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Abstract

Due to the precipitous growth of wireless networks and the paucity of spectrum, more interference is imposed to the
wireless terminals which constraints their performance. In order to preserve such performance degradation, this paper
proposes a framework which uses cognitive radio techniques for quality of service (QoS) management of wireless local
area networks (LANs). The framework incorporates radio environment maps as input to a cognitive decision engine
that steers the network to optimize its QoS parameters such as throughput. A novel experimentally verified heuristic
physical model is developed to predict and optimize the throughput of wireless terminals. The framework was
applied to realistic stationary and time-variant interference scenarios where an average throughput gain of 344% was
achieved in the stationary interference scenario and 70% to 183% was gained in the time-variant interference scenario.
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1 Introduction
Large-scale growth of wireless networks and spectrum
scarcity are introducing more interference than ever.
Intensive interference degrades wireless links and may
jeopardize continuous connectivity and hence quality of
service (QoS) offered to the users.
Cognitive radios (CRs) are becoming a tempting solu-

tion to tackle this type of spectrum over-utilization by
introducing opportunistic usage of frequency bands that
are not heavily occupied by licensed users [1]. The equal
regulatory status of wireless terminals on the industrial
scientific medical (ISM) band leaves no consideration of
a primary user for various wireless networks. Therefore,
interoperability of ISM band networks is becoming a key
issue that must be solved.
Wireless networks are designed to tackle homogeneous

intra/inter network interference by means of various
medium access techniques. The efficiency of interference-
tackling techniques of the present wireless technolo-
gies has been profoundly assessed in the literature. For
instance in [2], a large number of experiments prove that
the throughput of IEEE 802.11 wireless local area network

*Correspondence: mostafa.pakparvar@intec.ugent.be
Department of Information Technology (INTEC), Ghent University-iMinds,
Gaston Crommenlaan 8 box 201, Gent 9050, Belgium

(WLAN) is highly dependent on the traffic characteristics
of other present Wi-Fi networks.
The objective of this paper is to validate a framework

that uses cognitive radio techniques for QoS manage-
ment of WLANs. Cognitive radio techniques are majorly
studied and practiced for operation of secondary users in
licensed bands while this framework focuses on deploy-
ing such techniques in the unlicensed ISM band. The
framework builds on radio environment maps (REMs)
that contain PHY spectrum information obtained from
a set of environment sensing devices. An experimentally
verified heuristic physical model is developed to predict
and optimize the throughput of wireless terminals based
on the information contained in the REMs. The model is
used as the kernel of the cognitive decision engine (CDE).
The novelties presented in this paper are the following:

(1) extendable real-time indoor radio environment maps:
maps that can be redesigned for any indoor environment,
and (2) an experimentally verified heuristic cognitive deci-
sion engine which is based on a physical model that
predicts throughput as a function of measurable wireless
LAN parameters.
The model is derived from a set of exploratory measure-

ments and is validated with various practical measure-
ments in a pseudo shielded experimental testbed building,
w-iLab.t [3].
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The rest of this paper is organized as follows. In
Section 2, after reviewing the related works, the cog-
nitive framework is outlined. Section 3 describes a set
of exploratory measurements we performed to derive a
heuristic physical model which servers as the kernel of the
cognitive decision engine. In Section 4, the development
of the heuristic model is elaborated, and in Section 5, we
explain how this model is integrated to the cognitive deci-
sion engine. Section 6 presents two proof of concept sce-
narios for static and time variant interference. Section 7
demonstrates an application outlook of the framework.
Section 8 presents the conclusions.

2 The cognitive framework
2.1 Related work
In the context of cognitive frameworks that address effi-
cient interoperability of homo/heterogeneous wireless
networks, spectrum monitoring and decision making are
the central topics addressed by the authors in the cur-
rent literature. REMs [4] play a key role for environment
monitoring in many cognitive radio solutions. REMs rep-
resent an integrated database providing information such
as spectrum availability, regulations, and also the degree
of channel utilization [4]. In terms of spectrum utilization,
REMs have been proposed to measure power spectral
density (PSD) in order to determine the degree of spec-
trum utilization in a certain geographical area. These
models are produced from a set of measurements and
the application of spatial interpolation techniques that
provide an estimate at locations that lack dedicated mea-
surements [5]. In addition to PSD maps, other authors
present channel gain maps that capture information about
the propagation medium [6]. In [7], the authors propose
using medium utilization as a metric to be included in
the REMs dedicated for wireless LANs. In [8], REMs
have been used to intelligently guide spectrum access for
deployment of a prototype of a long-term evolution (LTE)
system that opportunistically exploits the spectral white
spaces in the upper ultra high frequency (UHF) TV bands.
The decision making mechanisms in the present lit-

erature exploit a multitude of artificial intelligence (AI)
algorithms to derive proper decisions for operation of
the cognitive wireless network. artificial neural networks
(ANN) have been used for radio parameter adaptation
in CR [9,10]. The ANN determines radio parameters for
given channel states with three optimization goals, includ-
ing meeting the bit error rate (BER), maximizing the
throughput, and minimizing the transmit power. In [11],
it is proposed that the use of ANN characterizes the
real-time achievable communication performance in CR.
Since the characterization is based on runtime measure-
ments, it provides a certain learning capability that can be
exploited by the cognitive engine. The simulation results

demonstrate good modeling accuracy and flexibility in
various applications and scenarios.
Metaheuristics [12] are used for combinatorial opti-

mization in which an optimal solution is sought over
a discrete search space. Evolutionary algorithms/genetic
algorithms (GAs), simulated annealing (SA), tabu search
(TS), and ant colony optimization (ACO) are examples
of metaheuristic algorithms. Among the various meta-
heuristic algorithms, the GA has been widely adopted
to solve multiobjective optimization problems and to
dynamically configure the CR in response to the chang-
ing wireless environment [13,14]. For instance in [14], a
software testbed for CR with the spectrum-sensing capa-
bility is implemented and a GA-based cognitive engine to
optimize radio parameters for dynamic spectrum access is
validated.
Apart from all the aforementioned AI methods, there

