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Abstract

region and the outer bound is at most 0.5 bits.

A Gaussian cognitive interference channel with state (G-CICS) is studied. In this paper, we focus on the two-sender,
two-receiver case and consider the communication situation in which two senders transmit a common message to
two receivers. Transmitter 1 knows only message W, and transmitter 2, referred to as the cognitive user, knows both
messages Wy and W, and also the channel's states sequence non-causally. Receiver 1 needs to decode only Wi while
receiver 2 needs to decode both messages. In this paper, we investigate the weak and moderate interference case
where we assume that the channel gain a satisfies |a] < 1.In addition, inner and outer bounds on the capacity region
are derived in the regime of high state power, i.e, the channel state sequence has unbounded variance. First, we
show that the achievable rate by Gelfand-Pinsker coding vanishes in the high state power regime under a condition
over the channel gain. In contrast, we propose a transmission scheme (based on lattice codes) that can achieve
positive rates, independent of the interference. Our transmission scheme can achieve the capacity region in a high
signal-to-noise ratio (SNR) regime. Also, regardless of all channel parameters, the gap between the achievable rate

1 Introduction
In the exchange of information among many nodes, the
interference between different transmitter and receiver
pairs is unavoidable. In the classical interference channel
(IC), this interference exists between two different trans-
mitters and receivers. In [1], Carleial, using superposition
coding, obtains general bounds on the capacity region of
discrete memoryless interference channels. By using rate
splitting at transmitters and sequential decoding at desti-
nations, Han and Kobayashi establish the best achievable
rate region known to date [2]. Unfortunately, the prob-
lem of characterizing the capacity region of a general IC
has been open for more than 30 years. Except for very
strong Gaussian IC, strong Gaussian IC, the sum capacity
of the degraded Gaussian IC and very weak interference,
characterizing the capacity region of a Gaussian IC is
still an open problem [3-6]. Etkin et al., by deriving new
outer bounds, show that an explicit Han-Kobayashi ver-
sion scheme can achieve capacity region within 1 bit for
all channel parameters [7].

The cognitive interference channel, where one user has
full non-causal knowledge of the other user’s message,
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is studied in [8-10]. This setup is also referred to as the
interference channels with degraded message sets.

Recently, interference channels with state have received
considerable attention. In general, channels with ran-
dom states can model a time-varying wireless channel as
well as interfering signals. The two-user state-dependent
Gaussian interference channel where the state informa-
tion is non-causally known at both encoders is studied
in [11]. By proposing an active interference-cancellation
mechanism, which is a generalized dirty-paper coding
(DPC) [12] technique, some achievable rate regions for
this channel are obtained. A Gaussian IC with the same
state at both links which is scaled differently at two
receivers is studied in [13]. For the very strong interfer-
ence regime, as well as for the weak regime, the sum
capacity is obtained under certain conditions on chan-
nel parameters [13]. In [14], a state-dependent Gaussian
Z-interference channel model in the regime of high
state power is investigated. By utilizing a layered coding
scheme, inner and outer bounds on the capacity region are
derived.

In [15], a model of cognitive state-dependent interfer-
ence channels is studied, in which one of the transmitters
knows both messages and also the states of the channel in
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a non-causal manner while the other transmitter knows
only one of the messages and does not know the chan-
nel states. Each of the two decoders try to decode only
its intended message. By using a generalized binning prin-
ciple, inner and outer bounds on the capacity region are
established.

In this paper, we study the Gaussian cognitive interfer-
ence channel with a state (G-CICS) with two transmitters
and two receivers (see Figure 1). In this model, transmitter
1 knows only message 1 while transmitter 2 (the cogni-
tive transmitter) knows both messages 1 and 2. The state
sequence is known only at transmitter 2, and transmitter
1 does not know the state channel. The common mes-
sage known to both transmitters, i.e., message 1, needs
to be decoded at both receivers instead of at receiver 1
only. This model is investigated in [16], in which by using
superposition coding, rate splitting, and Gelfand-Pinsker
binning scheme, inner bounds are established. It is shown
that the inner bounds are coincided with the outer bounds
for a degraded semi-deterministic channel and channels
that satisfy a less noisy condition. The Gaussian channels
are also studied where inner and outer bounds are derived.

