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Abstract

This paper presented a new image fusion based on compressed sensing (CS). The method decomposes two or
more original images using directionlet transform, gets the sparse matrix by the directionlet coefficient sparse
representation, and fuses the sparse matrices with the coefficient absolute value maximum scheme. The
compressed sample can be obtained through random observation. The fused image is recovered from the reduced
samples by solving the optimization. The study demonstrates that the compressive sensing image fusion algorithm
based on directionlets has a number of perceived advantages. The simulations show that the proposed algorithm
has the advantages of simple structure and easy implementation and also can achieve a better fusion performance.
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1. Introduction
The main goal of image fusion is to extract all the import-
ant features from all input images and integrate them to
form a fused image which is more informative and suitable
for human visual perception or computer processing.
There are a number of pixel-level image fusion methods,

including the weighted average method [1,2], the pyramid
transform method [3], principal component analysis
(PCA) method [4], as well as fusion based on wavelet
transform methods. The wavelet transform has become an
important tool in image fusion method for its excellent
feature of time-frequency analysis [5]. However, wavelet
bases are isotropic and of limited directions and fail to
represent high anisotropic edges and contours in images
well. For the drawbacks of the wavelet transform, direc-
tionlet transform is an anisotropic transform proposed by
Vladan, which is based on the integer lattice. The direc-
tionlet still uses the one-dimensional filter group, but with
the base function of multi-directional anisotropy, the
directionlet has a detachable filter and critical structure
and is able to be fully reconstructed. Thus, theoretically, it
has more advantages than the general wavelet transform
and the other second-generation wavelet transform [6].
In recent years, inspired by the ideas of ‘sparse’ approxi-

mation, a novel theory called compressed sensing (CS) has
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been developed [7-9]. The CS principle claims that if a sig-
nal is compressive or sparse in a certain transform do-
main, it can be projected onto a low-dimensional space
using a measurement matrix which is irrelevant with
transform basis while still enabling reconstruction at
high probability from these small numbers of random
linear measurements via solving an optimization problem.
Therefore, it is expected to provide a new idea for image
fusion by combined directionlets with CS.
This article proposes a new scheme for image fusion;

in our scheme, directionlet transform first decomposes
each source image into two components, i.e., dense and
sparse components. Then, the dense components are
fused by the selection method according to the manifes-
tations of defocus, while the sparse components are
fused under the frame of CS via fusing a few linear
measurements by solving the problem of l1 norm
minimization which is based on the two-step iterative
shrinkage reconstruction algorithm. The proposed fu-
sion scheme is applied to infrared and visible image
fusion experiments, and the performance is evaluated in
terms of computational efficiency, visual quality, and
quantitative criterion.
The test results show that it can blend the edges of the

image information fairly well, and subjectively more
in line with human visual characteristics and the object-
ive evaluation is also superior to other image fusion
methods.
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Figure 1 Based on the integer lattice filtering and down-sampling. (a) Expressed with the generator matrix; (b) two-dimensional
dual-channel filter.
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2. Directionlet transform
The directionlet transform proposed by the German
researcher Vladan is the multi-directional anisotropy
based upon the integer lattice [10-12]. It adopts multi-
directional anisotropy basis functions; therefore, it has
more advantages in expressing the image than the aver-
age wavelet transform. At the same time, it only uses the
one-dimensional filter banks with separable filtering and
critical structures and can be reconstructed totally; thus,
as far as the computational complexity is concerned, it
has more advantage than the other second-generation
wavelet transform. The directionlet transform is a new
multi-scale analysis tool.
When using one-dimensional filter banks to conduct

multi-directional two-dimensional separable wavelet trans-
form, we select any two rational slope r1 = b1/a1 and
r2 = b2/a2's digital line direction to filtering and down-
Figure 2 Fusion experiment. (a) Infrared image, (b) visible image, (c) LP,
sampling; however, when the critical sampling is enhanced,
two digital lines will have the issue of direction of mutual
inductance, that is, along the slope r1 and r2, the concept
of the digital line cannot provide a systematic rule for the
down-sampling of the repeated filtering and repeated
sampling.
Therefore, Vladan has proposed the multi-directional

filtering and down-sampling which are based on the lat-
tice. First, chose any two reasonable slopes r1 = b1/a1 and
r2 = b2/a2's directions in grid space z2, expressed in matrix as

MΛ ¼ a1 b1
a2 b2

� �
¼ d1

d2

� �
; a1; a2; b1; b2 ∈ Z; n1 ≠ n2: ð1Þ

The direction along the slope r1 of the vector r1 is
called the change of direction; the direction along the
slope r2 of the vector d2 is called the queue direction.
(d) DWT, and (e) CS.



