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Abstract

We provide distributed algorithms for the radio resource allocation problem in multicell downlink multi-input
single-output systems. Specifically, the problems of (1) minimizing total transmit power subject to
signal-to-interference-plus-noise ratio (SINR) constraints of each user and (2) SINR balancing subject to total transmit
power constraints are considered. We propose a consensus-based distributed algorithm and the fast solution method
via alternating the direction method of multipliers. First, we derive a distributed algorithm for minimization of total
transmit power. Then, in conjunction with the bracketing method, a distributed algorithm for SINR balancing is
derived. Numerical results show that the proposed distributed algorithms achieve the optimal centralized solution.

Keywords: Distributed optimization; Multicell networks; Minimum power beamforming;
Signal-to-interference-plus-noise ratio (SINR) balancing; Alternating direction method of multipliers (ADMM); Dual
decomposition; Second-order cone program (SOCP)

1 Introduction
We provide distributed algorithms for the problem of
resource allocation for multicell downlink systems with
linear precoding. The base stations (BSs) are assumed to
have multiple antennas while all the users are equipped
with single antenna. Full channel state information is
assumed to be available at both the BSs and the users, and
all the users share the same frequency bandwidth. Under
this setting, we consider the following two optimization
problems: P1 - minimization of the total transmission
power subject to minimum signal-to-interference-plus-
noise ratio (SINR) constraints of each user, and P2 - SINR
balancing subject to total transmit power constraint of
BSs.
Several centralized algorithms for problems P1 and P2

have been proposed in the literature. See, e.g., [1-6] for
problem P1 and [7-10] for problem P2. Unfortunately,
the centralized method is not practical for the resource
allocation due to high overhead required for collecting
all channel state information at the central processing
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unit. Therefore, to share the workload of the central con-
troller and to overcome impelling backhaul overhead, the
distributed algorithm is desirable in practice.
Distributed methods for problem P1 for multiple-input

and single-output (MISO) multicell wireless systems have
been proposed in [11-15]. The algorithm in [11] is based
on uplink-downlink duality, where the minimum power
downlink beamformers designing problem is solved using
a dual uplink problem. The algorithm in [11] is a multi-
cell generalization of the algorithm proposed in [16] for
the single-cell case. In [12] dual decomposition method
is adopted, and the algorithm in [13] is based on primal
decomposition. Both in primal and dual decomposition
methods [17], the master problem is solved using an iter-
ative method such as the subgradient method [18]. Even
though problem P1 is a convex problem and can be eas-
ily solved via primal or dual decomposition (see, [12,13]),
the convergence speed of those algorithms are slow and
highly sensitive on the subgradient step size [18]. A game
theoretic approach is considered in [14].
Problem P2 is a quasiconvex problem [16]. Thus, the

centralized method based on bisection search [19] is com-
monly used, e.g., [10,16]. Combining the bisection search
and the uplink-downlink SINR duality, a distributed
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algorithm is proposed in [20]. The algorithm in [20] is
a hierarchical iterative algorithm which consists of outer
and inner iterations, where the bisection search is car-
ried out in the outer iteration and uplink-downlink SINR
duality is used for the inner iteration.
The alternating direction method of multipliers

(ADMM) is a simple but powerful algorithm that is well
suited to distributed convex optimization. ADMM com-
bines the benefits of dual decomposition and augmented
Lagrangian methods [21]. Hence, ADMM is numerically
stable than dual decomposition and hence suitable for
many practical optimization problem [21]. Due to supe-
rior stability properties and decomposability, ADMM has
been applied to a wide rage of applications, such as com-
pressed sensing [22], image restoration [23], signal pro-
cessing [15,24,25], etc.; see [21] for the recent survey. In
many applications, the ADMMmethod has been observed
to converge fast [21,26,27]; and when the objective func-
tion is strongly convex and Lipschitz continuous, ADMM
can even guarantee the liner rate of convergence [28,29].
The main contribution of the paper is to propose

consensus-based distributed algorithms for problems P1
and P2, and the fast solutionmethod via ADMM [21]. The
ADMM turns the original problem into a series of itera-
tive steps, namely, local variable update, global variable
update, and dual variable update [21]. The local variable
and dual variable updates are carried out independently in
parallel by all BSs, while the global variable update is car-
ried out by BS coordination. In this paper, we first derive
distributed algorithm for problem P1. Then, we extend
the formulation of problem P1 to derive the distributed
algorithm for problem P2. In particular, we recast the
problem into a more tractable form and combine bracket-
ing method (e.g., golden ratio search) [30,31] with ADMM
to derive the distributed algorithm for problem P2.
Recently, for problem P1, by considering the uncer-

tainty in the channel measurements, an algorithm based
on ADMM has been proposed in [15]. In our paper, we
consider perfect channel state information (CSI) and use
the consensus technique to solve the problem. Then, we
apply ADMM to derive the distributed algorithm. The
consensus technique can be easily decomposed into a set
of subproblems suitable for distributed implementation
[21,24]. Hence, the algorithm formulation in this paper
is more intuitive than that provided in [15]. It is worth
noting that this paper extends our recent work [32] to
SINR balancing problem (i.e., problem P2). In addition,
for problem P1, we show that the proposed distributed
algorithm converges to the optimal centralized solution.
Moreover, for problem P1, we also provide a method
to find the ADMM penalty parameter that leads faster
convergence of the algorithm.
Note that problem P2 is a quasiconvex problem. To the

best of our knowledge there is no convergence theory to

the ADMM method for a quasiconvex problem. How-
ever, if each step of the ADMM iteration is tractable,
the ADMM algorithm can still be used to derive (pos-
sibly suboptimal) distributed methods for problem P2
[21, Chapter 9]. Though these methods are not provably
optimal, our numerical results show that the proposed
algorithm converged to the optimal solution in all
simulated cases.
The remainder of this paper is organized as follows. The

considered MISO system model and problem formula-
tion are described in Section 2. The distributed algorithm
for sum power minimization (P1) is derived in Section 3.
Next, in Section 4, we derive the distributed algorithm for
SINR balancing problem (P2). The numerical results are
presented in Section 5, and Section 6 concludes our paper.
Notations: All boldface lower case and upper case letters

represent vectors and matrices, respectively, and calligra-
phy letters represent sets. The notationCT denotes the set
of complex T-vectors, |x| denotes the absolute value of the
scalar x, ‖x‖2 denotes the Euclidean norm of the vector x,
I denotes the identity matrix, and CN (m,C) denotes the
complex circular symmetric Gaussian vector distribution
with mean m and covariance matrix C. The superscripts
(·)H and (·)� are used to denote a Hermitian transpose
of a matrix and a solution of an optimization problem,
respectively.

2 Systemmodel and problem formulation
A multicell MISO downlink system, with N BSs each
equipped with T transmit antennas, is considered. The set
of all BSs is denoted by N , and we label them with the
integer values n = 1, . . . ,N . The transmission region of
each BS is modeled as a disc with radius RBS centered at
the location of the BS. Single data stream is transmitted
for each user. We denote the set of all data streams in the
system by L, and we label them with the integer values
l = 1, . . . , L. The transmitter node (i.e., the BS) of lth data
stream is denoted by tran(l), and the receiver node of lth
data stream is denoted by rec(l). We have L = ∪n∈NL(n),
where L(n) denotes the set of data streams transmitted by
nth BS. Note that the intended users of the data streams
transmitted by each BS are necessarily located inside the
transmission region of the BS (see Figure 1).
The antenna signal vector transmitted by nth BS is

given by

xn =
∑

l∈L(n)

dlml, (1)

where dl ∈ C and ml ∈ CT represent the information
symbol and the transmit beamformer associated to lth
data stream, respectively.We assume that dl is normalized
such that E|dl|2 = 1. Moreover, we assume that the data
streams are independent, i.e., E{dld∗

j } = 0 for all l �= j,
where l, j ∈ L.
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Figure 1Multicell networks. (a)Multicell network 1, whereN = {1, 2}, L(1) = {1, 2, 3, 4}, L(2) = {5, 6, 7, 8}, and Lint = {2, 8}; (b)Multicell
network 2, whereN = {1, 2, 3, 4, 5, 6, 7}, L(1) = {1, 2, 3}, L(2) = {4, 5, 6}, L(3) = {7, 8, 9}, L(4) = {10, 11, 12}, L(5) = {13, 14, 15},
L(6) = {16, 17, 18}, L(7) = {19, 20, 21}, Lint = {1, 2, 3, 4, 5, 7, 10, 12, 14, 15, 16, 17, 18, 19}.