The main result of this paper is designing a novel trans-
mission scheme for the Gaussian interference channel
with state where we aim to recover a common mes-
sage at two decoders. To reach this goal, we treat this
channel as two state-dependent Gaussian multiple-access
channels (MACs) and try to simultaneously recover the
common message at both decoders. Prior to this work,
different types of the state-dependent two-user MAC are
investigated in the literature (See e.g., [17-24]). In [17], a
two-user state-dependent multi-access channel in which
the state is known only at the encoder (that sends both
messages) is investigated. By generalizing the Gelfand-
Pinsker model, the capacity region for both non-causal
and causal state information is characterized. If the state
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information is non-causally known only at the encoder
that sends the common message, then the capacity region
for the Gaussian scenario in some cases is character-
ized in [18]. In [19-21], the state-dependent two-user
multi-access channel in which the states of the chan-
nel are known non-causally at one of the encoders and
only strictly causally at the other encoder is consid-
ered. By generalizing the framework of [21], the capacity
region of this model is fully characterized in [19], and
the optimal schemes for achieving the capacity region
are also studied. In [22-24], the two-user multiple-access
channel with state is considered in which the states are
known causally or strictly causally at both encoders or
only at one encoder. For the causal state, it is shown
that the capacity region is fully achievable. If the state is
known strictly causally at both the encoders or only at
one encoder, then the capacity region at some cases is
characterized.

The capacity region of relay channel with state is inves-
tigated in [25-32]. The relay channel and the cooperative
relay broadcast channel controlled by random parame-
ters are studied in [25]. It is shown that when the state is
non-causally known to the transmitter and intermediate
nodes, the decode-and-forward can achieve the capacity
region under some cases. The relay channel with the state
known non-causally at the relay is investigated in [26]
and [27]. Using Gelfand-Pinsker coding, rate splitting, and
decode-and-forward, a lower bound on channel capac-
ity is obtained for this channel, and it is shown that for
the degraded Gaussian channels, the lower bound meets
the upper bound and thus the capacity region is achiev-
able. The relay channel when the state is available only at
the source is studied in [28-30]. By obtaining lower and
upper bounds, it is shown that in a number of special cases
the capacity region is achievable. A partially cooperative
relay broadcast channel (PC-RBC) with state is studied
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Figure 1 System model. Gaussian cognitive interference channel with state (G-CICS).
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in [31] where two situations including the availability of
the state non-causally at both the source and the relay
and only at the source are analyzed. The relay interference
channel with a cognitive source where only the source
knows (non-causally) the interference from the interferer
is considered in [32], and some achievable rate regions are
obtained.

All achievable rate regions in [16] are based on ran-
dom coding. In this paper, we use the lattice-based coding
scheme (especially lattice alignment) to establish capac-
ity regions for this channel. A comprehensive study on
the performance of lattices is presented in [33]. Perfor-
mance of lattice codes over the additive white Gaussian
noise (AWGN) channel is studied in [34]. A dirty paper
AWGN channel in which the interference is known non-
causally or causally at the transmitter is investigated in
[35]. In [36], it is shown that the lattice coding strat-
egy may outperform the DPC in a doubly dirty MAC.
In [37], we also show that if the noise’s variance satisfies
some constraints, then the capacity region of an addi-
tive state-dependent Gaussian interference channel with
two independent channel states is achieved when the state
power goes to infinity. In [38], a Gaussian relay channel
with a state is considered in which the additive state is
either added at the destination and known non-causally at
the source or experienced at the relay and known at the
destination. It is shown that a scheme based on nested lat-
tice codes can achieve the capacity region within 0.5 bits.
In [39], by using nested lattice codes, the generalized
degrees of freedom for the two-user cognitive interference
channel are characterized where one of the transmitters
has knowledge of a linear combination of the two informa-
tion messages. Using lattice codes for the state-dependent
Gaussian Z-interference channel, some rate regions are
established in [40].

Here, we evaluate the performance of lattice-based cod-
ing schemes on obtaining achievable rate regions for the
G-CICS. Similar to [14,36], we assume that the chan-
nel state has unbounded variance. This is referred to
as a high state power regime. In addition, we consider
the weak and moderate interference cases, i.e., the chan-
nel gain is smaller than one; |a| < 1. First, we show
that the achievable rate region by random coding van-
ishes in a high state power regime under a condition
over the channel gain. Then, by using a lattice-based
coding scheme, we obtain an achievable rate region for
the G-CICS. As Figure 1 shows, we can see that the
G-CICS can be treated as two state-dependent MACs
with a common message: one from encoders 1 and 2
to decoder 1, and the other from encoders 1 and 2 to
decoder 2. For both these MACs, the capacity region is
completely characterized in [19]. However in the G-CICS,
we need to decode the common message simultaneously
at both decoders. Since these two MACs are different,
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we cannot apply the proposed scheme in [19] for this
channel.