are also methods in the literature that are based upon
ranking the channels in order of their capacity. The
ranking is done by characterizing the channel activities
and making estimations of the capacity accordingly. For
instance, in [15], the authors derive a physical model for
the throughput of WiMax networks based on monitor-
ing physical layer parameter carrier to interference and
noise ratio (CINR). In particular, the authors in [16] pro-
pose a spectrum decision framework for cognitive radio
networks which addresses QoS management of the sec-
ondary users in response to certain events such as appear-
ance of a primary user or degradation of the QoS. Thus,
their proposed framework not only accounts for consider-
ation of primary users but also maintains the QoS deliv-
ered to the secondary users by making spectrum decision
according to the channel activities. The current paper
is therefore a logical continuance and extension of [16]
where we share a common architecture for tackling inter-
ference and optimizing the QoS. We extend the concept
by bringing cognitive radio techniques for QoS manage-
ment to the ISM band WLANs as well as incorporating
radio environment maps to the framework. To this end,
we have extended the framework by adding radio environ-
ment maps and a cognitive decision engine which utilizes
a physical throughput model to estimate and optimize the
throughput of the IEEE 802.11 network.

2.2 Setup architecture
The architecture of the cognitive framework is illustrated
in Figure 1.
The environment comprises a number of nodes that

belong to the network under test and a number of
unknown terminals that are referred to as interference
sources. The network under test will collect interfer-
ence information and reports them along with its own
state (all relevant parameters such as throughput) to the
database (DB) (see Figure 1). This information needs to
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Figure 1 Architecture of the framework.

be monitored and processed in order to make proper
decisions to optimize the QoS.

2.3 Construction of the radio environment map
REMs [4] in this framework (Figure 1) refer to real-time
spatial maps of the spectrum. These maps display vital
information on spectral utilization across the whole net-
work. As such, they facilitate environment monitoring by
presenting relevant parameters that will be elaborated in
Section 2.5. REMs can also be used by authorities to mon-
itor spectrum for either finding violations of regulations
or finding the so-called white spaces of the spectrum.
For instance, apart from the real-life implementation of
REMs in [6], the IEEE 802.22 standard [17] recommends
the authorities to prepare database services (similar to
REMs) to provide public access to query for available
TV channels. Indoor REMs give unprecedented insight
on spectrum utilization in buildings with highly dense
exploitation of wireless terminals.
Monitoring of spectrum in the wireless environment is

a crucial part of any cognitive radio solution.
There are various solutions that enable wireless envi-

ronment monitoring. Software-defined radios (SDRs) are
advanced devices that are highly utilized within the cog-
nitive radio networks for monitoring the intended bands
[18]. Packet sniffers are an alternative solution used for
monitoring the activity of a certain wireless technology
on a certain band. Combining several packet sniffers on
the different intended channels will bring the same func-
tionality of a single software-defined radio device. The
low cost and simplicity of implementation in case of the
Wi-Fi technology is our motivation to only consider Wi-
Fi packet sniffers as sources providing information of the
spectrum.
The availability of information sources is restricted to

a sparse set of (discrete) locations in the environment

which necessitates utilizing interpolation techniques to
estimate data values at arbitrary locations of the map. To
this end, the architecture of the REM is designed as illus-
trated in Figure 2. The interpolation engine will extract
raw data from the database in order to build an interpola-
tion model. To preserve generality, the design foresees the
feature for the user to select the appropriate interpolation
technique according to their hardware and other require-
ments. The other input argument of the interpolation
engine is the resolution of the interpolation that defines
the number of points that must be interpolated based on
the limited measured points. The interpolation method
that is used in this paper by the REM is inverse distance
weighting (IDW) [19]. This choice is motivated by the
simplicity of underlying principle and the speed in calcu-
lation. The REM is implemented in the WiCa Heuristic
Indoor Propagation Prediction tool [20].

2.4 The cognitive decision engine
The CDE in this framework (see Figure 1) refers to the
entity that reconfigures the network with informed deci-
sions that are based on its observation and cognition of
the REMs. The architecture of the CDE is illustrated in
Figure 3. The decisionmaker, in general, could be replaced
by a human network manager or an automatic cognitive
algorithm. The resource manager steers the network in
response to the following events:

• Connection request: when a new connection is
requested from the user.

• QoS degradation: when the clients of network under
test report degraded quality of service.

• Sensing event: when the network under test is not
active, this event keeps the decision maker informed
of the channel quality on different bands.

The decision maker in this paper depends on a physical
model that estimates the throughput based on interfer-
ence observation. The decision maker invokes the models
on the intended bands of operation and ranks the chan-
nels according to the estimations. The development of the
physical model is further explained in Section 4.

2.5 Parameters
The different parameters that affect the performance of
the wireless system can be classified as follows:

• Uncontrollable parameters: time-varying parameters
that can be measured or monitored in the network
but cannot be modified directly by the decision
engine. They are further subdivided into two classes:

– Target parameters (QoS/QoE): these are the
parameters that the decision engine aims to
optimize by taking corrective actions (e.g.,
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Figure 2 Interpolation architecture.

throughput, latency, jitter, packet loss, mean
opinion score (MOS)).

– Measurable parameters (meters): these are
the parameters that define the wireless
environment and ‘state’ of the wireless
system. These parameters are mostly
informative (e.g., received signal strength
indicator (RSSI) values, channel occupancy).

• Controllable parameters (knobs): configurable
parameters that can be tuned or controlled by the
cognitive decision engine (e.g., transmit power,
packet size, location of the wireless entity).

The optimization process uses the knobs to optimize
its target parameters given the input parameters (meters).
This classification is shown in Table 1. Interference is
the major issue that causes QoS degradation of wireless
networks. Therefore, it should be characterized spatially,
spectrally, and temporally in order to understand its influ-
ence on the QoS parameters. Table 1 also represents
parameters that characterize interference. Parameters fol-
lowed by a superscripted letter ‘a’ are those that are used
in this research for deriving a model that predicts the
throughput of a wireless network given the present inter-
ference characteristics.
Selection of the knobs in Table 1 is limited to the con-

trollable parameters of IEEE 802.11g interfaces in the test
environment which will be described in Section 3.1.1.