The signal received at rec(l) can be expressed as

yl = dlhHllml +
∑

j∈L(tran(l)),j �= l
djhHjl mj

(intra-cell interference)

+
∑

n∈N\{tran(l)}

∑
j∈L(n)

djhHjl mj + nl,

(out-of-cell interference)

(2)

where hHjl ∈ C1×T is the channel matrix between tran(j)
and rec(l), and nl is circular symmetric complex gaussian
noise with variance σ 2

l . Note that the second right hand
term in (2) represents the intra-cell interference and the
third right hand term represents the out-of-cell interfer-
ence. The received SINR of lth data stream is given by

�l = |hHllml|2
σ 2
l + ∑

j∈L(tran(l)),j �=l
|hHjl mj|2 + ∑

n∈N\{tran(l)}
z2nl

,

(3)

where z2nl = ∑
j∈L(n) |h H

jl mj|2 represents the power of the
out-of-cell interference from nth BS to rec(l).
The out-of-cell interference term in (3) (i.e.,∑
n∈N\{tran(l)} z2nl) prevents resource allocation

on an intra-cell basis and demands BS coopera-
tion/coordination. To avoid unnecessary coordination
between far apart-located BSs, we make the following
assumption: transmission from nth BS interfere the lth
data stream (transmitted by BS b �= n) only if the distance
between nth BS and rec(l) is smaller than a threshold
Rinta. The disc with radius Rint centered at the location of
any BS is referred to as the interference region of the BS
(see Figure 1). Thus, if nth BS located at a distance larger
than Rint to rec(l), the associated znl components are set

to zerob. Based on the assumption above, we can express
�l as

�l = |hHllml|2
σ 2
l + ∑

j∈L(tran(l)),j �=l
|hHjl mj|2 + ∑

n∈Nint(l)
z2nl

,

whereNint(l) ⊆ N \{tran(l)} is the set of out-of-cell inter-
fering BSs that are located at a distance less than Rint to
rec(l). For example, in Figure 1a, we have Nint(2) = {2},
Nint(8) = {1}, and Nint(l) = ∅ for all l ∈ {1, 3, 4, 5, 6, 7}.
Moreover, it is useful to define the set Lint of all data
streams that are subject to the out-of-cell interference, i.e.,
Lint = {l|l ∈ L,Nint(l) �= ∅}. For example, in Figure 1a,
we have Lint = {2, 8}.
The total transmitted power of the multicell downlink

system can be expressed as

P =
∑
n∈N

∑
l∈L(n)

‖ml‖22.

Assuming that the SINR �l is subject to the constraint
�l ≥ γl for each user l ∈ L, the problem of minimizing
the total transmitted power (i.e., P1) can be expressed as

P1 : minimize
∑
n∈N

∑
l∈L(n)

‖ml‖22

subject to
|hHllml|2

σ 2
l + ∑

j∈L(tran(l)),j �=l
|hHjl mj|2 + ∑

n∈Nint(l)
z2nl

≥ γl ,

l ∈ L

z2nl =
∑

j∈L(n)

|hHjl mj|2, l ∈ Lint, n ∈ Nint(l),

(4)
with variables {ml}l∈L and {znl}l∈Lint,n∈Nint(l)

c.
Providing fairness among the users with per BS power

constraint (i.e.,
∑

j∈L(n) ‖ml‖22 ≤ pmax
n ) is another impor-

tant resource allocation problem. One wayd of providing
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fairness among the users is by maximizing the minimum
SINR (i.e., P2) [16], which can be formulated as

P2 : maximize min
l∈L

⎛
⎜⎝ |hHllml|2
σ 2
l + ∑

j∈L(tran(l)),j �=l
|hHjl mj|2 + ∑

n∈Nint(l)
z2nl

⎞
⎟⎠

subject to z2nl =
∑

j∈L(n)

|hHjl mj|2, l ∈ Lint, n ∈ Nint(l)

∑
j∈L(n)

‖ml‖22 ≤ pmax
n , n ∈ N ,

(5)

where the variables are {ml}l∈L and {znl}l∈Lint,n∈Nint(l).
Finally, to improve the readability of the paper, we sum-
marize a list of sets used in this paper in Table 1.

3 Sum powerminimization
In this section, we derive a distributed algorithm for prob-
lem (4), i.e., P1. First, we equivalently reformulate the
original problem (4) in a form of global consensus prob-
lem. Then, we derive the proposed distributed algorithm
based on ADMM [21].

3.1 An equivalent reformulation: sum power
minimization

We start by reformulating sum power minimization prob-
lem (4) as

minimize
∑
n∈N

∑
l∈L(n)

‖ml‖22

subject to
|hHllml|2

σ 2
l + ∑

j∈L(tran(l)),j �=l
|hHjl mj|2 + ∑

n∈Nint(l)
z2nl

≥ γl,

l ∈ L
z2nl ≥

∑
j∈L(n)

|hHjl mj|2, l ∈ Lint, n ∈ Nint(l),

(6)

Table 1 Summary of a list of sets

Set Description

N Set of all BSs

L Set of all data streams

L(n) Set of data streams transmitted by nth BS

Nint(l) Set of out-of-cell BSs interfering to lth data stream

Lint Set of all data streams that are subject to the out-of-cell

interference

Iint(n) Set of links for which BS n acts as the out-of-cell interferer

Lint(n) Set of links in BS n that are affected by the out-of-cell

interference

where the variables are {ml}l∈L and {znl}l∈Lint,n∈Nint(l).
Problems (4) and (6) are equivalent as it can be easily
shown (e.g., by contradiction) that the second inequality
holds with equality at the optimal point.
Recall that z2nl in problem (6) represents power of the

out-of-cell interference caused by nth BS at rec(l), and
hence, variable znl couples exactly two BSs (i.e., BS n
and BS tran(l)). We use consensus technique to distribute
problem (6) over the BSs. Themethod consist of introduc-
ing local copies of the coupling variables znl for all l ∈ Lint,
n ∈ Nint(l) at each BS (see Figure 2).
Let us define xk,nl as the local copy of znl at BS k. Thus

for each znl, wemake two local copies, i.e., xn,nl at BS n and
xtran(l),nl at BS tran(l). Then, problem (6) can be written
equivalently in a global consensus form as

minimize
∑
n∈N

∑
l∈L(n)

‖ml‖22

subject to
|hHllml|2

σ 2
l + ∑

j∈L(tran(l)),j �=l
|hHjl mj|2 + ∑

b∈Nint(l)
x2n,bl

≥ γl ,

n ∈ N , l ∈ L(n)

x2n,nl ≥
∑

j∈L(n)

|hHjl mj|2, l ∈ Lint, n ∈ Nint(l)

xk,nl = znl , k ∈ {n, tran(l)}, l ∈ Lint, n ∈ Nint(l),
(7)

with variables {ml}l∈L, {xk,nl}k∈{n,tran(l)},l∈Lint,n∈Nint(l), and
{znl}l∈Lint,n∈Nint(l). Note that in the SINR constraints of
problem (7), we have replaced zbl by the local copy xn,bl
and used L = ∪n∈NL(n). In the second inequality con-
straints of (7), we have replaced znl by the local copy
xn,nl. The last set of equality constraints of (7) are called
consistency constraints, and they enforce the local copies
{xk,nl}k∈{n,tran(l)} to be equal to the corresponding global
variable znl.
Problem (7) is not a convex problem. However, by fol-

lowing the approach of [16, Section IV-B], problem (7) can
be equivalently cast in the form of convex problem. To do
this, let us define the matrixMn = [ml]l∈L(n) obtained by
concatenating the column vectors ml. Then, by following
the approach of [16, Section IV-B], problem (7) can be
equivalently reformulated in the form of convex problem as

minimize
∑
n∈N

∑
l∈L(n)

‖ml‖22

subject to

⎡
⎢⎢⎣
√
1 + 1

γl
hHllml

MH
n hll
x̃l
σl

⎤
⎥⎥⎦ �SOC 0, n ∈ N , l ∈ L(n)

[
xn,nl
MH

n hjl

]
�SOC 0, l ∈ Lint, n ∈ Nint(l)

xk,nl = znl , k ∈ {n, tran(l)}, l ∈ Lint, n ∈ Nint(l),
(8)
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Figure 2 Illustration of BS coupling, and introducing local copies to decouple a problem. BS 2 and BS 3 are coupled with BS 1 due to coupling
variables z2l and z3l , respectively. To distribute the problem, local copy x1,2l of z2l at BS 1 and local copy x2,2l of z2l at BS 2 are introduced. Similarly,
local copy x1,3l of z3l at BS 1 and local copy x3,3l of z3l at BS 3 are introduced.