The main challenge of this paper is designing a scheme
that can achieve a rate region close to the outer bound for
the state-dependent Gaussian interference channel with a
common message (set W = 0 in Figure 1). Although this
channel can be treated as two state-dependent MACs with
a common message, these two MACs are different, and
since the common message should be recovered simul-
taneously at both decoders, the known schemes in the
literature cannot be directly applied. To solve this prob-
lem, we use lattice codes and obtain a linear combination
of the common message, sent by two transmitters, at the
decoders. Note that lattice codes are among the best codes
in finding the linear combination of messages [41]. As
we will show, at high signal-to-noise ratios (SNRs), the
achievable rate region meets the outer bound, and regard-
less all channel parameters, the achievable rate region is
within 0.5 bits.

The paper is organized as follows: We present the chan-
nel model in Section 2. The achievable rate region by
random coding is presented at Section 3. Section 4, by
using lattice codes, establishes an achievable rate region
for the G-CICS. Using numerical examples, achievable
rate regions of our proposed scheme and random cod-
ing are compared in Section 5. Section 6 concludes the

paper.

2 System model

Throughout the paper, random variables and their realiza-
tions are denoted by capital and small letters, respectively.
x stands for a vector of length n, (x1,x9, . ..,x;). Also, ||.||
denotes the Euclidean norm, and all logarithms are with
respect to base 2.

In this paper, we consider a G-CICS in which two trans-
mitters send a common message W to two receivers,
and transmitter 2 wishes to communicate a message
W5 to receiver 2 only. The channel is also corrupted
by an independent and identically distributed (i.i.d.)
state sequence. We investigate the asymmetric cogni-
tive scenario, as [15,16], where the state is non-causally
known at transmitter 2 and is unknown at transmitter
1 and at the receivers. The system model is depicted
in Figure 1. The interference channel is described by
(Xl, Xz, S, yl, yg,P(yl,y2|x1,x2,s)), where Xl and Xz are
the two input alphabets, S is the state alphabet, and )
and )} are the output alphabets associated with the two
receivers. In the Gaussian case, the alphabets of inputs,
outputs, and the state are real. Messages at the encoders,
W1 and W5, are independent random variables and uni-
formly distributed on the sets {1, 2,..., 2"R"} fori =1,2,
respectively, where # represents the block length and R;
the transmission rate. Encoder 2, (i.e., the cognitive user)
in addition to W5, also knows W1, thus allowing for full
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unidirectional cooperation. Both encoders wish to send
a message W to both the decoders over n channel uses
while encoder 2 also wants to communicate a message W
to decoder 2. The channel outputs at receivers 1 and 2 at
time instant j are given, respectively, by

Y = X1 +aXo; +aSj+ 7y,
Yy; = aXyj+ Xoj + Sj+ 2y,

where Z1; ~ N (O,N) and Zp; ~ N (0,N) are inde-
pendent Gaussian random variables, and the normally
distributed state variable S; ~ N (0, Q) is independent of
Zyj and Z; . Both the noise variables and the state vari-
able are i.i.d. over channel uses. The state sequence { S; };::1
is non-causally known only at transmitter 2. In this paper,
similar to [42,43], we assume that the channel gains are
rational, 2 = £ € Q. The channel inputs X;’s (i € {1,2})
are average-power limited to P > 0, i.e.,

1
—E[IXi*] <P, fori=1,2. 1)
n

A (2"R1,2”R2,n) code consists of message sets W, =
{1,2, . ..,Z"Rl} and W, = {1,2, ... ,2”R2}, two encoding
functions

AW = &, o Wi xWh xS — &Y,
and two decoding functions

glzy{‘—>W1, gz:y;—>W1 XW2

such that the transmitted codeword X; satisfies the power
constraint, given by (1). We define the probability of
error as

2nR1 2WR2

1
P = Sy 2 2

w1=lwy=1

x o {2,023 # (@1 o1,00)]

A rate pair (R, Ry) of non-negative real values is achiev-
able if there exists a sequence of (Z”Rl, 2R, n) code such

that lim,,_, oo P'” — 0. The capacity region is defined as
the convex closure of the set of all achievable rate pairs
(R, Ry).