Table 1 Comparison of statistical parameters about
fusion results according to different fusion rules

Entropy Cross
entropy

Standard
deviation

Average
gradient

LP 12.551 0.708 14.112 28.410

DWT 12.689 0.917 14.978 28.341

CS 12.974 0.961 15.201 29.134

LP, Laplacian pyramid; DWT, discrete wavelet transform; CS,
compressed sensing.

Figure 3 Mutual information of different sampling rates for
infrared and visible image fusion.
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Along the skewed collinear transform of the transform-
ation of the lattice in the queue application, it has
n1 and n2 (n1 ≠ n2) transformation in an iterative step
along the transform direction and queue direction.
Marked as S −AWT(MΛ, n1, n2). From MΛ, the integer
lattice Λ can be ascertained. According to the case theory,
z2 has been divided into the |det MΛ|'s co-set which is
about the entire integer lattice Λ. Filtering and down-
sampling have been conducted in every co-set and then the
remaining pixels belong to the lattice Λ′ of the integer lat-
tice Λ and the matrix generated accordingly. Thereout, the
sparse representation of the anisotropic object on the direc-
tion of the image can be obtained. The principle is shown
in Figure 1 (the change of direction in the figure is 45°).
The image which has gone through the above men-

tioned directionlet transform has a very sparse coeffi-
cient and then can obtain more directional information,
which can be better used to describe the edge contour
of the infrared image.

3. Compressive sensing and image fusion
Compressive sensing enables a sparse or compressible
signal to be reconstructed from a small number of non-
adaptive linear projections, thus significantly reducing
the sampling and computation costs [13]. CS has many
promising applications in signal acquisition, compres-
sion, and medical imaging. In this paper, we investigate
its potential application in the image fusion.
As far as a real-valued finite-length one-dimensional

discrete-time signal x is concerned, it can be viewed as a
RN space N × 1 dimensional column vector, and the
element is x[n], n = 1, 2, …, n. If the signal is sparse K, it
can be shown as the following formula:

x ¼ ψs; ð2Þ
where ψ is the N ×N matrix and s is the coefficient com-
ponent column vector of dimension N × 1.
When the signal x in the base of ψ has only non-zero

coefficients of K < < N (or greater than zero coefficients),
ψ is called the sparse base of the signal x. The CS theory
indicates that if the signal x's (the length is N) transform
coefficient which is at an orthogonal basis ψ is sparse (that
is, only a small number of non-zero coefficients can be ob-
tained), if these coefficients are projected into the meas-
urement basic ϕ which is irrelevant to the sparse base ψ,
the M × 1 dimensional measurement signal y can be ob-
tained. By this approach, the signal x's compressed sam-
pling can be realized. The expression can be expressed as

y ¼ ϕx ¼ ϕψs ¼ Θs; ð3Þ
where ϕ is the measurement matrix of M ×N and Θ =
ϕψ is the M ×N matrix and called the projection matrix.
y is the measurement value of the projection matrix Θ,
which is relevant to the sparse signal s. Only when the
orthogonal basis ψ is irrelevant to the measurement
matrix ϕ, that is to say, the projection matrix can satisfy
the requirement of restricted isometry property (RIP),
the signal x can be accurately recovered via these mea-
sured value by solving formula (3) in the best optimized
way. The block diagram derived from the CS theory for
the field of image processing is shown in Figure 1.

min
s

sk kl1; s:t: y ¼ ϕψs: ð4Þ

The advantage that the CS theory has is that the data
obtained via the projection measurement is much
smaller than the conventional sampling methods, break-
ing the bottleneck of the Shannon sampling theorem, so
that the high-resolution signal acquisition becomes pos-
sible. The attraction of CS theory is that it is for applica-
tions in many fields of science and engineering and has
important implications and practical significance, such
as statistics, information theory, coding theory, com-
puter science theory, and other theories.
Compared with the traditional fusion algorithms, the

CS-based image fusion algorithm theory has shown sig-
nificant superiority: the image fusion can be conducted
in the non-sampling condition of the image with the CS
technique, the quality of image fusion can be improved
by increasing the number of measurements, and this



Figure 4 Multi-focus image fusion experiment. (a) In-focus image, (b) far-focus image, (c) DWT, and (d) CS.