with variables {Mn}n∈N , {xk,nl}k∈{n,tran(l)},l∈Lint,n∈Nint(l),
and {znl}l∈Lint,n∈Nint(l), where vector x̃l = {xn,bl}b∈Nint(l),
the matrix hjl in the second set of constraints denotes the
channel from BS n to link l (i.e., the index j in the second
set of constraints denotes an arbitrary link in L(n)), and
the notation �SOC denotes the generalized inequalities
with respect to the second-order cone [16,19].
In problem (8), the objective function and the first set

of inequality constraints are separable in n ∈ N (one
for each BS). Also, it can be easily shown that the sec-
ond set of inequality constraints of (8) are separable in
n ∈ N . To do this, let us denote Iint(n) the set of links for
which BS n acts as an out-of-cell interferer, i.e., Iint(n) =
{l|l ∈ Lint, n ∈ Nint(l)}. Then, by noting that the sets
{(n, l)|l ∈ Lint, n ∈ Nint(l)}, and {(n, l)|n ∈ N , l ∈ Iint(n)}
are identical, the second set of inequality constraints of (8)
can be written as

[
xn,nl
M H

n hjl

]
�SOC 0, n ∈ N , l ∈ Iint(n), (9)

which is separable in n ∈ N . Observe that without the
consistency constraints, problem (8) can now be easily
decoupled into N subproblems, one for each BS.
We next express problem (8) more compactly. To do

this, we first express the consistency constraints of prob-
lem (8) more compactly by using vector notations, which
denote a collection of the local and global variables associ-
ated with BS n. By using the equivalence between the sets
{(n, l)|l ∈ Lint, n ∈ Nint(l)} and {(n, l)|n ∈ N , l ∈ Iint(n)},
let us express the consistency constraints of problem (8) as

xn,nl = znl, n ∈ N , l ∈ Iint(n)

xtran(l),nl = znl, l ∈ Lint, n ∈ Nint(l).
(10)

In the first set of equalities of (10), {xn,nl}l∈Iint(n) is a
set of local variables that are associated with BS n. Simi-
larly, to find a set of local variables that are associated with
BS n in the second set of equalities of (10), let us define
Lint(n) the set of links in BS n that are affected by the
out-of-cell interference, i.e., Lint(n) = {l|l ∈ Lint ∩ L(n)}.
Then, by noting that the set Lint = ∪n∈NLint(n), we can
rewrite (10) as

xn,nl = znl, n ∈ N , l ∈ Iint(n)

xtran(l),bl = zbl, n ∈ N , l ∈ Lint(n), b ∈ Nint(l).
(11)

Clearly, in the second set of equalities of (11)e,
{xtran(l),bl}l∈Lint(n),b∈Nint(l) is a set of local variables that are
associated with BS n.
We now denote (11) compactly using vector notation.

Let us define vectors xn and zn asf

xn = {{xn,nl}l∈Iint(n), {xtran(l),bl}l∈Lint(n),b∈Nint(l)}
zn = {{znl}l∈Iint(n), {zbl}l∈Lint(n),b∈Nint(l)}.

(12)

Then, (11) can be compactly written as

xn = zn, n ∈ N . (13)

Note that xn is a collection of the local variables that
are associated with BS n, and zn is a collection of the
global variables that are associate with the components of
variable xn.
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Furthermore, for the sake of brevity, let us define the
following set

Mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
Mn, xn

∣∣∣∣∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎣
√
1 + 1

γl
hHllml

MH
n hll
x̃l
σl

⎤
⎥⎥⎥⎦ �SOC 0, l ∈ L(n)

[
xn,nl
MH

n hjl

]
�SOC 0, l ∈ Iint(n),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
,

(14)

and the following function

fn(Mn, xn) =
⎧⎨
⎩
∑

l∈L(n)
‖ml‖22 (Mn, xn) ∈ Mn

∞ otherwise
.

(15)

Then by using notations (13), (14), and (15), consensus
problem (8) can be written compactly as

minimize
∑
n∈N

fn(Mn, xn)

subject to xn = zn, n ∈ N ,
(16)

where the variables areMn, xn, and zn for all n ∈ N .

3.2 Distributed algorithm via ADMM: sum power
minimization

In this section, we derive distributed algorithm for prob-
lem (16). The proposed algorithm is based on ADMM
[21]. We start by writing the augmented Lagrangian [33]
for problem (16) as

Lρ({Mn, xn}n∈N , {zn}n∈N , {un}n∈N )

=
∑
n∈N

(
fn(Mn, xn) + uTn (xn − zn) + ρ

2
‖xn − zn‖22

)
,

(17)

where {un}n∈N are the dual variablesg associated with
the equality constraints of (16), and ρ > 0 is a penalty
parameter that adds the quadratic penalty to the standard
Lagrangian L0 for the violation of the equality constraints
of problem (16).
Each iteration of ADMM algorithm consists of the fol-

lowing three steps [21]
Mi+1

n , xi+1
n = argmin

Mn ,xn
Lρ

(
Mn, xn, zin,uin

)
, n ∈ N (18)

{zi+1
n }n∈N = argmin

{zn}n∈N
Lρ

({Mi+1
n , xi+1

n }n∈N , {zn}n∈N , {uin}n∈N
)

(19)

ui+1
n = uin + ρ

(
xi+1
n − zi+1

n
)
, n ∈ N , (20)

where superscript i is the iteration counter. Steps (18)
and (20) are completely decentralized, and hence, they can
be carried out independently in parallel in each BS. Note
that each component of zn couples two local variables that

are associated with the adjacent BSs (see, consistency con-
straint of problem (8))h. Thus, step (19) requires to gather
the updated local variables (Mi+1

n , xi+1
n ) and the dual vari-

ables uin from all N BSs. In the sequel, we first explain in
detail to solve the ADMM steps in (18) and (19). Then,
we summarize the proposed ADMM based distributed
algorithm.
The local variable update (Mi+1

n , xi+1
n ) in (18) is a solu-

tion of the following optimization problem

minimize fn(Mn, xn) + uiTn (xn − zin) + ρ
2 ‖xn − zin‖22

(21)

with variables Mn and xn. Here, we write uiTn instead of
(uin)T to lighten the notation. Let vn = (1/ρ)un (i.e., vn
is a scaled dual variable). Then by using notations (14)
and (15), problem (21) can be equivalently expressed as

minimize
∑

l∈L(n)

‖ml‖22 + ρ

2
‖xn − zin + vin‖22

subject to

⎡
⎢⎢⎢⎣
√
1 + 1

γl
hHllml

MH
n hll
x̃l
σl

⎤
⎥⎥⎥⎦ �SOC 0, l ∈ L(n)

[
xn,nl
MH

n hjl

]
�SOC 0, l ∈ Iint(n)

(22)

with variables Mn = [ml]l∈L(n) and xn, where x̃l =
{xn,bl}b∈Nint(l) is a subset of xn (see (12)), the matrix hjl in
the second set of constraints denotes the channel from BS
n to link l (i.e., the index j in the third set of constraints
denotes an arbitrary link in L(n)), and the notation �SOC
denotes the generalized inequalities with respect to the
second-order cone [16,19]. Note that in the objective
function of (22)i, we have dropped a constant term ρ

2 ‖vin‖22
since it does not effect the solution of the problem.
Moreover, by writing problem (22) in the epigraph form,

and then following the approach of [16, Section IV-B],
problem (22) can be equivalently reformulated in the form
of second-order cone program (SOCP) as

minimize t

subject to

⎡
⎣ t

vec(Mn)√
(ρ/2)(xn − zin + vin)

⎤
⎦ �SOC 0

⎡
⎢⎢⎢⎣
√
1 + 1

γl
hHllml

MH
n hll
x̃l
σl

⎤
⎥⎥⎥⎦ �SOC 0, l ∈ L(n)

[
xn,nl
MH

n hjl

]
�SOC 0, l ∈ Iint(n),

(23)
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with variables t, Mn, and xn. Let us denote t�, M�
n, and x�

n
the solutions of problem (23), then the updateMi+1

n = M�
n

and xi+1
n = x�

n.
Now, we turn to the second step of ADMM algorithm

and provide a solution for the global variable update (19).
The update {z}i+1

n }n∈N is a solution of the following opti-
mization problem

minimize
∑
n∈N

(
uiTn (xi+1

n − zn) + ρ

2
‖xi+1

n − zn‖22
)
,

(24)

with variable {zn}n∈N . By using the notations in (12),
and further noting equalities (13) and the equality con-
straints of problem (8) are equivalent, problem (24) in the
components of xn, zn, and un can be expressed as

minimize
∑
l∈Lint

∑
n∈Nint(l)