3 Achievable rate region by random coding

In this Section, we evaluate achievable rate regions by
random coding for the G-CICS in the regime of high
state power. In [16], by using random coding, two inner
bounds for the G-CICS are provided when || < 1. By
evaluating the inner bound 1 of Proposition 3 in [16]
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(and replacing S — aS, b — a, ¢ —> %), we can see that

this inner bound when the channel gain tends to zero
vanishes, and thus, we cannot achieve any positive rate
region by such scheme. The following theorem presents
the second inner bound. To achieve this region, the
Gelfand-Pinsker coding and rate splitting in transmitter 2
is used.

Lemma 1. [16] For the Gaussian cognitive interference
channel with state non-causally known at transmitter 2,
if la| < 1, then an inner bound on the capacity region in
the high state power regime consists of rate pairs (R1, Ra)

satisfying

Ry

IA

1 a’pP’
Z1lo )
2 8 (@ — 1?2 a?P + o2a?P” + a2N

11 1+P//
2 %8 N/’

1 P
Ri+Ry < zlog(1+(1—/>%1—/)%s) )’

R;

IA

N
where
E [X2X1] E [X2S]
P = T/ P2 = T/
E[X3]|E[X}] E[X3]E ]
P +P = (1-p3 —p3) P,
P31+ pas < 1,
— P/
P +P 4N’
Proof. See Proposition 4 in [16]. O

Now from Lemma 1, we can see that if
’ " ot2
(¢* =2a) P +a’P + —N >0, ()
a

then the achievable rate of such random coding argu-
ment vanishes. Thus, under this condition, such random
coding scheme fails to achieve any positive rate for the
G-CICS in the high state power regime. In Figure 2, we set
P = 5dB and a = 0.15 (Figure 2a) and P = 10 dB and
a = 0.1 (Figure 2b), and then, by considering the left-hand
side (LHS) of the condition in (2), we plot the range of
parameter P, under which we cannot achieve any positive
rate by using random coding. Note that, in order to plot
this figure, we consider a fixed channel gain and a fixed
channel power constraint. Since the achievable rate region
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Figure 2 LHS of (2) versus the parameter P’ under which the
achievable rate region by random coding is zero. (a) System
parameters are P = 5 dB and g = 0.15. (b) System parameters are
P=10dBanda =0.1.

depends on P and P' where P + P’ = (1 — ,0221 — ,0223) P,
we must vary P overinterval 0 < P < (1- p221 — p%s) P,
and then, by equating P = (1 — ,o%l — p%s) P—P,wecan
plot the left-hand side of the condition in (2).

4 Lattice alignment

4.1 Lattice definitions

Here, we provide some necessary definitions on lattices
and nested lattice codes. The reader can find more details
in [34,41,44].

Definition 1. (Lattice): An n-dimensional lattice A is a
set of points in Euclidean space R” such that, if x,y € A,
thenx +y € A,and if x € A, then —x € A. A lattice
A can always be written in terms of a generator matrix
G e Z"™"as

A={x=2G:zeZ"},
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where Z represents integers.

Definition 2. (Quantizer): The nearest neighbor quan-
tizer Q(.) associated with the lattice A is

Oax) = argmin |x — | .
leA

Definition 3. (Voronoi region): The fundamental
Voronoi region of a lattice A is a set of points in R” closest
to the zero codeword, i.e.,

Vo(A) = {x € R” : Q(x) = 0}.

Definition 4. (Moments): 0% (A) which is called the
second moment of lattice A is given by

1 [y Iol* dx

a2(A) =
n fV(A) dx

, @)

and the normalized second moment of lattice A is
o2(A) o2(A)
2 = V2
[f V(A) dx]

where V = fv( A) dx is the Voronoi region volume, i.e.,
V = Vol(V).

G(A) =

Definition 5. (Modulus): The modulo- A operation with
respect to lattice A is defined as

axmod A =x — Q(x)

that maps x into a point in the fundamental Voronoi
region.