Quality Monitoring

Spectrum Sensing

Resource Manager

Decision
Maker

Network 
Controller

Event Detector

To the network

From REM

Connection 
request

Figure 3 The architecture of the cognitive decision engine.

Packet size is not considered since it is set primarily by the
application and consequently controlled by the IP layer in
a process called IP fragmentation to make sure it does not
exceed the maximum transmission unit (MTU) [21]. The
1470 UDP packet size is used to avoid fragmentation of
the packets.
Considering the audiovisual application of the network,

instead of a QoS parameter, one may target a quality of
experience (QoE) metric like mean opinion score (MOS)
for audio or video streams. The audio MOS depends on
QoS parameters, namely latency, jitter, and packet loss
[22]. Finally, all meters are useful parameters to be repre-
sented on radio environment maps.

3 Exploratory measurements
After describing the network configuration and the exper-
iment setup, we will explain the exploratory measure-
ment campaigns we performed for deriving the physical
model of the throughput. Each measurement campaign
aims at studying the influence of measurable interference
characteristics on the throughput of the network under
study.

3.1 Experiment description
3.1.1 Network configuration
All experiments are conducted in a pseudo-shielded
testbed environment [3] in Ghent, Belgium. The nodes
in the testbed are mounted in an open room (66 m
× 20.5 m) in a grid configuration with an x-separation
of 6 m and a y-separation of 3.6 m. Figure 4 shows
the ground plan of the test lab with an indication
of the location of the nodes. The 60 installed nodes
are represented by the blue locations on the picture.
Each node has two Wi-Fi interfaces (Sparklan WPEA-
110N/E/11n mini PCIe 2T2R chipset: AR9280). Further-
more, a ZigBee sensor node and a USB 2.0 Bluetooth
interface (Micro CI2v3.0 EDR) are incorporated into each
node.

3.1.2 Experiment setup
For each of the interference measurement campaigns, a
set of experiments is executed. Each experiment con-
sists of two phases: a first phase where the QoS of the
link under test is recorded without interference, and a
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Table 1 Optimization parameters

Knobs (controllable) Values Unit Meters (uncontrollable) Unit Target

Transmission Network under test QoS

Data generation rate [0-54] Mbps Latency ms Latency

Transmission rate [1,2,11,18,24,36,48,54] Mbps Jitter ms Jitter

Packet size 1,470 Bytes Throughput (T) Mbps Throughput

Frequency channel [1-13]a Packet loss % Packet loss

Power [0-20]a dBm Interference network QoE

Channel occupancy degreea % MOS

Location Interference TxRatea Mbps

(x, y) coordinate Meters Interference power levela dBm

Height Meters Interference channela

aThe parameters considered in the application of this paper.

second phase where interference is generated in the envi-
ronment. Phase 2 of each experiment proceeds as fol-
lows: a. Start the interference transmission, b. wait 1 s to
ensure interference is on the air, c. start the link-under-
test transmission for n seconds, d. wait n seconds, and
e. stop all data transmissions. The value of n specified
for each measurement is mentioned at the correspond-
ing measurement description. Data generation for the
interference link and the link under test has been facil-
itated by the iperf traffic generator tool [23]. Using a
client-server configuration, iperf outputs periodic reports
of the throughput. Reports are parsed and stored in
a database on the experiment controller server of the
testbed.
During each interference measurement, two connection

links are established, as displayed in Figure 4. The first
link, always operating on channel 6, is denoted as the
link under test (LUT). By default, this link is set at loca-
tion L1 (see Figure 4) unless otherwise mentioned. The
second link is the interfering link, between node 30 and
node 20 (see IL1 in Figure 4). The data generation rate of

the transmitters is defined as the User Datagram Proto-
col (UDP) bandwidth of the iperf application. All WLAN
radio interfaces are set to transmit at a certain bit rate
(TxRate), and iperf [23] was used as the traffic genera-
tor. The channel occupancy degree (COD) is here defined
as the ratio of the data generation rate and the TxRate.
There is a transmit buffer that is filled by data at a rate
equal to the data generation rate, while the interface trans-
mits through this buffer at a rate equal to the TxRate. The
data generation rate is always smaller than or equal to the
TxRate.

COD(%) = Data generation rate (Mbps)
TxRate (Mbps)

× 100 (1)

3.2 Measurement I: influence of the interference channel
overlap, power level, and TxRate on the throughput

The first measurement studies the influence of chan-
nel overlap of the interference link on the throughput

Figure 4W-iLab.t environment. Links L1,L2,IL1,IL2,IL3,IL4 are 9.37 meters; L3,L4 are 18 meters; and L6 is 24 meters.
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of the link under test. This measurement consists of
70 interference cases for every transmission rate of the
interference link, each characterized by the interference
channel (five channels) and by the generated interfer-
ence transmission power (14 levels) as observed at node
19 (see link L1 in Figure 4) caused by interfering node
30 (see IL1 in Figure 4). The channel of the interfering
link was varied from channel 6 (full overlap with link
under test) to channel 10 (smallest overlap with link
under test). For each channel overlap, 14 different inter-
ference power levels (dBm) were observed at node 19:
[-51,-52,-53,-54,-56,-57,-59,-60,-62,-63,-66,-70,-71, -72].
Translation of every specific transmission power of
interfering node 30 into interference power levels at
node 19 is done by averaging observations of the RSSI
levels of packets transmitted from node 30 on the sec-
ond Wi-Fi interface of the receiving node 19 which is
operating on the monitor mode. This measurement was
repeated for 2, 18, 36, and 54 Mbps interference trans-
mission rates (TxRateintf)to investigate if the TxRateintf
influences the throughput on non-overlapping chan-
nels. In all cases, the transmission rate of the LUT
is set to the maximum 802.11g rate of 54 Mbps and
the COD of the interference link is equal to 100%
(see Equation 1). The value of n (duration of the assess-
ment) was set to 150 s in this measurement. Note that
interference TxRate of 2 Mbps was not assessed on
interference channels of 6 and 7 since the heavy spec-
trum utilization at 2 Mbps objects data transmission
to an extent that iperf does not report any throughput
value.
Figure 5 shows the achieved average throughput as a

function of the received interference power level, for inter-
ference on different channels. A higher channel number
corresponds with less overlap, i.e., for increasing channel
separations, interference decreases. The interference level
on the x-axis of this figure is defined as the power received
from node 30 at node 19 (i.e., sender of IL1 to receiver of
L1, see Figure 4).
Measurement results in Figure 5 show that the CMSA-