∑
k∈{n,tran(l)}

×
(
uik,nl(x

i+1
k,nl − znl) + ρ

2
(xi+1

k,nl − znl)2
)
,

(25)

with variable {znl}l∈Lint,n∈Nint(l), where
{uk,nl}k∈{n,tran(l)},l∈Lint,n∈Nint(l) are the dual variables
associated with the equality constraints of problem (7)j.
Problem (25) decouples across znl, since the objec-

tive function is separable in znl for all l ∈ Lint, n ∈
Nint(l). Moreover, the objective function of problem (25)
is quadratic in znl. Hence, by setting the gradient of (25)
with respect to znl equal to zero, we can get the solution
z�nl which can be expressed as

z�nl =
(
xi+1
n,nl + xi+1

tran(l),nl +
1
ρ

(uin,nl + uitran(l),nl)

)/
2,

(26)

for all l ∈ Lint, n ∈ Nint(l). Therefore, the update zi+1
nl =

z�nl for all l ∈ Lint, n ∈ Nint(l). Moreover, by substituting
zi+1
nl in (20)k, we can show that the sum of the dual vari-
ables uin,nl + uitran(l),nl is equal to zero. Thus, the update
zi+1
nl further simplifies to

zi+1
nl =

(
xi+1
n,nl + xi+1

tran(l),nl

)/
2, (27)

for all l ∈ Lint, n ∈ Nint(l). Hence, the global variable
update zi+1

nl is simply the average of its local copies xi+1
n,nl

and xi+1
tran(l),nl.

Finally, we summarize the proposed ADMM-based dis-
tributed algorithm for sum power minimization prob-
lem (8) in Algorithm 1.

Algorithm 1 Proposed ADMM-based distributed
algorithm for sum power minimization

1 Initialization: given SINRs target {γl}l∈L and penalty
ρ > 0. Set i = 0, {u0n}n∈N = 0, and {z0n}n∈N = 0.
2 BS n = 1 . . .N update local variables (Mi+1

n , xi+1
n ).

3 BS n and BS tran(l) exchange their local copies xi+1
n,nl

and xi+1
tran(l),nl for all l ∈ Lint, n ∈ Nint(l).

4 BS n = 1 . . .N update global variable zi+1
n .

5 BS n = 1 . . .N update dual variable ui+1
n .

6 If stopping criteria is satisfied, STOP. Otherwise set
i = i + 1, and go to step 2.

The first step initializes the algorithm. Step 2 updates
the local variables of each BS by solving problem (23).
Step 2 is completely decentralized. In step 3, the neighbor-
ing BSs that are coupled by variable znl, i.e., BS n and BS
tran(l), exchange their local copies xi+1

n,nl and xi+1
tran(l),nl. In

step 4, each BS update the global variable zi+1
n . Note that

the global variable update zi+1
n in its component is sim-

ply the average of the local copies (27). In step 5, the dual
variables are updated by each BS, by solving (20). Step 6
checks the stopping criterial, and the algorithm stops if
the stopping criteria is satisfied. Otherwise, the algorithm
continues in an iterative manner. A method to find the
feasible solution at each iteration of Algorithm 1 is pro-
vided in Section 3.3. Note that in deriving Algorithm 1,
we have considered perfect CSI in all relevant channels
between BSs and receivers. The impact of imperfect CSI
in the derivation of the algorithm can be found in [15].

3.3 Finding feasible solution at each iteration of
Algorithm 1

In many practical applications, we have to stop the dis-
tributed algorithm after a finite number of iterations
before converging the algorithm. On the other hand, the
intermediate solutions provided by Algorithm 1 do not
necessarily result feasible solution. In particular, the SINR
constraints of problem (4) may not hold since the local
copies xn,nl and xtran(l),nl that correspond to the global
variable znl for all l ∈ Lint, n ∈ Nint(l) may not be equal.
Thus, we can get SINR �l ≤ γl as a solution of step 2 of
Algorithm 1 for some l ∈ L.
At the cost of solving one additional subproblem by each

BS in each iteration, we can find a set of feasible beam-
formers Mn for all n ∈ N . For this, in order to make the
local copies xn,nl and xtran(l),nl equal, we fix them to the
consensus value zinl (i.e., xn,nl = zinl and xtran(l),nl = zinl)
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for all l ∈ Lint, n ∈ Nint(l). Then, solve problem (23) in
variables t andMn by each BS, which can be expressed as

minimize t

subject to
[

t
vec(Mn)

]
�SOC 0⎡

⎢⎢⎢⎣
√
1 + 1

γl
h H
ll ml

M H
n hll
x̃l
σl

⎤
⎥⎥⎥⎦ �SOC 0, l ∈ L(n)

[
xin,nl
MH

nhjl

]
�SOC 0, l ∈ Iint(n),

(28)

where x̃l = {xn,bl}b∈Nint(l). Note that at iteration i the
set of beamformer {Mn}n∈N is feasible for the original
problem (4), if problem (28) is feasible for all BSs.

3.4 Convergence of Algorithm 1 to the global optimum of
problem P1

The convergence of Algorithm 1 to the global optimal
solution of problem P1 (i.e., problem (4)) can be estab-
lished by using proposition [34, Proposition 4.2].
First, by applying proposition [34, Proposition 4.2] to

problem (16), we can show that the ADMM Algorithm 1
converges to the global optimal solution of problem (16)
(note that problem (16) is compact representation of prob-
lem (8)). Next, we note that the phase of the optimization
variable {ml}l∈L in problems (8) and (4) do not change the
objective and the constraints of both problems. Thus, the
optimal solution obtained by Algorithm 1 for problem (8)
is also optimal for problem (4) (i.e., problem P1).

4 SINR balancing
In this section, we derive a distributed algorithm for prob-
lem (5), i.e., P2. As before in the sum power minimization
problem, we begin by reformulating problem (5) in the
global consensus form. Then, we apply ADMM [21] to
derive the distributed algorithm.

4.1 An equivalent reformulation: SINR balancing
We start by equivalently reformulating SINR balancing
problem (5) in the epigraph form [19] as

minimize − γ

subject to
|h H

ll ml|2
σ 2
l + ∑

j∈L(tran(l)),j �=l
|hHjl mj|2 + ∑

n∈Nint(l)
z2nl

≥ γ ,

l ∈ L

z2nl ≥
∑

j∈L(n)

|hHjl mj|2, l ∈ Lint, n ∈ Nint(l)

∑
j∈L(n)

‖ml‖22 ≤ pmax
n , n ∈ N , (29)

with variables γ , {ml}l∈L, and {znl}l∈Lint,n∈Nint(l).
We now follow a similar approach as in the Section 3.1

to express problem (29) in a global consensus form (i.e.,
we introduce the local copies of the coupling variables γ

and znl for each BS). Since the SINR variable γ couples all
BSs via a SINR constraints, we introduce local copies αn
for each BS such that αn = γ for all n ∈ N . For the out-
of-cell interference variable znl, we introduce local copies
xk,nl and xtran(l),nl, respectively, for BS n and BS tran(l) as
in problem (7). Then, problem (29) in the global consensus
form can be expressed equivalently as
minimize − γ

subject to
|hHllml|2

σ 2
l + ∑

j∈L(n),j �=l
|hHjl mj|2 + ∑

b∈Nint(l)
x2n,bl

≥ αn,

n ∈ N , l ∈ L(n)

x2n,nl ≥
∑

j∈L(n)

|hHjl mj|2, n ∈ N , l ∈ Iint(n)

∑
j∈L(n)

‖ml‖22 ≤ pmax
n , n ∈ N

xk,nl = znl , k ∈ {n, tran(l)}, l ∈ Lint, n ∈ Nint(l)
αn = γ , n ∈ N , (30)

with variables γ , {ml}l∈L, {αn}n∈N ,
{xk,nl}k∈{n,tran(l)},n∈N ,l∈Iint(n), and {znl}l∈Lint,n∈Nint(l). Note
that in the second set of inequality constraints, we use the
equivalence between the sets {(n, l)|l ∈ Lint, n ∈ Nint(l)}
and {(n, l)|n ∈ N , l ∈ Iint(n)} (see (10)).
Now, we express problem (30) more compactly. Note

that except the third inequality constraints and the last
equality constraints of problem (30), the constraint set of
problem (30) is identical to that of problem (7). Hence, we
can use variables Mn, xn, and zn to define the set Cn as
given in (31)

