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Abstract

The 3D Multiple-input multiple-output (MIMO) code is a robust and efficient space-time block code (STBC) for the
distributed MIMO broadcasting but suffers from high maximum-likelihood (ML) decoding complexity. In this paper, we
first analyze some properties of the 3D MIMO code to show that the 3D MIMO code is fast decodable. It is proven that
the ML decoding performance can be achieved with a complexity of O(M4.5) instead of O(M8) in quasi-static channel
withM-ary square QAMmodulations. Consequently, we propose a simplified ML decoder exploiting the unique
properties of the 3D MIMO code. Simulation results show that the proposed simplified ML decoder can achieve much
lower processing time latency compared to the classical sphere decoder with Schnorr-Euchner enumeration.
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1 Introduction
Multiple-input multiple-output (MIMO) is a promising
technique that can bring significant improvements to the
wireless communication systems. In combination with
space-time block code (STBC), it provides higher spec-
trum efficiency with better communication reliability [1].
In the last decades, MIMO has been widely employed in
the latest wireless communication standards such as IEEE
802.11n, 3GPP Long Term Evolution (LTE), WiMAX, and
Digital Video Broadcasting-Next Generation Handheld
(DVB-NGH). It is also seen as the key technology for the
future digital TV terrestrial broadcasting standards [2].
A so-called space-time-space (3D) MIMO code [3] was

proposed for future TV broadcasting systems, in which
the services are delivered by the MIMO transmission in
a single-frequency network (SFN). Specifically, it is pro-
posed for a distributed MIMO broadcasting scenario,
where TV programs are transmitted by two geographi-
cally separated transmission sites, each site equipping two
transmit antennas. On the other hand, each receiver has
two receive antennas, forming a 4 × 2 MIMO transmis-
sion. The 3D MIMO code has been shown to be robust
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and efficient in distributedMIMO broadcasting scenarios
where there exist strong received signal power imbalances
[4]. Hence, it is a promising candidate for MIMO profile
of future broadcasting standards. However, the 3DMIMO
code suffers from a high computational complexity when
the maximum-likelihood (ML) decoding is adopted. The
decoding complexity is as high as O(M8) when M-QAM
constellation is used. Up to now, no study on the decod-
ing complexity reduction for the 3DMIMO code has been
carried out in the literature.
Recently, a lot of efforts have been made in the STBC

design to obtain both high code rate and low decod-
ing complexity [5-11]. The decoding complexity reduction
is commonly achieved by exploiting the orthogonality
embedded in the STBC codeword. When there exist
groupwise orthogonality in the codeword, the joint detec-
tion of many information symbols is converted into inde-
pendent, groupwise detections [6,10], yielding low decod-
ing complexity. For other cases such as DjABBA code [12],
Biglieri-Hong-Viterbo (BHV) code [7], Srinath-Rajan code
[8], and Ismail-Fiorina-Sari (IFS) code [11] in which the
orthogonality only exists in a part of information symbols,
some symbols can be detected in a groupwise manner
once we condition them with respect to other symbols.
Such kind of STBCs are referred to as fast decodable
STBCs because they achieve ML decoding performance
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with a reduced order of complexity. However, most of the
fast decodable STBCs are not optimized for distributed
MIMO broadcasting scenarios, and they are not robust
under received signal power imbalance conditions [4].
A partial interference cancellation (PIC) group decod-

ing scheme has been presented, aiming at reducing the
decoding complexity of the STBCs containing groupwise
orthogonalities in the codewords [13,14]. A number of
STBCs that are optimized for this decoding scheme have
also been proposed [14,15]. This scheme actually uses a
linear equalization to convert the joint detection of a large
number of symbols to several groups of ML decodings
for few symbols. However, the overall performance of this
decoding scheme cannot achieve the ML optimality.
Some alternatives with reduced decoding complexity

have been presented for the distributed MIMO broad-
casting. Polonen and Koivunen described a STBC with
less decoding complexity based on orthogonal basis [16].
However, such a code does not achieve full diversity or full
rate for 4×2MIMO transmissions and therefore performs
worse than the 3D MIMO code. A ‘punctured version’
of the 3D MIMO code that possesses full rate with low
decoding complexity has also been proposed [17]. How-
ever, it does not achieve full diversity and is hence less
robust in harsh channel conditions.
In this paper, we propose a reduced-complexity ML

decoder for the 3D MIMO code which exploits the
embedded orthogonality in the codeword. The main con-
tributions are as follows:

• We propose to modify the original 3D MIMO
codeword through some permutations of
information symbols which lead to an ML decoding
algorithm with reduced complexity without affecting
all desirable properties of the 3D MIMO code.