CA mechanism of the IEEE 802.11g standard effectively
tackles homogeneous interference present on the same
channel. Despite the slight variations in the through-
put values in Figure 5a, the order of the achieved
throughput is preserved for increasing the interference
power sensed at the receiver. The variations are the
result of non-deterministic spectral competition between
the interfering link and the link under test which is
introduced by the random back-offs in the DCF algo-
rithm of IEEE 802.11 standards [24]. Figure 5a also
shows the dependency of the throughput to the inter-
ference TxRate. At lower TxRates, transmission of a
fixed length packet lasts longer, causing the spectrum
to be shared inefficiently between the interference link

and the LUT (also reported in [25]). This depen-
dency will be more elaborately studied and modeled in
Section 3.4.
When the interference channel starts separating from

the channel of LUT (Figure 5b channel 7 to Figure 5e
channel 10), the channel sensing would become less accu-
rate since only the common portion of the interference
channel and LUT channel is sensed by the transmitter of
LUT. Hence, the LUT transmitter is likely to sense a busy
channel as free which introduces collision and throughput
loss. This phenomenon becomes dominant as the chan-
nel separation is increased from 1 to 3 (interference on
channels 7 to 9, Figure 5b,c,d, respectively). In this case,
interference power level plays a key role due to the fact
that higher interference signal power increases the prob-
ability of collision. Moreover, at worst case interference
power level (-52 dBm), the throughput of LUT is higher
when the interference TxRate is higher. This is also due to
the more efficient spectrum sharing at higher interference
TxRates.
When interference operates on channel 7 (Figure 5b),

the LUT may recover if the interference power level
is above -55 dBm, where the excess interference signal
power compensates the missing portion of channel 7
that does not overlap with channel 6. This is apparent
in Figure 5a where, for instance, the average through-
put of the LUT in the presence of interference with
TxRate of 54 Mbps changes from 21 to 13 and 18
Mbps at interference power levels of -72,-60, and -52
dBm, respectively. The other observation is when the
interference is on channel 8 or 9 (Figure 5c,d), increas-
ing the interference power level will not recover the
throughput; in both cases, the throughput is dropped
more than 20 Mbps when the interference power level
is 20 dB increased for the interference TxRate of
2 Mbps.
In Figure 5e, the throughput is dropped by a factor of

10 Mbps only for the 2-Mbps interference TxRate and the
interference power levels above -60 dBm. This behavior
is due to the longer spectrum occupancy of low TxRate
packets that increases the probability of collision specially
at higher interference signal powers. Figure 5e reveals
that four-channel separation would avoid throughput loss
(caused by collision) only if the interference transmission
rate is high, i.e., the spectrum is utilized shorter for packet
transmission.
Therefore, channel overlap between the interference

source and the network under study is an important
parameter that affects the throughput of WLANs. The
results of these measurements suggest that in such con-
ditions, if the cognitive decision engine has to select an
overlapping channel, it should select the channel which
is at least four channels apart (also recommended by
the IEEE 802.11 standard [24]), and if two channels
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(a) (b)

(c) (d)

(e)
Figure 5 Average LUT throughput for interference with different channel overlaps. The LUT is on channel 6, interference on channel (a) 6.
(b) 7. (c) 8. (d) 9 (e) 10.
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happen to be chosen, the one with the lowest interference
power level and the highest interference TxRate should be
selected.

3.3 Measurement II: influence of the interference COD on
the throughput

The second measurement studies the influence of chan-
nel occupancy degree of the interference link on the
throughput of the link under test. This measurement
consists of 140 interference cases each characterized by
a varying COD (10 levels) and a varying generated inter-
ference level (14 levels) at node 19 (caused by interfering
node 30). The COD was varied from 10% to 100% in 10%
steps. For each channel occupancy degree, 14 different
interference power levels (dBm) were observed at node 19:
[-51,-52,-53,-54,-56,-57,-59,-60,-62,-63,-66,-70,-71, -72].
The data generation rate and transmit rate of the LUT
were both set to 54 Mbps (COD = 100%). The transmit
rate of the interfering link was set to 2 Mbps and was
operated on channel 6, the same channel as the LUT. The
value of n was set to 500 s.
Figure 6 shows the achieved average throughput (T)

in 500 s for interference with varying channel occu-
pancy degrees and with different interference power lev-
els. As apparent from the figure, power levels do not
play a key role in affecting the throughput. Analyzing the
measurement results of the channel occupancy experi-
ments implies an increasing nonlinear monotonic relation
between the channel occupancy degree for COD values

below 80%. This relation can be expressed by the model
below

T(CODIntf.) = ae−b.CODIntf.u(80 − CODIntf.)

+ a−b∗80u(CODIntf. − 80),
(2)

where a = 24.5, b = −0.023, and CODIntf. denote the
interference COD. This model has a R2 value of 0.97 and
a root mean square error (RMSE) value of 1.18 Mbps.
This fit has been calculated for throughput samples that
are averaged over all interference power levels for every
interference COD value. The statistics show an accept-
able agreement between the model and the measurements
which is also shown in Figure 7.
Channel occupancy degree indicates how the user is

occupying the channel in time. Therefore, this met-
ric can easily be calculated if the packet sniffer pro-
vides information on the transmission rate of the sniffed
packets.