Cn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Mn, xn,αn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|hHllml|2
σ 2
l + ∑

j∈L(n),j �=l
|hHjl mj|2 + ∑

b∈Nint(l)
x2n,bl

≥ αn, l ∈ L(n)

x2n,nl ≥
∑

j∈L(n)

|hHjl mj|2, l ∈ Iint(n)

∑
j∈L(n)

‖ml‖22 ≤ pmax
n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (31)



Joshi et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:1 Page 9 of 19
http://jwcn.eurasipjournals.com/content/2014/1/1

and the following indicator function In(Mn, xn,αn)

In(Mn, xn,αn) =
{
0 (Mn, xn,αn) ∈ Cn
∞ otherwise. (32)

Then, by using notations (31) and (32), consensus prob-
lem (30) can be rewritten compactly as

minimize − γ +
∑
n∈N

In(Mn, xn,αn)

subject to xn = zn, n ∈ N
αn = γ , n ∈ N ,

(33)

with variables γ and {Mn, xn, zn,αn}n∈N . Furthermore, by
noting that

∑
n∈N αn = Nγ (from the second equal-

ity constraints of (33)), problem (33) can be expressed
equivalently as

minimize
∑
n∈N

(
−αn

N
+ In(Mn, xn,αn)

)
subject to xn = zn, n ∈ N

αn = γ , n ∈ N ,

(34)

with variables γ and {Mn, xn, zn,αn}n∈N .

4.2 Distributed algorithm via ADMM: SINR balancing
To derive the ADMM algorithm, we first form the aug-
mented Lagrangian [33] of problem (34). Let un and vn
be the dual variables associated with the first and second
consensus constraints of problem (34), respectively. Then,
the augmented Lagrangian can be written as

Lρ ({Mn, xn,αn,un, vn, zn}n∈N , γ )

=
∑
n∈N

(
−αn

N
+ In(Mn, xn,αn) + uTn (xn − zn)

+vn(αn − γ ) + ρ

2
‖xn − zn‖22 + ρ

2
(αn − γ )2

)
,

(35)

where ρ > 0 is the penalty parameter. Each iteration of
ADMM consists of the following steps [21]

Mi+1
n , xi+1

n ,αi+1
n = argmin

Mn,xn,αn
Lρ

(
Mn, xn,αn,uin, vin, zin, γ i) ,

n ∈ N (36)

{zi+1
n }n∈N , γ i+1 = argmin

{zn}n∈N ,γ
Lρ

( {
Mi+1

n , xi+1
n ,αi+1

n ,uin,

vin, zn
}
n∈N , γ

)
(37)

ui+1
n = uin + ρ

(
xi+1
n − zi+1

n
)
, n ∈ N (38)

vi+1
n = vin + ρ

(
αi+1
n − γ i+1) , n ∈ N . (39)

Note that the first step is completely decentralized. Each
BS n ∈ N updates the local variables (Mi+1

n , xi+1
n ,αi+1

n ) by
solving the following optimization problem

minimize − αn
N

+ In(Mn, xn,αn) + uiTn (xn − zin)

+ vin(αn − γ i) + ρ

2
‖xn − zin‖22 + ρ

2
(αn − γ i)2,

(40)

with variables αn,Mn, and xn. Let vn = (1/ρ)un and λn =
(1/ρ)vn, then by combining the linear and quadratic terms
of the objective functionm, problem (40) can be written as

minimize − αn
N

+ In(Mn, xn,αn) + ρ

2
‖xn − zin + vin‖22

+ ρ

2
(αn − γ i + λin)

2,

(41)

with variables αn, Mn, and xn. Note that in the objec-
tive function of (41), constant terms ρ

2 ‖vin‖22 and ρ
2 (λin)

2

are dropped, since they do not affect the solution of the
optimization problem.
Problem (41) is not a convex problem, due to the indica-

tor function In(Mn, xn,αn) is a function of nonconvex set
Cn (see (31)). However, for fixed αn, set Cn is a convex set,
and hence, problem (41) can be solved easily. Therefore, to
solve problem (41), we first find the optimal α�

n and then
findM�

n and x�
n.

For fixed αn, let us denote the optimal value function of
problem (41) as

p(αn) = inf
Mn,xn

(
−αn

N
+ In(Mn, xn,αn) + ρ

2
‖xn − zin+ vin‖22

+ ρ

2
(αn − γ i + λin)

2
)

(42)

= inf
Mn,xn

(
In(Mn, xn,αn) + ρ

2
‖xn − zin + vin‖22

)
− αn

N
+ ρ

2
(αn − γ i + λin)

2, (43)

where (43) follows by noting that αn/N and ρ
2 (αn − γ i +

λin)
2 are independent of the optimization variables Mn

and xn. Then, the optimal value of problem (41) is given by

p� = inf
αn

p(αn). (44)

For ease of presentation, let us express the optimal value
function p(αn) in (43) as

p(αn) = p̃(αn) − αn
N

+ ρ

2
(αn − γ i + λin)

2, (45)

where p̃(αn) is the optimal value of the following opti-
mization problem
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minimize
ρ

2
‖xn − zin + vin‖22

subject to
|hHllml|2

σ 2
l + ∑

j∈L(n),j �=l
|hHjl mj|2 + ∑

b∈Nint(l)
x2n,bl

≥ αn,

l ∈ L(n)

x2n,nl ≥
∑

j∈L(n)

|hHjl mj|2, l ∈ Iint(n)

∑
j∈L(n)

‖ml‖22 ≤ pmax
n , (46)

with variables xn and {ml}l∈L(n). Note that to write (46),
we have used the notations defined in (31) and (32).
Let the interval [0,αmax

n ] denote the range of feasi-
ble αn for problem (46). Note that the optimal value
p̃(αn) is a nondecreasing function of αn ∈ [

0,αmax
n

]
(see

Appendix 1). Based on this observation, in Appendix 1, we
have provided the condition for which p(αn) is a unimodal
function and propose the bracketing method [30,31] to
solve problem (44). In Algorithm 2, we summarize the
bracketing method (golden ratio search) [30, Section 8.1]
to find the optimal α�

n for problem (44).

Algorithm 2 Bracketing method to find optimal α�
n for

problem (44)
1 Initialization: given SINR interval [0,αmax

n ], r = (
√
5−

1)/2, and ε > 0. Set a = 0, b = αmax
n , c = ra+ (1− r)b,

and d = (1 − r)a + rb.
2 Compute p(c) and p(d) using (45).
3 Squeeze the search SINR range: if p(c) ≤ p(d), set
b = d, else set a = c.
4 Compute c = ra + (1 − r)b and d = (1 − r)a + rb.
5 Stopping criterion: if b−a < ε, STOP, and set α�

n = c.
Otherwise, go to step 2.

Next, we find x�
n and M�

n = {m�
l }l∈L(n) that are asso-

ciated with α�
n by solving problem (46). By writing prob-

lem (46) in the epigraph form, and then following the
approach of [16, Section IV-B], problem (46) can be for-
mulated equivalently in the form of SOCP as

minimize t

subject to
[

t√
ρ/2(xn − zin + vin)

]
�SOC 0

⎡
⎢⎢⎢⎣
√
1 + 1

αn
hHllml

MH
n hll
x̃l
σn

⎤
⎥⎥⎥⎦ �SOC 0, l ∈ L(n)

[
xn,nl
MH

n hjl

]
�SOC 0, l ∈ Iint(n)[ √pmax

n
vec(Mn)

]
�SOC 0,

(47)

with variables t, xn, andMn, where x̃l = {xn,bl}b∈Nint(l) is a
subset of xn (see (12)), thematrix hjl in the third set of con-
straints denotes the channel from BS n to link l (i.e., the
index j in the third set of constraints denotes an arbitrary
link in L(n)). Note that to write problem (46) in the SOCP
form (47), we first took the square root of the objective
function of (46). Hence, the optimal value of problem (46)
is given by t�2 (i.e., p̃(α�

n) = t�2), where t� is the solution
of problem (47).
We now turn to the second step of ADMM in (37),

where the global variables {zn}i+1
n∈N and γ i+1 are updated.

By dropping the constant terms which do not affect the
solution, problem (37) can be written as

minimize
∑
n∈N

(
uiTn (xi+1

n − zn) + vin(α
i+1
n − γ )

+ρ

2
‖xi+1

n − zn‖22 + ρ

2
(αi+1

n − γ )2
)
,

(48)

with variables {zn}n∈N and γ .
Problem (48) is separable in variables {zn}n∈N and γ .