For all x,y € R” and A < Aj, the modulo lattice
operation satisfies the following properties

[x mod A + y] mod A = [x + y] mod A, (4)
[ax] mod A = [a[x] mod A] mod A, (5)
ael’

Bx] mod A = [Bx] mod BA, B €R”, (6)
[QA1 (x)] mod A [QA1 ([#] mod A)]
mod A. (7)

Definition 6. (Quantization goodness or Rogers-good):
A sequence of lattices A" C R" is good for mean-squared
error (MSE) quantization if

1
lim G (A(”)> -
n—00 2me

The sequence is indexed by the lattice dimension #. The
existence of such lattices is shown in [45,46].
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Definition 7. (AWGN channel coding goodness or
Poltyrev-good): Let Z be a length-i.i.d Gaussian vector,
Z~N (0, a%l n). The volume-to-noise ratio of a lattice is
given by

(Vol(V))*"
wA €)=
oz
where chz is chosen such that Pr{Z ¢ V} = ¢, and I, is
an 7 x 7 identity matrix. A sequence of lattices A" is
Poltyrev-good if
lim (A(”),e) — 2me, Ve e (0,1)

n—oo

and, for a fixed volume-to-noise ratio greater than 2me,
Pr{Z ¢ V"} decays exponentially in 7.

Poltyrev showed that sequences of such lattices exist
[47]. The existence of a sequence of lattices A" which
is good in both senses (i.e., simultaneously are Poltyrev-
good and Rogers-good) has been shown in [46].

Definition 8. (Nested lattices): A lattice A is said to be
nested in lattice A1 if A € Aj. A is referred to as the
coarse lattice and A as the fine lattice.

Note that if a € Z, then always aA C A.

Definition 9. (Nested lattice codes): A nested lattice
code is the set of all points of a fine lattice AY’) that
is within the fundamental Voronoi region V of a coarse
lattice A™,

C={A1NV}.

Definition 10. (Rate): The rate of a nested lattice code is

1 1. Vol(V)
R=~-log|C| = —log ———~.
n 0g €] n 8 Vol (V1)

(8)
In the following, we present a key property of dithered
nested lattice codes.

Lemma 2. The Crypto Lemma [34,48). Let V be a ran-
dom vector with an arbitrary distribution over R". If D is
independent of V and uniformly distributed over V, then
(V + D) mod A is also independent of V and uniformly
distributed over V.

Proof. See Lemma 2 in [48]. O

Before presentation of our proposed scheme, we prove
the following lemma that plays an important role in the
proof of achievable rate region by lattice codes.

Lemma 3. Suppose that A and A1 are two lattices such
that A C A1. Then, the modulo operation is commutative,
ie.,

[[x] mod A1] mod A = [[x] mod A] mod A;. 9)
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Proof. We start with manipulating the left-hand side of (9):

[[x] mod A;] mod A = [x] mod A;—Qp ([x] mod Aj)
x— Qp ) — Qa (x—Qa, @)
=x—Qx, &), (10)

where the last equality follows from the fact that A € Aj.
For the RHS of (9), we have:

[[#] mod A] mod A; = [#] mod A—Qx, ([#] mod A)
=x—Qp®)—Qxp, (x— Q9 ()

=x— 9 ®)
—OA, @) + QA () (11)
=x—Qx, &), (12)

where (11) is based on the fact that A C Aj;. Now,
by comparing (10) and (12), the proof of the lemma is
complete. O

4.2 Our proposed scheme

In this section, we obtain an achievable rate region using
lattice codes for the G-CICS. If we use the common
encoding and decoding as it is explained in [34], then sim-
ilar to random coding, we cannot achieve the capacity
region within a constant gap. Thus, we require to intro-
duce a new scheme for this channel. For presenting this
scheme, we use two modulo operations at the decoder.
Then using Lemma 3, we interchange modulo operations.
As we will see, this scheme can achieve the capacity region
at high SNRs and within 0.5 bits regardless of all channel
parameters. In the following, we present our scheme in
more detail.

A method to obtain a rate region is achieving two cor-
ner points of that region. Then, by time sharing between
two corner points, we can achieve a rate region. Suppose
that V1 and V) are two lattice codewords that carry the
information for user 1 and 2, respectively. We use DPC
or a lattice scheme to decode V5 at decoder 2 and a
scheme which estimates linear combination of the com-
mon message at both decoders to decode V; for both
users. In the following, we explain both schemes in more
details.