3.4 Measurement III: influence of the interference TxRate
on the throughput

In the third interference measurement, the influence of
interference transmit rate on the throughput over the
link under test was assessed. This measurement con-
sists of 98 interference cases each characterized by a
varying interference transmit rate and a varying gen-
erated interference level (14 levels) at node 19 (caused
by interfering node 30). The interference transmit rate

Figure 6 Average LUT throughput under the absence of interference and for interference with different CODs.
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Figure 7 Sample points and fitted values for measurement II. Each point is an averaged value of the throughput measurement with a single
interference COD value and the various interference power levels of Figure 6.

was set to the values of [2,11,18,24,36,48,54] Mbps.
For each interference transmit rate, 14 different inter-
ference power levels (dBm) were observed at node 19:
[-51,-52,-53,-54,-56,-57,-59,-60,-62,-63,-66,-70,-71, -72].
The data generation rate and transmit rate of the LUT
were both set to 54 Mbps. The interfering link was

operating on channel 6, the same channel as the LUT.
The interference COD is always 100% in this measure-
ment. The value of n in this measurement is set to
10 s.
The measurement results in Figure 8 show a monotonic

relation between the throughput and the interference

Figure 8 Sample points and fitted values for measurement III. Each point is an averaged value of throughput measurement with a single
interference TxRate value and the various interference power levels described in the experiment.
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transmission rate. Equation 3 models the behavior by an
exponential polynomial:

T(TxRateIntf.) = ced.TxRateIntf. + feg.TxRateIntf. , (3)

where c = 9.001, d = 0.004, f = −9.344, g = −0.083, and
TxRateIntf. denote interference TxRate (see Figure 8). This
fit has an R2 value of 0.9952 and an RMSE value of 0.3544
Mbps which is highly accurate.

3.5 Measurement IV: joint assessment of the interference
TxRate and interference COD influence on the
throughput

In measurements II and III, we assessed the influence of
interference COD andTxRate on throughput by fixing one
and varying the other parameter. This was a useful simpli-
fication to understand how throughput changes with any
of those parameters. Since interference COD and interfer-
ence TxRate are not completely uncorrelated parameters,
deriving a decent two-dimensional model requires joint
assessment of the two parameters influence on through-
put. Here, link L3 serves as LUT and the same selection of
interference link as described in previous measurements
is used. We measure the average achievable throughput
in a 10-s interval with interference TxRates of [2, 11,
18, 24, 36, 48, 54] and interference COD values starting
from 0% to 100% in steps of 6.25% resulting in a total
of 105 measurement cases. All links are set to channel
6, and the transmit power of all terminals is set to 20
dBm. The TxRate of the LUT is set to 54 Mbps, and
its COD is set to 100% percent such that the maximum
achievable throughput is measured. The value of n is
again 10 s.
Sample points in Figure 9 show the results of the mea-

surement. Looking at the results of this measurement
unveils the dependency of the interference COD and
TxRate when predicting the throughput value. This is
further investigated in the next section.

4 Development of themodel
Data transmission rate of the Wi-Fi interface and the
user activity are the key parameters that determine the
spectrum utilization by any terminal. For a fixed amount
of data transmission, higher transmission rate (TxRate)
means less spectrum occupancy in time. Hence, an active
user with low transmission rate occupies the spectrum to
an extent that users of the other networks in the vicinity
experience a much lower than expected throughput.
The model predicts the achievable throughput (T)

based on the interference characteristics. The parame-
ters that characterize the interference are the following:
COD of the interference, interference TxRate, and inter-
ference frequency channel. All parameters are obtainable
using the monitor mode of IEEE 802.11 interfaces [24]

and packet tracing applications like libtrace [26] and tcp-
dump [27]. Extension to all Wi-Fi channels is feasible by
periodic monitoring of all channels or by exploiting more
WLAN interfaces at different locations of the network
each operating on a single channel.
Due to the dependency of the interference parameters,

deriving a decent two-dimensional model to predict the
throughput is crucial.
From the results of measurements II and III, we

know that there is an exponential behavior between the
throughput (T) and interference parameters COD and
TxRate when the interference is on the same channel as
the LUT. The investigation of the throughput behavior in
sample points of Figure 9 shows that depending on the
interference TxRate, the achieved throughput increases
exponentially below a certain interference COD thresh-
old. Therefore, by applying unit step function to the
exponential models and partitioning the parameters space
into linear and exponential regions, we come up with an
accurate model. This is evidenced by the results of our
suggested model in Equation 4 below:

T(CODIntf., TxRateIntf.)

= (a0e−b.CODIntf.)u(90 − CODIntf. − r.TxRateIntf.)

+
(
a0e−b(90−r.TxRateIntf.)

)
u(CODIntf.+r.TxRateIntf.−90),

(4)

where u(t) is the unit step function, TxRateIntf. denotes
interference TxRate, CODIntf. denotes interference COD,
and the coefficient parameters should be optimized for
the intended link and the intended channel. The nonlin-
ear least square optimization results for measurements
on link L3 assign an a0 value of 23.23, b = 0.02 and
r = 0.5. These values are obtained by exploiting all the
sample points of measurement IV. Figure 9 illustrates
this realization of the model for sample points of link
L3.The results of measurement IV show that the threshold
of the aforementioned throughput exponential behavior
decreases linearly from a COD of 90% for the TxRate of
2 Mbps up to the COD value of 60% for the TxRate of 54
Mbps. Inspired by this behavior, configuration of the step
function arguments are optimized by a script that auto-
matically investigates different combinations of the slope
(r) and the intercept from a limited interval so that the
least square error is achieved. The obtained R2 value is
0.9425 and the RMSE value is 1.34 which show the accu-
racy of the model when used for the same link it was
designed for. In the next section, we will show how the
model is used inside the CDE and present its validation
measurements.
The simplicity of this model enables the decision engine

to devise it with a small number of sample points.
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Figure 9 The 3D demonstration of the throughput model realized on link L3.

Figure 10 shows the RMSE and R2 of the model realized
with varying number of sample points. Every realization
is a set of measurements with all possible TxRateIntf. val-
ues and CODIntf. values uniformly distributed between 0%
and 100%. The R2 value is always more than 0.94 and the
RMSE is always less than 1.35Mbps. These statistics show
that the model can be devised with 42 samples.