Note that minimization of problem (48) with respect
to {zn}n∈N yields problem (24), and hence, the solution
{z�

n}n∈N is given by (27). Here, we provide the solution for
γ . Minimization of problem (48) with respect to γ yields
the following optimization problem

minimize
∑
n∈N

(
vin(α

i+1
n − γ ) + ρ

2
(αi+1

n − γ )2
)
. (49)

Problem (49) is an unconstrained quadratic optimiza-
tion problem in γ . Therefore, by setting the gradient of
problem (49) with respect to γ equal to zero, we can get

γ � =
∑

n∈N vin + ραi+1
n

ρN
. (50)

Hence, the update γ i+1 = γ �. Moreover, by substitut-
ing γ i+1 in (39), we can show that the sum of the dual
variables

∑
n∈N vin is equal to zero. Thus, the update γ i+1

(i.e., (50)) further simplifies to

γ � =
∑

n∈N αi+1
n

N
. (51)

We now summarize the proposed ADMM-based dis-
tributed algorithm for SINR balancing problem in
Algorithm 3.
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Algorithm 3 Proposed ADMM-based distributed
algorithm for SINR balancing

1 Initialization: given maximum transmit power pmax
n

for all n ∈ N and penalty ρ > 0. Set i = 0, {u0n}n∈N = 0,
and {v0n}n∈N = 0.
2 BS n = 1 . . .N update local variables (Mi+1

n , xi+1
n ,

αi+1
n ).

3 Exchange local updates:

a BS n and BS tran(l) exchange their local copies xi+1
n,nl

and xi+1
tran(l),nl for all n ∈ Lint, n ∈ Nint(l).

b BS n transmits local copy αi+1
n to all other BSs for all

n ∈ N .

4 BS n = 1 . . .N update global variables (zi+1
n , γ ).

5 BS n = 1 . . .N update dual variables (ui+1
n , vi+1

n ).
6 If stopping criteria is satisfied, STOP. Otherwise set
i = i + 1, and go to step 2.

The computational steps of Algorithm 3 is similar to
that of Algorithm 1. As in Algorithm 1, step 1 initial-
izes the algorithm. Step 2 updates the local variables. In
step 3, BSs exchange their local copies to update the global
variables. Local copies xi+1

n,nl and xi+1
tran(l),nl are exchanged

between the adjacent BS n and BS tran(l), while local
copy αn is broadcasted to all other BSs. Steps 4 and 5
updates the global and dual variables, respectively. Note
that steps 2, 4, and 5 are completely decentralized. Step 6
checks the stopping criterian. A method to find the feasi-
ble solution at each iteration of Algorithm 3 is provided in
next section.

4.3 Finding feasible solution at each iteration of
Algorithm 3

Note that at each step of Algorithm 3, the locally obtained
SINR αn for all n ∈ N are not necessarily balanced (i.e.,
αn for all n ∈ N are not necessarily equal). So, we can take
the global variable γ i, which is the average of αn for all n ∈
N , as the intermediate solution of Algorithm 3. However,
due to the difference in the local copies xi+1

n,nl at BS n and
xi+1
tran(l),nl at BS tran(l), and the maximum transmit power
constraint of the BSs, the intermediate solution γ i may not
be feasible for all BSs.
Therefore, it is necessary to check the feasibility of γ i to

use it as the intermediate solution at each step of Algo-
rithm 3. The SINR γ i is feasible for BS n, if their exist a
feasible solution of problem (47) for αn = γ i and given
out-of-cell interference value xn. Thus, we set αn = γ i

and xn = zin for all n ∈ N (i.e., αn and xn are set
equal to the consensus value). Then, check the feasibility
of problem (47) by each BS in between steps 4 and 5 of
Algorithm 3, which is equivalent to the following SOCP
feasibility problem

find {ml}l∈L(n)

subject to

⎡
⎢⎢⎢⎣
√
1 + 1

αn
h H
ll ml

M H
n hll
x̃l
σl

⎤
⎥⎥⎥⎦ �SOC 0, l ∈ L(n)

[
xn,nl
M H

n hjl

]
�SOC 0, l ∈ Iint(n)[ √pmax

n
vec(Mn)

]
�SOC 0, l ∈ Iint(n)

(52)

with variable Mn = [ml]l∈L(n), where x̃l = {xn,bl}b∈Nint(l)
is a subset of xn (see (12)), the matrix hjl in the third set
of constraints denotes the channel from BS n to link l (i.e.,
the index j in the third set of constraints denotes an arbi-
trary link in L(n)). Note that γ i is feasible for the original
problem (5) only if problem (52) is feasible for all BSs.
Thus, in Algorithm 3, we can update the feasible SINR
γ i
feas as

γ i
feas =

{
γ i if problem (52) is feasiblem for all n ∈ N
γ i−1
feas otherwise,

(53)

where γ 0
feas = 0.

5 Numerical example
In this section, we numerically evaluate the performance
of proposed Algorithms 1 and 3. In our simulations, two
multicell wireless networks as shown in Figure 1 are con-
sidered. In the case of first network (i.e., Figure 1a), there
are N = 2 BSs with T = 4 antennas at each one. The dis-
tance between the BSs is denoted by DBS. In the case of
second network (i.e., Figure 1b), there are N = 7 BSs with
T = 6 antennas at each one. The BSs are located such
that they form the hexagon, and the distance between the
BSs is denoted by DBS. We assume that BSs have circular
transmission and interference regions, where the radius
of the transmission region of each BS is denoted by RBS,
and the radius of the interference region of each BS is
denoted by Rint. For simplicity, we assume 4 users per cell
in the first network, and three users per cell in the sec-
ond network. The location of users associated with BSs is
arbitrarily chosen as shown in Figure 1.
We assume an exponential path loss model, where the

channel matrix between BSs and users is modeled as

hjl =
(djl
d0

)−η/2
cjl,

where djl is the distance from the transmitter of data
stream j (i.e., BS tran(j)) to the receiver of data stream l
(i.e., user rec(l)), d0 is the far field reference distance [35],
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η is the path loss exponent, and cjl ∈ CT is arbitrarily
chosen from the distribution CN (0, I) (i.e., frequency-
flat fading channel with uncorrelated antennas). Here, we
refer an arbitrarily generated set of fading coefficients C =
{cjl|j, l ∈ L} as a single fading realization.
We assume that the maximum power constraint is same

for each BS, i.e., pmax
n = pmax

0 for all n ∈ N , and σl = σ

for all l ∈ L. We define the signal-to-noise ratio (SNR)
operating point at a distance r as

SNR(r) =
(

r
d0

)−η pmax
0
σ 2 . (54)

In our simulations, we set d0 = 1, η = 4, σ 2 = 1,
pmax
0 /σ 2 = 45 dB, SNR(Rint) = 0 dB, SNR(RBS) = 5 dB,

and DBS = 1.5 × RBS.
To illustrate the convergence behavior of Algorithm 1,

we consider a single fading realization and run the algo-
rithm for both networks shown in Figure 1. For a compar-
ison, we consider a dual decomposition-based distributed
algorithm (DDA) proposed in [12]. For DDA [12], we con-
sider fixed step size α to solve the master problem (see in
[12]), which is based on the subgradient method [18].
Figure 3 shows the normalized power accuracy |pi −

p�|/p�, where pi is the objective value at ith iteration,
and p� is the optimal objective value obtained by using
centralized algorithm [16, Section IV]. SINR target is
set to γl = 5 dB for all l ∈ L. DDA [12] plots are
drawn for the subgradient step size α = 10, 50, 100.
For Algorithm 1, the penalty parameter is set to ρ =
0.5β ,β , 2β , where β depends on the problem parameters
(detailed in Appendix 2) and it is defined as

β = max
n∈N

⎧⎨
⎩
∑

l∈L(n)

(100.1×γl )/‖hll‖22

⎫⎬
⎭ . (55)

Results show that the proposed Algorithm 1 converges
much faster than DDA [12]. For example, in both multi-
cell networks, Algorithm 1 can achieve normalized power
accuracy 10−2 in less than 10 iterations. However, in order
to gain the same accuracy (i.e., normalized power accu-
racy 10−2), DDA [12] requires more than 200 iterations
for all simulated cases in both networks. Results also show
that Algorithm 1 performs very well for a wide range of
values of ρ. Hence, Algorithm 1 is less sensitive to the
variation of values of ρ, while the results show that the
convergence speed of DDA [12] is quite sensitive to the
variation of the subgradient step size α.
In order to see the average behavior of the proposed

