below, we give an overview
of existing cross-layer designs that could benefit from
CLAWS. Next, a very simple case study is presented
and analyzed. The main goal of this case study is to
show the cross-layer experimentation potential of our
platform.

5.1 Cross-layer design on CLAWS

Various cross-layer design approaches, proposed in lit-
erature over the past decade, could easily be verified
in CLAWS. In [22], a very scalable networking solu-
tion is proposed that allows Wi-Fi networks to adapt
to the available spectrum precisely, tuning center fre-
quency and bandwidth. The authors however note that
due to the capacity limit of the general-purpose processor,
they cannot run their algorithm in real-time and offline
decoding is necessary. Such schemes could be imple-
mented on the CLAWS architecture elegantly and would
only require some changes to the Contiki protocol layers,

x
Zigduino 2
X
/ CLAWS
f1
Zigduino 1
RX
Figure 8 Relay design architecture. Overview of the cross-layer experiment.
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taking advantage of the extended parameter set exported
to the higher layers.

Alternatively, a large amount of multi-channel MAC
protocols have been proposed in the past, but real-time
validation has up to now been challenging as fast enough
tuning of the PHY channel has been difficult to achieve
using off-the-shelf chipsets [23]. With CLAWS, leveraging
the wide bandwidth of the RF front end used, it becomes
possible to implement multi-channel MAC protocols with
direct digital synthesis frequency shifting only. By adding
a simple numerically controlled oscillator to the PHY,
CLAWS can receive on various channels simultaneously
or can receive on channel A and transmit on channel
B with virtually no channel switching delays (just some
clock cycles for the digital mixer). This is powerful as it
allows multi-channel MAC prototyping beyond current
radio channel switching limitations. Of course, if this level
of performance is not needed, it is also possible to recon-
figure the hardware phase locked loop (PLL). In this case,
the PLL will need to relock after every frequency change,
which reduces throughput and increases latency.

Tytgat et al. [24], for example, argue that no single
channel is optimal for a large IEEE 802.15.4 network,
and ideally different channels are selected for each packet
reception (Receiver Defined Transmission). Performance
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evaluation of the required channel sensing methods and
channel selection methods is very challenging using off-
the-shelf IEEE 802.15.4 radios, but can be implemented
on CLAWS very elegantly. One could perform the imple-
mentation in user space, by just controlling the center
frequency parameter or by adding a digital mixer in the
PHY layer that does the channel switching instantly. It is
even possible to simultaneously use different transmit and
receive frequencies. In the next section, both approaches
are discussed and evaluated.

5.2 Cross-layer design case study

To show the merit of our design a relevant cross-layer
design that involves receiving a packet and transmitting
it on an adjacent channel was benchmarked in a multi-
hop network. Using this multi-channel and multi-node
implementation, we have conducted some experiments to
show the benefits. A relay node was designed that receives
on channel 11 and transmits on channel 13. First, the
PHY was changed to allow shifting the receive and trans-
mit frequencies using numerically controlled oscillators.
For this, a novel functional block, i.e., digital shifter, was
added to the PHY. This approach allows the receiver and
transmitter to work simultaneously on different channels
in full duplex. Off-the-shelf nodes can only transmit and
receive in half-duplex. Second, changes were made to the
MAC layer to allow relaying received traffic on the input
frequency to the output frequency. For this, the MAC pro-
cessor was changed to allow transmission and reception
of packet data at the same time. This is an adaptation that
is not specified by the 802.15.4 standard. Finally, the net-
working layer was configured to forward received packets
via the second channel. Because of the small scale of the
experiment, Contiki was configured to route the traffic in
a static way; this meant setting the routing tables accord-
ingly. The necessary changes on all three layers could be
implemented in 15 min using the CLAWS design.

To verify operation, we have used the benchmarking
framework, as explained in Section 3.5. One Zigduino
node was configured to transmit on channel 11 and a
second one to receive on channel 13. The setup is shown
in Figure 8. As seen in Figure 9, the system is able to
receive data on the first frequency while transmitting
on the second. The same multi-channel relay could be
set up by implementing changes at the MAC layer only,

Figure 10 Multi-channel throughput setup. Setup used to benchmark the cross-layer multi-channel implementation.
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Figure 11 Throughput comparison. Comparison of different
multi-channel implementations in terms of throughput.

i.e., upgrading the MAC to allow for dynamic control of
the PHY center frequency. The latter approach requires
however retuning the analog PLL, which involves a delay
compared to the more advanced full duplex approach with
digital mixing. Both can however be realized in CLAWS
very efficiently and flexibly, and it is up to the protocol
designer to decide what is necessary for benchmarking
the protocol. When implementing the proposed multi-
channel relay on off-the-shelf Zigduino nodes, of course,
only the latter approach is possible, and the MAC design
becomes limited by channel switching delays or hard
constraints imposed by the hardware.

To further test this simple case study, we have carried
out some throughput experiments. The setup is shown
in Figure 10. The left Zigduino transmits packets when-
ever the medium is free to the first CLAWS node. The
packets are then relayed by this first CLAWS node to
the second one. This second CLAWS node again relays
the packets to the right Zigduino. As can be seen from
Figure 10, all nodes are only in range of their neighbors,
making multi-hop the only possible path. Three different
multi-channel optimizations are benchmarked in terms of
throughput against the single-channel, standard compli-
ant implementation. The results are shown in Figure 11.
In the single channel case, frequencies f; and f3 from
Figure 10 are equal to frequency fi. In this case, the
throughput decreases a lot because nodes need to wait
for the neighboring nodes to stop transmitting. The first
improvement enables multiple frequencies for the hops,
and a 50% higher throughput is achieved. The second
improvement enables full duplex on multiple frequencies;
for this, minor changes were needed to the software run-
ning on the MAC processor. This second improvement
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reaches a throughput of around 171 kbps. The 802.15.4
standard mandates a sensing period to determine if the
channel is idle. Since in this case we know that no collision
can occur, we disable this sensing period. The improve-
ment afforded by disabling the nodes’ CCA increases the
throughput to 95% of the theoretical throughput.

This simple case study shows two things: First, it shows
that it is possible to make changes to multiple layers on
CLAWS and benchmark them in real-time. Second, it
shows that small cross-layer improvements can have huge
benefits.

6 Conclusions

This paper describes a cross-layer, flexible SDR solu-
tion and benchmarking framework, using commercially
available SDR technology. The developed system can
communicate with off-the-shelf sensor nodes and allows
for tuning of both PHY and higher protocol layers. This
architecture is provided to the open source community
[25], in order to become a framework for validating and
benchmarking wireless cross-layer innovations. Future
work involves adding novel functional blocks enabling
improved PHY performance, as well as more configura-
tion options or richer protocol development. Also, other
technologies such as IEEE 802.11 will be selected and
added to the framework. Finally, larger scale benchmark-
ing experiments will be conducted, testing the SDR in
large networking configurations, such as the one available
in the FP7 project CREW [26].
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