5 Validation and integration of themodel to the
framework

In this section, we will show how the model developed
in Section 4 will be used as the kernel of the cognitive
decision engine. We will first explain how the input argu-
ments of the model are prepared by the REM and will
then describe how the CDE steers the network to the

Figure 10 Statistics of the model for realizations with varying number of sample points.
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optimal configuration set. We will also present the val-
idation measurements configuration and results in this
section.

5.1 Monitoring of wireless environment
The integration of this physical model into a CDE
requires measurement of its input arguments, CODIntf.,
and TxRateIntf.. There are two possibilities to perform
measurements over the whole Wi-Fi spectrum; either by
utilizing a number of additional Wi-Fi terminals on the
monitormode each operating on a differentWi-Fi channel
simultaneously or having the terminal sweep the chan-
nels periodically. In our implementation, we have used
dedicated Wi-Fi interfaces as monitoring agents for every
channel. The interfaces are brought up to the monitor
mode of the IEEE 802.11 standard [24] to accept all ongo-
ing detectable packets. A packet sniffer application [26] is
then executed to capture all packets. The radio tap header
[24] of every received packet provides crucial physical and
link layer parameters such as the RSSI, packet length, and
transmission rate of the packet. We propose to calculate
the input arguments of the model of equation 4 by first
calculating the equivalent interference transmission rate:

TxRateeq.(Mbps) =
∑
i∈N

Ri
Li
LT

, (5)

where N is the total number of packets sniffed, Ri is the
transmission rate of the sniffed packet, Li is the length of
the sniffed packet, and LT is the total length of all sniffed
packets in the current block of sniffed packets. Hav-
ing the TxRateeq. calculated, we will find the equivalent
interference COD by

CODeq.(%) =
LT (Mb)

sniff interval (s)
TxRateeq.(Mbps)

× 100 (6)

Using these relations, we can characterize the interfer-
ence originating from several sources and give final values
to the CDE for decision making. We should note that
the COD estimations are accurate only if the sniffer cap-
tures the whole presentWi-Fi traffic without dropping any
packets which is the case in our measurements. For cop-
ing with high data rates, we ensured zero packet drop by
optimizing the script that was handling the tcpdump. This
is realized by enlarging the tcpdump input buffer and ded-
icating more computational power to the corresponding
process.

5.2 Decision making
Whenever a decision is requested from the CDE, it queries
the REM for values of CODIntf. and TxRateIntf. for each
channel. Once the inputs are ready, the CDE invokes the
model on the channels with available inputs. The result

is a vector of throughput estimations for every chan-
nel. Choosing the channel with the highest throughput
value ignores the interference of overlapping channels.
Therefore, if interference channels overlap with the mon-
itored channels, the CDE should follow a rule-of-thumb
approach where it takes into account both estimated
throughput and the least interference influence from
neighboring channels. The influence of interference from
neighboring channels can be formulated by the results of
measurement I, i.e., the CDE selects the channel with the
least interference power level and the highest interference
TxRate.

5.3 Model validation measurements
The objective of these measurements is to verify the
two-dimensional model of Equation 4 for different sender-
receiver distances, different link locations, different inter-
ference power levels, and different number of interference
links. To this end, different combinations of LUT ter-
minals with various distances of sender-receiver were
used in combination with various number of interfer-
ence links. The links used as LUT are illustrated in
Figure 4: links L2 and L4 are replications of L1 and
L3, respectively, at other locations. L5 and L6 are other
links used as LUT in these measurements. There are also
three interference links IL1, Il2, and IL3 evenly spaced
among the testbed (see Figure 4). When there is more
than one interference link present, the sniffer derives the
TxRateIntf.,eq. and CODIntf.,eq. by using Equations 5 and 6,
respectively.
For each location of the LUT, we investigate three

cases for validating the model by utilizing one, two, and
three interference sources simultaneously operating on
the same channel of LUT. Each case is repeated with
an interference transmission power of [0,10,14,20] dBm
where we measure the average achievable throughput in
a 10-s interval with interference TxRates of [2, 11, 18, 24,
36, 48, 54] and interference COD values starting from 0%
to 100% in steps of 6.25%. All links are set to channel 6 and
the transmit power of all terminals is set to 20 dBm. The
TxRate of the LUT is set to 54 Mbps and its COD is set
to 100% such that the maximum achievable throughput is
measured.

5.4 Validation results
The model obtained by using measurements at link L3
is assessed with measurements on links L1, L2, L4, L5,
and L6.

• The results of measurements with a single
interference link are listed in Table 2.

• The results of measurements with more than one
interference link are listed in Table 3.
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Table 2 Statistics of the verifyingmeasurements with one
interference link

LUT Interference link R2 RMSE Maximum deviation
(Mbps) (Mbps)

L1 IL1 0.90 1.59 2.66

L2 IL1 0.90 1.59 2.57

L3 IL1 0.94 1.34 2.93

L4 IL1 0.89 1.65 3.31

L5 IL1 0.90 1.59 2.66

L5 IL2 0.90 1.59 2.57

L5 IL3 0.94 1.34 2.93

The maximum deviation values of 2.9 Mbps for sin-
gle interference link (Table 2) and 4.3 Mbps for multiple
interference link (Table 3) might seem not ideal but hav-
ing all R2 values above 0.83 and the RMSEs not exceeding
1.9 Mbps. The CDE would safely use this model for com-
paring the performance of the link on different channels.
One should be cautious that the objective of the CDE is
to optimize the throughput rather than accurately esti-
mating it. Hence, the model optimized for a single link
location can serve to predict the throughput at other links.
This measurement setup was limited to the line-of-sight
node locations and open environment propagation char-
acteristics of the testbed. The tolerance of the model to
location variability of the interference within the line-of-
sight environment is a good incentive to use it for similar
environments like home and conference halls where the
dominant propagation channel is line-of-sight. However,
measurements to support this extension is the subject for
future research. One the other hand, for environments
with more diverse propagation characteristics and larger
sender-receiver distances, the same methodology could
be used to derive appropriate models for each type of
environment.