Algorithm 1, we next consider fading case. Here, we run
Algorithm 1 for 500 fading realizations with the algorithm
parameter ρ = 2β for both networks shown in Figure 1.
We first present the feasibility rate of the proposed algo-
rithm, and then, we provide the average performance of
the algorithm.
Figure 4 shows the feasibility rate of Algorithm 1 ver-

sus iteration for SINR target γl = 5 dB and 15 dB for
all l ∈ L. For a comparison, we consider DDA [12] with
the subgradient step size α = 50. Plots are drawn for the
first 50 iterations. Results show that the proposed algo-
rithm can achieves the feasible solution for all channel
realizations (for multicell network 1a, the proposed algo-
rithm achieves the feasible solution for all simulated cases;
and for multicell network 1b, the feasibility rate improves
with the iteration). However, for DDA [12] feasibility rate
depends on the network size and the SINR target. For
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Figure 3 Normalized accuracy versus iteration. Normalized power accuracy versus iteration for SINR γl = 5 dB for all l ∈ L: (a)Multicell
network 1; (b)Multicell network 2.
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Figure 4 Feasibility rate versus iteration. Feasibility rate versus iteration for SINR target γl = 5 dB and 15 dB for all l ∈ L: (a)Multicell network 1;
(b)Multicell network 2.

example, in the case of small network and low SINR tar-
get (i.e., multicell network 1a and SINR target γl = 5 dB),
DDA [12] can achieve the feasible solution for all simu-
lated cases. But, with increase in the SINR target and the
network size, the feasibility rate of DDA [12] drops sig-
nificantly. For example, in multicell network 1b for SINR
target γl = 15 dB, DDA [12] is not able to find a feasible
solution for any of the fading realization.
Figure 5 shows the average sum power versus iteration

for multicell network 1a. The SINR target γl is set to 15

dB for all l ∈ L. For a comparison, we consider central-
ized algorithm [16, Section IV] and DDA [12]. DDA [12]
plots are drawn for the subgradient step size α = 10, 50.
For a fair comparison of Algorithm 1, DDA [12], and the
centralized algorithm [16, Section IV], the plots are drawn
for the fading realizations that are feasible for all consid-
ered algorithms. Results show that the convergence speed
of proposed Algorithm 1 compared with DDA [12] is
fast and can achieves the centralized solution in less than
ten iterations.
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Figure 5Multicell network 1: Average sum power versus iteration.Multicell network 1: Average sum power versus iteration for SINR target
γl = 15 dB for all l ∈ L.
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Figure 6Multicell network 2: Average sum power versus SINR.Multicell network 2: Average sum power versus SINR for ρ = 2β .

Figure 6 shows the average sum power versus SINR
target for multicell network 1b. For a comparison, we con-
sider centralized algorithm [16, Section IV]. To note a fair
progress of the proposed algorithm for a wide SINR target
values, each curve is averaged for the fading realizations
that are feasible for all the SINR values. Plots are drawn
for the average sum power at iteration number 10 and 50.
Results show that the proposed Algorithm 1 can achieve
the centralized solution over the wide rage of SINR
target values.

We next evaluate the performance of Algorithm 3 for
SINR balancing problem (P2). We, first, consider single
fading realization and run the algorithm for both networks
shown in Figure 1. As a benchmark, we consider central-
ized optimal algorithm proposed in [16, Section V]. In the
simulation, we set SNR = 5 dB, and for Algorithm 2, we set
ε = 0.1, and αmax

n = 2× 100.1×SNR for all n ∈ N . Plots are
drawn for ρ = 0.5, 1, 2.
Figure 7 shows the progress of the global variable γ by

iteration. Note that the global variable γ is the average of
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Figure 7 Evolution of average SINR for different algorithm parameter ρ. Progress of global variable γ for SNR = 5 dB: (a)Multicell network 1;
(b)Multicell network 2.
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Figure 8 Evolution of an average best SINR, that is feasible for all BSs. Feasible SINR γ i
best versus iteration for SNR = 5 dB: (a)Multicell

network 1; (b)Multicell network 2.

SINR values {αn}n∈N that is obtained independently by all
N BSs (see (51)). Results show that for all considered val-
ues of ρ, Algorithm 3 can obtain SINR γ that converges
to the optimal centralized solution. Since γ is the average
of the SINR values obtained independently in all N BSs,
the intermediate values of γ may not be feasible for all BSs
before the algorithm converges. For example, the value of
γ for ρ = 0.5 is clearly infeasible at the iteration step
i = {4, 5, 6, 7, 8} in Figure 7a. Therefore, to illustrate the
convergence of feasible γ , we define the following metric

γ i
best = max

t=1,...,i
{γ t

feas}, (56)

where γ i
best is the best feasible SINR value at ith itera-

tion, and γ t
feas is the feasible SINR at tth iteration (53).

Figure 8 shows the behavior of γ i
best by iteration. Results

show that Algorithm 3 can obtain the feasible values of
γ that converges to the centralized solution. For example,
with ρ = 0.5, the algorithm converges to the centralized
solution in just tenth iterations in Figure 8a.
Figure 9 shows the SINR γ i

best for different SNR val-
ueso. Each curve is averaged over 300 fading realizations.
In the simulation, penalty parameter ρ is set to 0.5. Plots
are drawn for the SINR obtained at iteration number 20,
30, and 50 of Algorithm 3. Results show that the proposed
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best versus SNR for ρ = 0.5: (a)Multicell network 1; (b)Multicell network 2.
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Algorithm 3 can achieve close to the centralized solution
over the wide range of SNR values without any tuning of ρ.

6 Conclusion
We have provided distributed algorithms for the radio
resource allocation problems in multicell downlink multi-
input single-output systems. Specifically, we have con-
sidered two optimization problems: P1 - minimization
of the total transmission power subject to signal-to-
interference-plus-noise ratio (SINR) constraints of each
user, and P2 - SINR balancing subject to total transmit
power constraint of BSs. We have proposed consensus-
based distributed algorithms, and the fast solution
method via alternating direction method of multipliers.
First, we have derived a distributed algorithm for problem
P1. Then, in conjunction with the bracketing method, the
algorithm is extended for problem P2. Numerical results
show that the proposed distributed algorithms converge
very fast to the optimal centralized solution.

Endnotes
a Similar assumptions are made, e.g., in [36] in the

context of arbitrary wireless networks.
b The value of Rint is chosen such that the power of the

interference term is below the noise level, and this
commonly used approximation is made to avoid
unnecessary coordinations between distant BSs. The
appropriate value of Rint can be chosen to trade off
between the required backhaul signaling and the
optimality of the solution. The effect of nonzero znl terms
can be accurately modeled by changing the statistical
characteristics of noise nl at rec(l). However, those issues
are extraneous to the main focus of the paper.

c In problem (4) and (5), the set {znl}l∈Lint,n∈Nint(l) is a
collection of znl for which the lth user is inside the
interference region of BS n. Thus, the constrained for
unconsidered out-of-cell interference term (i.e., z2nl = 0)
for lth user that is outside the interference region of BS n
is dropped in problem (4) and (5).

d A more general SINR balancing problem which can
set priority of users (keeping the SINR values of data
stream to a fixed ratios) [6, Section IV-C] can be
formulated. To simplify the presentation, we consider
maximization of the minimum SINR. Note that the
proposed decentralized method can be easily generalized
to the more general problem considered in
[6, Section IV-C].

e Note that Lint(n) ⊆ L(n). Hence, tran(l) = n for all
l ∈ Lint(n).

f To simplify the presentation, here we have used a
slight abuse of notation, i.e., we have considered that the
sets in (12) are ordered.

g Let {uk,nl}k∈{n,tran(l)},l∈Lint,n∈Nint(l) be the dual variables
associated with the equality constraints of problem (8),

then by following steps (10) to (12), one can easily express
un = {{un,nl}l∈Iint(n), {un,bl}l∈Lint(n),b∈Nint(l)}, n ∈ N .

h Variable znl (component of zn) couples two local
variables xn,nl (component of xn) and xtran(l),nl
(component of xtran(l)). Hence, in step (19) to update znl
coordination between BS n and BS tran(l) is required.

i For convenience, we can combine the linear and
quadratic terms of problem (21) as uiTn (xn − zin)+
ρ
2 ‖xn − zin‖22 = ρ

2 ‖xn − zin + vin‖22 − ρ
2 ‖vin‖22.