First, suppose that lattice A is a Rogers-good lattice and
has the following second moment:

o (A) =P.
e Sending the private message, V' (for decoder 2):

Here, we assume that encoder 1 has no message to send.
Thus, we can consider the G-CICS as a point-to-point
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channel with state, which aims to send V', to decoder 2.
This channel can be characterized as the following:
Yo=X0+S8+2,. (13)
Since transmitter 1 has no message to send, we set X; =0.
Now, we can use a DPC or lattice scheme to achieve the

capacity of this channel. By using a lattice coding scheme,
transmitter 2 sends the following signal:

Xy = [Vy — a8 + Dy] mod A,

where dither sequence D is uniformly distributed over
the Voronoi region A. Thus, based on the crypto lemma,
the power constraint is met. Now, by using lattice decod-
ing and choosing @ = HLN, we achieve the following
corner point [35]:

Ri,Ry) = 011 1 P
(R, 2)—<,2 og( +N)>.

¢ Encoding the common message,V1:

(14)

To estimate the common message V1, we first assume
that 0 < a < 1. Then, by a simple changing at encoding,
we extend our scheme to —1 < a < 0. Suppose that V, =
0, and we intend to send V7 to both decoders. Consider
the following nested lattices:

A CqAg,

where the coding lattice, A1, is Poltyrev-good while the
shaping lattice, A, is both Rogers-good and Poltyrev-
good. For instance, a lattice partition chain is visualized
in Figure 3 for the two-dimensional case. Without loss of
generality and due to a reason which will be determined
later, we assume that A # g (1 + a) A;. Based on this lat-
tice chain, we construct the following codebook for each
node:
C={A1NV}, i=12.

For the lattice chain shown in Figure 3, we have C; =
{1,2,...,9,10}. Now, using a one-to-one mapping at
encoder i, we map message W to a lattice codeword V;
of codebook C; and send the following signals over the
channel:

X1 = [V1+ D;] mod A, (15)

Xy = [V1 —aS+ D;] mod A, (16)

where D; and D, are two independent dithers which are
uniformly distributed on the Voronoi region V. Note that
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by the crypto lemma, we know that the power constraint
is satisfied. Now, we explain decoding at decoder 1 and 2.

¢ Decoding the common message,V'1, at decoder 1

Decoder 1, upon receiving Y,
Yi=X1+4+aXy+aS +Z,
performs the following operations to estimate V:

Yy = [q [@Y1 — Dy — aDy] mod A] mod A
= [[aq (X1 + aXs + aS + Zy) — gD — qaDs ]

mod qA] mod A (17)
= [[aq (X1 + aXy + aS + Z1) — gD — qaD ]
mod A] mod gA (18)

= [[(H‘“) qV1—q(V14+D1) —aq (V1 —aS + Dy)
+aq (X1 +aX> + Z1)] mod A] mod gA
= [[A +a)qV1 — gX1 — agX,

+aq (X1+aXa+Z1)] mod A] modgA  (19)
= [[(1 +a)qVi+ (¢« —1)gX1 +a(e—1)gX>
—|—an1] mod qA] mod A (20)

= [[(1 +a)qVi+ Zeff] mod qA] mod A,
where
Zotf = [(a —DgXi+a(@—1)gXs+ anl] mod gA.

Equation (17) follows from (6), and (18) is based
on Lemma 3. Equation (19) is based on applying (4)
while (20) follows from Lemma 3. By using mini-
mum Euclidean distance lattice decoding [34,49], which

finds the closest point to Y in gA;, we estimate V/1 =
[(1 + a) qu] mod A as:

V) = [Qga; (Ya1)] mod A, (21)
= [Qqa, ([[A+a)gV1 + Zegr | mod A] mod gA)]
mod A,
= [Qqu ([(1 +a)qV1 +Zeff] mod A)] ,
= [Qqa, (1 +a) gV1 + Zegr)] mod A, (22)

where (22) is based on the fact that A € gA; and property
(7). Thus, the estimation of V/1 is correct if

Zest € gV1. (23)
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o qh

lattice A, respectively.

Figure 3 Example of a lattice partition chain. The blue circles and the dashed circles denote the lattice points associated with lattice A1 and

Note that to decode [(1 + a) qu] mod A, since we have
used a quantizer associated with lattice gA 1, we may map
some points of lattice gA; to [(1 + a) qu] mod A. That’s
by finding some points of A, since we used a one-to-one
mapping, we can recover [(1 + a)qu] mod A.