6 Proof of concept
We investigate two scenarios in this proof of concept to
show the relevance of integrating the physical through-
put model into the CDE and also the efficiency of using
the proposed framework to tackle interference and bring

Table 3 Statistics of the verifyingmeasurements with
more than one interference link

LUT Interference link R2 RMSE Maximum deviation
(Mbps) (Mbps)

L5 IL1,IL2 0.89 1.46 2.61

L6 IL1,IL2 0.83 1.83 4.3

L5 IL1,IL2,IL3 0.83 1.62 + 2.9

L6 IL1,IL2,IL3 0.84 1.83 2.7

added value to the wireless network. In the first sce-
nario, the CDE is used in a simplistic interference con-
dition where interference characteristics are static, i.e.,
the CODIntf.,eq. and TxRateIntf.,eq. are stationary on every
channel. In the second scenario, the interference charac-
teristics on all channels are varied over time.

6.1 Static interference
As a static interference proof of concept, we will investi-
gate the scenario consisting of three interference sources
operating simultaneously on non-overlappingWi-Fi chan-
nels 1, 6, and 11 each with a different COD and TxRate.
Table 4 shows the interference profile of each source. For
simplicity, in this proof of concept the CDE only seeks 2.4-
GHz non-overlapping channels. The LUT is located on
L3 (see Figure 4). The second Wi-Fi interface of the LUT
transmitter scans the non-overlapping channels sequen-
tially and quantifies the COD and TxRate of the interfer-
ence on each channel. The CDE has to find the channel
with the highest throughput estimation (Test.) based on
the proposed model. We also measured average through-
put of LUT (Tactual) for each of the channels. The results
are all listed in Table 4.
The LUT was initially operating on channel 1. The

results show that if there was no CDE, the LUT had to
survive with a throughput of 2.45 Mbps. This scenario
shows that the CDE can steer the network to a better sta-
tus by estimating the throughput on other channels. As
such, by changing towards the channel proposed by the
CDE (channel 11) the LUT can achieve a throughput of
10.9 Mbps which shows a 344% improvement. The results
of this proof of concept also show the accuracy of the
proposed model in estimating the throughput.

6.2 Time variant interference
In this section, we investigate a scenario with time variant
interference profiles. The interference is varied over time
by periodically changing the interference profile of each
channel. At the beginning of each interval, the interfer-
ence profile is varied by changing the number of interfer-
ence links and their corresponding COD and TxRate on
each channel and it is fixed until the end of the interval.
We assume that only IEEE 802.11g channels 1 and 6 are
available. The duration of the interval should be selected

Table 4 Characteristics of the interference sources and the
estimated and actual achieved throughputs (Test. and
Tactual, respectively)

Channel COD (%) TxRate (Mbps) Test. (Mbps) Tactual (Mbps)

1 75 2 2.68 2.45

6 55 18 4.73 4.98

11 25 48 11.27 10.9
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such that the sniffer would be capable of characterizing
the interference on all the intended channels.
The duration of each interval in this scenario is set to 60

s firstly to ensure proper interference characterization and
secondly to balance the interference dynamism. At the end
of each interval, the CDE uses the collected information to
steer the channel of LUT in order to optimize its through-
put. The transition time depends majorly on the duration
of the sniffing process. Lower sniffer intervals maintain
smoother operation of the CDE. However, they are likely
to lose interference profile changes if they are placed on
the edge of profile change. We have used the CDE with
two sniffer durations of 5 and 10 s. Table 5 shows the inter-
ference profile of each interval on each of the channels. In
the first three intervals (0 to 180 s), there is a single inter-
ference link on any of the channels. During the intervals
from 181 to 300 s, on one of the channels, there is inter-
ference from two links. In the last interval (301 to 360 s),
channel 1 has interference from three interfering links and
channel 6 has a single interfering link. For intervals in
Table 5 where there is more than one interference link, the
equivalent interference configuration is listed before indi-
vidual link configurations in brackets. The LUT is located
on L5 (see Figure 4). The second Wi-Fi interface of the
LUT transmitter scans the channels 1 and 6 sequentially.
The CDE has to find the channel with the highest through-
put estimation (Test.) based on the proposed model. We
also measured average throughput of LUT (Tactual) in a
separate measurement with the same interference profiles
but without using the CDE to switch the channel of the
LUT.
The results of the throughput measurements as well as

the throughput estimations of the model are presented in
Figure 11 for sniff interval of 5 s (Figure 11a) and 10 s
(Figure 11b). This scenario shows that the CDE can steer
the network to a better status by estimating the through-
put on other channels. Depending on the sniffer interval,
theremight be transitional spikes in the CDE performance
which could be solved by decreasing the sniffing period.
As such, by changing towards the channel proposed by
the CDE, the LUT can achieve an average throughput gain

of 183% and 70% compared to the case where it was con-
stantly on channels 1 and 6, respectively. Figure 11 also
shows that the throughput estimations follow the actual
achieved throughput values on any of the channels despite
the slight variations from the achieved throughput levels
in intervals 120 to 180 and 240 to 300 which are neverthe-
less below the maximum deviation values obtained in the
validation measurements in Section 5.4.

6.3 Discussion on the limitations
Firstly, the model is developed in a pseudo-shielded all
line-of-sight single-hop environment where the measure-
ments were performed. The hidden node problem is not
taken into consideration since it is not an issue in this
environment. More precisely, the model does not con-
sider interference of nodes that are not in the radio range
of the sniffers. The sniffers are assumed to capture all
present traffic without dropping any packets. If for any
reason (other ISM band interference such as Bluetooth,
microwave ovens, and ZigBee) the interference is not per-
ceived by the sniffers, the event detector of the CDE (see
Figure 3) assists by detecting the unpredicted throughput
degradation in the network.
Secondly, the physical model is developed for UDP traf-

fic since its objective was to find the maximum capacity
of the channel given a certain interference profile. If the
application requires a reliable end-to-end connection, the
same methodology we have incorporated in this paper
shall be used to create a model which accounts for TCP
traffic.
Thirdly, deploying both the CDE and the REM imposes

data and processing overhead on the network. Spectrum
monitoring data overhead could be formulated in two
cases depending on the mobility of spectrum sensing
devices. For a distributed spectrum sensing which col-
lects information from fixed and mobile terminals, the
data overhead to update the REM would scale with the
number of mobile terminals and update the frequency of
the REM. Excluding mobile devices from spectrum mon-
itoring and only depending on the fixed Wi-Fi sniffers do
not introduce any data overhead to the wireless network.