j Note that {un}n∈N are the dual variables associate with
the consistency constraints of problem (16). By following
steps (10) to (12), we can easily show un={{un,nl}l∈Iint(n),
{un,bl}l∈Lint(n),b∈Nint(l)

}
, n ∈ N .

k Note that (20) in the components of un, xn, and zn
can be expressed as ui+1

k,nl = uik,nl + ρ(xi+1
k,nl − zi+1

nl ) for all
k ∈ {n, tran(l)}, l ∈ Lint, n ∈ Nint(l).

l In ADMM algorithm, standard stopping criteria is to
check primal and dual residuals [21]. However, it is often
the case that ADMM can produce acceptable results of
practical use within a few tens of iteration [21]. As, finite
number of iteration is more favorable for practical
implementation, we adopt fixed number of iteration to
stop the algorithm.

m For convenience we can combine the terms in
problem (40) as a) uiTn (xn − zin) + ρ

2 ‖xn − zin‖22 =
ρ
2 ‖xn − zin + vin‖22 − ρ

2 ‖vin‖22 and b) vin(αn − γ i)+
ρ
2 (αn − γ i)2 = ρ

2 (αn − γ i + λin)
2 − ρ

2 (λin)
2.

n In ADMM algorithm, standard stopping criteria is to
check primal and dual residuals [21]. However, it is often
the case that ADMM can produce acceptable results of
practical use within a few tens of iteration [21]. As, finite
number of iteration is favorable for practical
implementation, we adopt fixed number of iteration to
stop the algorithm.

o For fixed radius RBS in Figure 1, different SNRs (i.e.,
different SNR(RBS)) are obtained by changing

pmax
0
σ 2 in (54).

pThe interval [0,αmax
n ] denotes the range of feasible αn

for problem (46).

Appendices
Appendix 1
In this appendix, we propose the bracketing method
[30,31] to solve problem (44). Let us start by combining
the second (linear) and third (quadratic) terms of (45) as

p(αn) = p̃(αn) + ρ

2

(
αn − γ i + λin − 1

ρN

)2

− 1
N

(
γ i − λin + 1

2

)
.

(57)

Without loss of generality, let us drop the constant term
of (57) and simplify it as

p(αn) = p̃(αn) + ρ

2
(αn − θ)2, (58)
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where θ = γ i − λin + 1
ρN .

Note that the optimal value p̃(αn) is nondecreasing
function of αn ∈ [0,αmax

n ]p.To see that, let Pi and Pj be
the feasible set of problem (46) for αn = αi

n and αn =
α
j
n, respectively. If α

j
n ≥ αi

n, then it is easy to see that
Pj ⊆ Pi. Hence, the optimal value p̃(αj

n) ≥ p̃(αi
n) for all

α
j
n ≥ αi

n and αi
n,α

j
n ∈ [0,αmax

n ]. Furthermore, there exists
a partition of [0,αmax

n ] as [0,φ]∪ [φ,αmax
n ] such that

p̃(αn) = c, αn ∈ [0,φ] , (59)

where c is the optimal solution of problem (46) for αn = 0.
Next, we propose to use bracketing method [30,31] to

find the infimum of function p(αn) on the interval αn ∈
[0,αmax

n ]. First, in Lemma 1, we show that the function
p(αn) is a unimodal function on the interval αn ∈ [0,αmax

n ]
for the condition: C) θ ≤ φ .

Lemma 1. The function p(αn),

p(αn) = p̃(αn) + ρ

2
(αn − θ)2, (60)

is a unimodal function on the interval αn ∈ [0,αmax
n ] for

the condition C.

Proof:

1. For the case θ ≤ 0, the proof is trivial, since p(αn) is
a sum of two increasing functions on the interval
αn ∈ [0,αmax

n ].
2. For the case θ > 0, let us partition [0,αmax

n ] as
[0, θ ]∪ [θ ,αmax

n ]. On the interval αn ∈ [0, θ ], the
function p̃(αn) takes a constant value c. On the
interval αn ∈ [θ ,αmax

n ], the function p̃(αn) is a
nondecreasing function. Hence, the function p(αn)
is a sum of affine and convex functions on the
interval [0, θ ], and a sum of nondecreasing and
increasing functions on the interval [θ ,αmax

n ]. Thus,
the function p(αn) is a unimodal function.

Lemma 1 implies that for the condition C (i.e., θ ≤
φ), the infimum of the function p(αn) can be obtained
optimally by using bracketing method [30,31].
For the case condition C is not satisfied (i.e., φ ≤ θ ),

let us partition [0,αmax
n ] as [0,φ]∪ [φ, θ ]∪ [θ ,αmax

n ]. On
the interval αn ∈ [0,φ], the function p(αn) is a decreas-
ing function (since p̃(αn) takes a constant value c, and
(αn − θ)2 is a decreasing function). On the interval αn ∈
[θ ,αmax

n ], the function p(αn) is an increasing function
(since p̃(αn) is nondecreasing function and (αn − θ)2 is
increasing function). On the interval αn ∈ [φ, θ ], analyt-
ically expressing the curvature of p(αn) is difficult, since
the curvature of function p̃(αn) depends on the numer-
ical parameters. This implies that for the case φ ≤ θ ,

the infimum of the function p(αn) lies on the interval
[φ, θ ], i.e.,

arg min
αn∈ [0,αmax

n ]
p(αn) ∈ [φ, θ ] . (61)

Thus in the case φ ≤ θ (i.e., if condition C is not sat-
isfied), the solution of problem (61) obtained by using
bracketing method [30,31] lies at most (θ − φ) away from
the optimal solution. However, in all of our numerical sim-
ulations, we have always noted that the function p(αn) is
a unimodal function. In that case, problem (61) is solved
optimally by bracketing method [30,31]. Moreover, the
convergence of the proposed Algorithm 3 (see numerical
example, Section 5) to the centralized solution shows that
bracketing method can be used to solve problem (44).

Appendix 2
The ADMM method is guaranteed to converge for all
values of its penalty parameter ρ [21]. However, the
rate of convergence of ADMM algorithm is sensitive to
the choice of the penalty parameter ρ. In practice, the
ADMM penalty parameter ρ is either tuned empirically
for each specific application, or set equal to 1 by normal-
izing the problem data set [21, Chapter 11]. Note that
in Algorithm 1, to solve the local variable update (22),
we can normalize the problem data (i.e., sum power
(
∑

l∈L(n) ‖ml‖22)) by normalizing factor βn > 0 and set
ρ = 1, which is equivalent to set ρ = βn in Algorithm 1,
if the problem data (i.e., sum power (

∑
l∈L(n) ‖ml‖22))

is not normalized. To elaborate further, let us express
equivalently the local variable update (22) as

minimize
1
βn

⎛
⎝ ∑

l∈L(n)

‖ml‖22
⎞
⎠+ ρ

2
‖xn − zin + vin‖22

subject to

⎡
⎢⎢⎢⎢⎢⎣

√
1 + 1

γl
hH
llml

MH
nhll
x̃l

σl

⎤
⎥⎥⎥⎥⎥⎦ �SOC 0, l ∈ L(n)

[
xn,nl
MH

nhjl

]
�SOC 0, l ∈ Iint(n)

(62)

with variables Mn = [ml]l∈L(n) and xn, where βn > 0
is the normalizing factor, x̃l = {xn,bl}b∈Nint(l) is a subset
of xn (see (12)), the matrix hjl in the second set of con-
straints denotes the channel from BS n to link l (i.e., the
index j in the third set of constraints denotes an arbi-
trary link in L(n)), and the notation �SOC denotes the



Joshi et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:1 Page 18 of 19
http://jwcn.eurasipjournals.com/content/2014/1/1

generalized inequalities with respect to the second-order
cone [16,19].
For problem (62), the optimal choice of βn is∑
l∈L(n) ‖m�

l ‖22. However, before the convergence of
Algorithm 1, we do not have optimal beamformers (i.e.,
{m�

l }l∈L(n)). Thus, in our simulation, to estimate βn, we
ignore the interference and noise terms and find beam-
forming vector m̃l that achieves the required SINR thresh-
old γl, which can be expressed as

m̃l = (
100.1×γl

)
/‖hll‖22, l ∈ L(n).

Hence, the normalizing factor βn for problem (62) can
be written as

βn =
∑

l∈L(n)

m̃l

=
∑

l∈L(n)

(100.1×γl)/‖hll‖22.

Furthermore, we find β = max
n∈N {βn}, and set ρ = β for

Algorithm 1.
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