Therefore, (23) shows that the estimation of V/1 is incor-
rect if the effective noise Z.f leaves the Voronoi region
surrounding the codeword (1 + a) gV, i.e.,

Py = Pr(Zefr ¢ qu) .
Now from [34,47], the error probability vanishes as n —
oo if
2
_ Vol @@V
2mweVar (szf)

where Z’ef‘fffv/\/ (0, Var (Zfr)). Since A is Poltyrev-good, the
condition of (24) is satisfied. Now, from (8) for Ry, we have

> 1, (24)

R;

IA

1 l Vol (V) )
n 8 Vol (V1)
o2(A) )
flog
27\ G@) (Vol V1))
2
1log (A) (25)
2 G(A)2meVar (Zk)

N =

Var

eff
log
eff

Var)
it x)

N =

(
(e
(

o (02 2
(
(#

log

N
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where (25) follows from (24), and (26) is based on Rogers
goodness of A.

Now, we have V/1 2 [(1 + a) qu] mod A and must try
to decode V7. In the following lemma, we show that it is
possible to decode it correctly.

Lemma 4. Suppose A1 and A are two lattices such that
A C Ay. Forx,y € A1, x # yand a € Z, we have

lax] mod A # [ay] mod A,

if A # al.
Proof. By using definition of modulo operation, we have

[ax] mod A — [ay] mod A
=a(x—y)— Qa (ax) + QO (ay).

Sincex # y,x,y € A1 anda € Z, thusa (x — y) isanon-
zero element of lattice A 1. On other hand, for lattice A, we
know A # aAj. Thus, the element a (x — y) of lattice A}
is not an element of lattice A, and therefore, we get

[ax] mod A — [ay] mod A # 0.
O
Now, we return to our problem where we aim to esti-

mate V3. Since A # ¢(1+a)Aj, according to the
preceding lemma for V; # V3, we have

V) =[1+a)qVi] mod A # V, = [(1+a) gV>] mod A.

Thus, there exists only a codeword that can satisfy V/1 =
[(1 + a) qV1] mod A and it is the transmitted codeword.
Therefore, we can achieve the following corner point at
decoder 1:

RLRy) = (11 L P\
) = — 10 Y5 4 e B .
L2 2%\ 21N

® Decoding the common message, V', at decoder 2:

(27)

Decoding at decoder 2 is exactly the same as decoder 1.
Thus, we can achieve the following corner point

RLRy) = (11 L L 2)5
) =\|zlo N >~ | .
L2 2%\ 21N

Therefore, by using time sharing between the two cor-
ner points, given in (14) and (27), we can achieve the
following rate region:

(28)

Page 90of 13

Ry +

log (1+ %
Mm < %log (1 + f{) (29)
log (a2+1 + N)

It is easy to see that the following rate region is also
achievable (since it is inside the region given by (29)):

R+R<11 ! +P (30)
—log{ —+—).
R R AV Y

This transmission scheme is depicted in Figure 4.

Remark 1. In order to extend our scheme to the case
that —1 < a < 0, we must modify our encoding as the
following:

X1 = [-V1+ D;] mod A,
Xy = [V1 —aS + Dy] mod A.

(31)
(32)

By comparing (31) with (15), we can see that at encoder
1, instead of sending V1, we transmit — V. At the decoder,
instead of decoding V,1 = [(q +p) V1] mod A, we find
V/1 = [(—q +p) V1] mod A. But since p > 0 and g < 0,
thus p — g > —q which enables us to estimate V; cor-
rectly. Note that for the case —1 < a < 0, if we estimate
[(q +p) Vl] mod A, since p+¢q < —¢q, we cannot find the
desired lattice point correctly.

4.2.1 Rate-region outer bound

For comparison, an outer bound on the capacity region
of the G-CICS is provided. This outer bound is similar
to the bound provided in [16] obtained using a different
approach.

Lemma 5. For the Gaussian cognitive interference chan-
nel with state non-causally known at transmitter 2, if the
power of the state goes to infinity (Q — 00), an outer
bound consists of rate pairs (R1, Ry) satisfying:

(33)

2 2
P(1—py; _p2s))

Ri+ Ry < 1 1 1+ (
—lo
L= 5008 N
where the union is taken over all parameters 0 < po1 and
02s < 1 such that ,0%1 + ,o%s <L
Proof. We have
n(Ry + Ry) = h (W1, Wa)

h (W1, WalY2) +1(Wh, Wa; Y2)
ne, +1 (W1, Wy Y5),

IA

(34)
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mod A

mod A

Encoding Channel

Figure 4 Encoding/decoding scheme.