Table 5 Characteristics of the interference sources during each interval

Channel 1 Channel 6

Interval Interference links CODeq. TxRateeq. Interference links CODeq. TxRateeq.

0 to 60 IL1 10 11 IL2 35 36

61 to 120 IL3 60 48 IL1 10 18

121 to 180 IL2 35 11 IL3 10 54

181 to 240 [IL1, IL2] 20 [10, 10] 36 [36] IL3 40 54

241 to 300 IL3 60 54 [IL1, IL2] 40 [20, 20] 18 [18, 18]

301 to 360 [IL1, IL2, IL3] 45 [15, 15, 15] 54 [54, 54, 54] IL4 35 18
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(a)

10s sniff interval

(b)
Figure 11 Comparison of throughput on channels 1 and 6 with and without using the CDE.With sniff intervals of (a) 5 s and (b) 10 s.

Event detection also imposes data overhead to the wire-
less network which would be negligible short-length data
packets in the order of a few bytes for each event.

7 Application outlook of the framework
The goal of this section is to showcase the usefulness of
the REMs and the proposed methodology in this cog-
nitive framework when it is used for optimizing either

throughput or audio quality in a multicast scenario. Here,
the network under test (NUT) comprises a number of
clients that are spread evenly among the w-iLab.t testbed.
Depending on the target QoSmetric (throughput or audio
quality), the clients will listen to the audio stream or
iperf multicast stream that is generated by the stream
server that is at the same time the access point of the
NUT. Interference networks are fixed in location although
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the interference profile, i.e., traffic characteristic of the
interference, is adjustable.
When the user initiates the scenario, the audio/iperf

stream server starts to transmit multicast audio/iperf traf-
fic with an initial set of traffic configurations. If the
target QoS metric is audio quality, at the same time, all
clients will translate their received network characteristics
(throughput, delay, and jitter) into audio MOS scores (in a
scale of 1 to 5, where 1 corresponds to the poorest qual-
ity and 5 to the highest) and store the result in the DB.
The MOS value is calculated by the E Model proposed by
the ITU G.107 recommendation [22]. The REM will then
illustrate the interpolated map of the MOS/throughput
and other relevant parameters and feeds the necessary
arguments to the CDE.
Due to the fundamental throughput-delay trade off [28],

selecting the channel with the highest throughput estima-
tion does not necessarily guarantee the lowest delay or
jitter. Consequently, for audio quality target metric, the
CDE should therefore use a different model that estimates
the MOS value based on the estimated throughput and
reported delay and jitter from the REM on each chan-
nel. In this way, the CDE estimates the MOS values on
each channel and determines corrective actions that must
be implemented on the NUT for the next round of audio
streaming. Figure 12 is an example of REMs for RSSI
and MOS values. Each map illustrates its corresponding
parameter alongside the location of the network elements.
Clients that are closer to the sender indicate higher RSSI
values and consequently bring about higher MOS values
to their users.
When the corrective actions have been implemented

and the MOS/throughput have been illustrated by the

REM, we need to assess the efficiency of corrective
actions, i.e., how much the network is performing better
in terms of the intended metric (MOS/throughput). To
address this, we define the objective of the scenario in the
next paragraph.
The optimal configuration set of the network (node

locations and all the parameters mentioned earlier) is
achieved when ∀i ∈ NUT(QoSi ≥ QoS0). In this formula,
QoSi refers to the QoS value of the ith client of NUT and
QoS0 is a certain threshold. This scenario will follow the
following steps in order to showcase the advantages of the
REM and the CDEs.

1. All clients are set to the default (initial) configuration
set.

2. While there is no interference in the environment,
the NUT starts the first round of audio/iperf stream
and all the clients record their MOS/throughput.

3. Based on the results of the previous round, the REM
represents the QoS values and the CDE will optimize
the configuration set by means of the corrective
actions.

4. The interference network is set to its default profile.
The interference stream starts here.

5. While there is interference on the air, the NUT starts
another round of audio/iperf streaming. As before, all
clients keep track of the QoS values.

6. At this step, the REM and/or the CDE should
quantify the added value of the corrective actions in
terms of �MOS, throughput, energy, etc.

7. If the objective is achieved, the iteration will stop;
otherwise, CDE implements corrective actions to the
NUT and the iteration starts again from 4.

(a)

(b)
Figure 12 IDW interpolated REMs of MOS and RSSI values on the w-iLab.t testbed. (a) REM of MOS values. (b) REM of RSSI values.
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This is a very simple example of how the models can be
used. Future research will comprise the development of
physical models for audio/video QoS metrics and a CDE
based on the corresponding models.

8 Conclusion and future work
A novel framework for cognitive wireless networking is
proposed in this paper. The framework comprises differ-
ent elements. REMs and the cognitive decision engine
are the most integral parts of the framework to char-
acterize the radio environment and make appropriate
decisions reactively to the environment dynamism. Based
upon numerous exploratorymeasurements, a novel physi-
cal throughput model accounting for interference channel
occupancy degree and interference transmission rate was
devised and verified in a pseudo-shielded testlab environ-
ment. The model was implemented within the CDE. The
framework was applied to realistic stationary and time-
variant interference scenarios where an average through-
put gain of 344% was gained in the stationary interference
scenario and 70% to 183% was gained in the time-variant
interference scenario.
Future research on this framework includes compari-

son of the performance of the CDE based on the pro-
posed model with smarter higher level algorithms and
the integration of this type of physical modeling with
other decision algorithms to achieve more efficient algo-
rithms. The physical model was developed in a pseudo-
shielded line-of-sight environment; therefore, on the one
hand, extension to other line-of-sight environments like
home or conference halls should be investigated, and on
the other hand, incorporating the same methodology to
develop similar models for other types of environments
would be the topic of further research.
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