• We prove that the 3D MIMO code is fast decodable.
Moreover, we show that the worst-case decoding
complexity is O(M4.5) for M-ary square QAM
modulations which is the least among all square
full-rate STBCs for 4 × 2MIMO transmission.

• Based on the unique properties of the new form of
3D MIMO codeword, we propose a novel
implementation of the simplified decoder that
achieves a lower average complexity in terms of time
latency without losing the ML optimality. The
proposed implementation is also applicable for other
fast decodable STBCs.

The remainder of the paper is organized as follows.
Some fundamentals of theMIMO detection are presented
in Section 2. In Section 3, the 3D MIMO code is first
recalled. Consequently, a modification of the codeword is
proposed to facilitate the decoding process. Three impor-
tant properties of the new codeword are also revealed.

With this knowledge, in Section 4, the ML decoder with
a worst-case decoding complexity of O(M4.5) is derived.
Then, in Section 5, a new implementation of the reduced-
complexity ML decoder is described. Section 6 presents
the symbol error and complexity performance of the new
decoder. Conclusions are drawn in Section 7.

1.1 Notations
Vectors and matrices are written in boldface letters.
Superscript XT represents transposition of matrix X. xR
and xI denote the real and imaginary parts of a com-
plex number x, respectively. The operator (·̌) performs the
complex real conversion from C to R2×2:

x̌ �
[
xR −xI
xI xR

]
. (1)

When the (·̌) operator is applied to a matrix X ∈ Cm×n,
the operation in (1) is performed for all elements xj,k in
the matrix, i.e., the (j, k)th 2 × 2 submatrix of X̌ is x̌j,k .
For a complex vector x =[ x1, x2, . . . , xn]T ∈ Cn, the oper-
ator (·̃) separates the real and imaginary parts of the given
vector, i.e., x̃ �[ xR1 , x

I
1, . . . , x

R
n , xIn]T. For a matrix X =

[ x1, x2, . . . , xn], where xj is the jth column of X, the oper-
ator vec(X) stacks the columns of X to form one column
vector, i.e., vec(X) �[ xT1 , x

T
2 , . . . , x

T
n ]T. ṽec(X) denotes

vectorizing matrix X followed by the real/imaginary part
separation. The inner product of two real-valued vectors x
and y is denoted by 〈x, y〉 = xTy. The n×n identity matrix
is denoted by In. The operator ⊗ denotes the Kronecker
product. Finally, i represents

√−1.

2 Systemmodel
2.1 MIMO systemmodel
We consider a MIMO transmission with Nt transmit and
Nr receive antennas over flat fading channel. The received
signal Y ∈ CNr×T is

Y = HX + W, (2)

where X ∈ CNt×T is the STBC codeword matrix which
is transmitted over T channel uses, W ∈ CNr×T is a
complex-valued additive white Gaussian noise (AWGN)
component, H ∈ CNr×Nt is the channel matrix whose
(j, k)th element hj,k denotes the channel coefficient of
the link between the kth transmit antenna and the jth
receive antenna. The channel is assumed to be quasi-
static. That is, the channel coefficients keep constant over
the duration of one STBC codeword, but change from one
codeword to another. Moreover, hj,k ’s are assumed to be
independent from each other.
For linear STBCs, the codeword matrix X can be

obtained through a linear operation [7]:

ṽec(X) = G̃s, (3)
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where s =[ s1, s2, . . . , sκ ]T is the vector containing κ inde-
pendent information symbols. The code rate of STBC is
κ/T information symbols per channel use. The generator
matrix G ∈ R2NtT×2κ is obtained:

G �[ ˜vec(A1), ˜vec(B1), . . . , ˜vec(Bκ)] , (4)

where Aj ∈ CNt×T and Bj ∈ CNt×T are the complex
weight matrices representing the contribution of the real
and imaginary parts of the jth information symbol sj in the
final codeword matrix.
Separating the real and imaginary parts of the transmit-

ted and received signals and stacking the columns of the
codeword, the receivedMIMO signal (2) can be expressed
in an equivalent real-valued form:

ỹ = Heq̃s + w̃, (5)

where ỹ = ṽec(Y) and w̃ = ˜vec(W), and Heq ∈ R2NrT×2κ

is the equivalent channel matrix and is obtained by

Heq = (IT ⊗ Ȟ)G. (6)

Note that the real-valued expression of the signal can
be obtained from the complex-valued form via a lin-
ear transform. Hence, we will jointly use both real- and
complex-valued forms in the sequel.