mod Al | Qga, () —»17

mod A _>I>_>

mod A | )

q
mod A ‘>[>_>

Qqu(') —;—PV

Decoding

where (34) is based on Fano’s inequality. For the second
term, we have
I (W1, Wa; Y3)
= h(Y3) — h(Y2|W1, Wa)
= h(Y2) + h (S|W1, W2, Y3) — h (Y3, §|W1, Wa)
< h(Y2)+h(81X1,Y2)

—h (Y2|X1,X2,8) — h (S) (35)
= h(Yy) —h(S)+h(S|X1,Y2) — h(Zy)
n (N+(¢a—p+ﬁ>+m)2>
< —log
2 Q
n P(1-p3 — p3,)
+5 log (1 + T , (36)
— __EXX) — E[X5S]
where o1 = e = Japapesy ¢ Y

follow from the fact that S is independent of (W7, W>).
Equation (36) follows from the fact that Gaussian dis-
tribution maximizes differential entropy for a fixed sec-
ond moment and Cauchy-Schwarz inequality. For the
asymptotic case of strong interference, ie., Q — 400,
we get

2 2
1—py — p23)>

R R2<*lg 1 (
+ o +
! 2 N

4.3 Capacity results
By comparing the outer region (33) and the achievable
region in (29), we conclude that the outer region is indeed
tight at high SNRs for the weak and moderate interference
case in the high state power regime. Thus, we have the
following Corollary.

Corollary 1. At high SNRs and in a high state
power regime, the capacity region of the state-dependent
Gaussian cognitive interference channel for the weak and
moderate interference case is given by the set of all rate
pairs satisfying

R1 +R <11 1+£ (1) (37)
1+ ks = 7 log N o(1),

where o(1) — 0 as % — 00.

We now calculate the maximum gap between the outer
bound, given in (33), and the achievable rate-region, given
by (30). We have

Liog(14 2 L LI "
2%\ TN 2%\ 21N

1

<7:

=3

1
| 22— —
Og( a2+1)

where (38) is based on the fact that the maximum gap
occurs at a21+1 + % = 1 for i = 1,2. Thus, we have the
following result.

=

(38)

N =

Theorem 1. The capacity region of the state-dependent
Gaussian cognitive interference channel for the weak and
moderate interference case in the high state power regime
is achievable within 0.5 bits.

5 Numerical results

In this section, we numerically compare the achievable
rates of random coding with those of our lattice-based
transmission scheme. For comparison, the outer bound is
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—A— Random Code (a=0.8)
Lattice Code (a=0.8)
—v— Random Code (a=0.5)
. Lattice Code (a=0.5)
Random Code (a=0.3) ||
- - - Lattice Code (a=0.3)

0.4 0.6

gains. System parameters are g = 0.3,0.5,0.8 and SNR = 10 dB.

0.8 1

R,

Figure 5 Rate-region outer bound and achievable rate regions of random coding and lattice-based coding scheme for different channel

also provided. For simplicity, we use the following outer
bound in our simulations:

Ry + Ry < 11 1+ P
—lo — .
e R A Y
In Figure 5, we provide a comparison of the achiev-
able rate regions and the outer bound at SNR = 10dB
for a = 0.3,0.5,0.8 (note that |a| < 1). We observe

that the achievable rate region of our lattice-based cod-
ing scheme is significantly larger than that of random
coding. By increasing the channel gain, a, the achiev-
able rate by lattice codes is within 0.5 bits of the outer
bound.

In Figure 6, we compare the achievable rate regions
when the channel gain is fixed at 4 = 0.5 and SNR
varies. The values of the SNRs are SNR = 5,15,25 dB. As

w
)]
T

o OQuter Bound
- - - Lattice Code

—— Random Code

SNR=25 dB

Figure 6 Comparison between the achievable rate-regions and the outer bound for different SNR values. System parameters are a = 0.5

and SNR = 5,15,25 dB.
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we observe, for high SNRs, the achievable rate region by
lattice codes coincides with the outer bound.

6 Conclusions

In this paper, the state-dependent Gaussian cognitive
interference channel in the weak and moderate interfer-
ence case and in the high state power regime is studied.
First, we showed that the achievable rate by random cod-
ing, which is based on Gelfand-Pinsker coding, vanishes
under a condition over the channel gain. Then, we showed
that a scheme that is based on lattice codes can achieve
the capacity region at high SNRs and within 0.5 bits of the
outer bound for all channel parameters.
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