Figure 5 Mutual information of different sampling rates for
multi-focus image fusion.
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algorithm can save storage space and reduce the compu-
tational complexity. The main ideas of the CS-based
image fusion algorithm theory are as follows: first of all,
the two images which need to deal with should undergo
the directionlet transform, the sparse matrix can be ob-
tained after the directionlet coefficients are processed with
the sparse treatment, then the fusion rules for the sparse
matrix integration are determined, compressive sampling
through random sampling matrix is obtained, and finally,
the fused image can be obtained in the best optimized way.
The practical function of wavelet transform is the sig-

nal decorrelation, and all the information of the signal
are concentrated into the wavelet coefficients with large
amplitude. These large wavelet coefficients contain far
more energy than that contained in small coefficient so
that in the reconstruction of the signal, a large coeffi-
cient is more important than the smaller one.
This paper adopted the fusion rule which concentrated

on the larger absolute value; comparing two wavelet co-
efficients of the same location in two images, the greater
absolute value is selected as the fusion wavelet coeffi-
cient. The expression is as follows:

Df ¼ DM andM¼ arg max Dij jð Þ
i¼1;2;…;I ð5Þ

where Df is the fusion wavelet coefficient, DM is the
wavelet coefficient whose absolute value is the largest of
the wavelet coefficients in the same location in different
images, and I is the number of the source image.
The directionlet transform is used to deal with the

source image; directionlet coefficients are obtained with
the sparse treatment: the small coefficient (or coefficient
of close to zero) is set to zero to obtain an approximate
sparse coefficient matrix.
When the source image is conducted via sparse trans-

formation, the wavelet is used as the sparse basis. To
reconstruct the image with less measurement value, we
must ensure that the sparse basis ψ and the measurement
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matrix ϕ are irrelevant, because any random sparse matrix
has superiority that it is irrelevant to any sparse basis. That
is the reason why it can be used as a measurement meas-
ure matrix.
The concrete realization of image fusion algorithm

which is based on the CS theory is as follows:

1. For each m × n pixel image, conduct directionlet
transform to obtain the directionlet coefficient
matrix.

2. The directionlet coefficients are processed with the
sparse treatment and then fused according to the
larger absolute value rule.

3. For the fused directionlet coefficients, the random
matrix is selected as the measurement matrix ϕ;
after the measurement, the measured value y can be
obtained.

4. By solving the linear programming of the l1 norm,
the approximate solution x̂ can be acquired.

5. Conduct the inverse transform to the obtained
directionlet coefficients and thus the fusion image
can be acquired.

4. Experimental results and analysis
The experiments selected the infrared and visible registra-
tion images to conduct the fusion experiment with differ-
ent approaches. Figure 2 shows image (a) and image (b)
which respectively represent the infrared and visible
images of the airfield, and the two images contain much
detail and texture information. Image (c) represents the
fusion result based on the Laplacian pyramid transform,
image (d) represents the fusion result based on the fusion
of the discrete wavelet transform, and image (e) represents
the fusion results based on CS. As can be seen from the
figure, images (c) and (d) have different degrees of blur.
Compared to images (c) and (d), image (e) is clearer as far
as the visual effect is concerned.
Table 1 is an objective evaluation towards the quality

of the images in this set of experiments. As can be seen
from the table, the standard deviation and the average
gradient of image (e) are the highest, which demonstrate
that the image has better contrast and sharpness, and
therefore is consistent with the subjective evaluation re-
sults. Figure 3 is the mutual information of different
sampling rates for infrared and visible image fusion. The
mutual information value shows the similarity between
the fusion image and the source image. The sampling rate
is associated with the fusion image quality [14]. The sam-
pling rate is higher, and the fusion image quality is better;
however, the cost of operation of the reconstructed image
is larger, and the required storage space is bigger.
As can be seen from Figure 3, the mutual information

values of the compressive sensing image fusion algo-
rithm are the best among the three fusion methods.
Figure 4 is the multi-focus image fusion experiment.
Image (a) is the in-focus image, and image (b) is the far-
focus image. Image (c) represents the fusion result based
on the discrete wavelet transform; image (d) represents
the fusion results based on CS. As can be seen from the
figure, image (c) has different degrees of blur. Compared
to image (c), image (d) is clearer as far as the visual ef-
fect is concerned. Figure 5 is the mutual information of
different sampling rates for multi-focus image fusion.
The mutual information values of the compressive sens-
ing image fusion algorithm are the best among the three
fusion methods.

5. Conclusions
The paper put forward a fusion algorithm based on the
compressed sensing. Compared with the traditional wave-
let transform, the proposed CS-based image fusion algo-
rithm can preserve the image feature information, enhance
the fused image space detail representation ability, and im-
prove the fused image information. The experiment proves
that the approach in this paper is better than the wavelet
transform and Laplace pyramid decomposition, etc.
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