2.2 ML decoding of MIMO signals
Once the channelHeq is known by the receivera, the infor-
mation symbols can be retrieved from the received signal
ỹ in (5). The ML solution of the transmitted signal is the
combination of information symbols s̃ =[ s1, s2, . . . , sκ]
that minimizes the Euclidian distance between the chan-
nel distorted information signal Heq̃s and received signal
ỹ, namely

ŝML = arg min
s∈�κ

‖̃y − Heq̃s‖2, (7)

where � is the set of the constellation symbols. (7) indi-
cates that the ML solution is found by jointly determin-
ing κ independent information symbols. In other words,
when the modulation of these symbols is M-QAM, the
ML decoding should exhaustively check all Mκ combi-
nations. The search complexity grows dramatically with
higher modulation order or larger number of informa-
tion symbols in one codeword. Hence, theML decoding is
computationally demanding.

2.3 Fast ML decoding of MIMO signals
More efficient STBC decoding is achieved with the help
of orthogonal-triangular (QR) decomposition [7,18]. The
QR decomposition of the equivalent channel matrix Heq
yields Heq = QR, where Q ∈ R2NrT×2κ is a unitary
matrix, and R ∈ R2κ×2κ is an upper triangular matrix.

The detailed definitions of the elements in Q and R can
be found in the Appendices. Instead of solving (7), the ML
solution can be alternatively found by

ŝML = arg min
s∈�κ∩S

‖̃z − R̃s‖2, (8)

where z̃ = QT̃y is a linear transformation of received
signal and z̃ ∈ R2κ ; S is a hypersphere centered on the
received signal. Only the codewords inside the hyper-
sphere are checked during the search in order to reduce
the search complexity. The size of the hypersphere is rep-
resented by its radius. The decoding process is turned
into a bounded search over a κ-level tree with complex-
valued nodes. Hence, the worst-case decoding complexity
is O(Mκ ).
Moreover, according to the property of the QR decom-

position, some information symbols can be decoded inde-
pendently from the others if some elements of R are
equal to zero. It suggests that the joint search in a high
dimension is converted into a bunch of parallel, indepen-
dent searches in low dimensions. This results in a sig-
nificant reduction of the worst-case decoding complexity
[7,8,19].

3 3DMIMO code
In this section, we propose a new 3D MIMO codeword
that enables low sphere decoding complexity via exchang-
ing the positions of information symbols in the original 3D
MIMO codeword. The basic idea behind this modification
comes from the facts that the orthogonality embedded in
the information symbols essentially enables independent
detections and the sphere decoding complexity is mainly
determined by the orthogonality among the first several
symbols. Hence, exploiting the underlying orthogonal-
ity in the codeword and carefully choosing the sequence
of information symbols can bring benefits in terms of
decoding complexity.

3.1 A new proposal of the 3D MIMO codeword
The initially proposed codeword matrix of the 3D MIMO
code is explicitly written as

X3D =
[
Xgolden,1 −X∗

golden,2
Xgolden,2 X∗

golden,1

]

= 1√
5

⎡⎣α(s1 + θs2) α(s3 + θs4) −α∗(s∗5 + θs∗6) −α∗(s∗7 + θs∗8)
iᾱ(s3 + θ̄s4) ᾱ(s1 + θ̄s2) iᾱ∗(s∗7 + θ̄s∗8) −ᾱ∗(s∗5 + θ̄s∗6)
α(s5 + θs6) α(s7 + θs8) α∗(s∗1 + θs∗2) α∗(s∗3 + θs∗4)
iᾱ(s7 + θ̄s8) ᾱ(s5 + θ̄s6) −iᾱ∗(s∗3 + θ̄s∗4) ᾱ∗(s∗1 + θ̄s∗2)

⎤⎦,

(9)

where θ = 1+√
5

2 , θ̄ = 1 − θ , α = 1 + i(1 − θ),
and ᾱ = 1 + i(1 − θ̄ ). It is constructed in a hierarchi-
cal manner: eight information symbols (κ = 8) are first
encoded to two golden codewords [20], i.e. Xgolden,1 and
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Xgolden,2, which are consequently arranged in an Alam-
outi manner [21] over four channel uses (T = 4)b. This
results in a code rate of 2 which is full rate for the 4 × 2
MIMO transmission. Previous study shows that the 3D
MIMO code achieves efficient and robust performance.
However, since eight information symbols are stacked
in one codeword, the ML decoding complexity is up to
O(M8).
It was shown that it is possible to achieve lower sphere

decoding complexity through permuting the sequence of
information symbols [22]. We propose to slightly modify
the codeword by exchanging the positions of informa-
tion symbols (s3, s4) and (s5, s6), yielding a new form of
codeword:

X3D,new

= 1√
5

⎡⎣ α(s1 + θs2) α(s5 + θs6) −α∗(s∗3 + θs∗4) −α∗(s∗7 + θs∗8)
iᾱ(s5 + θ̄s6) ᾱ(s1 + θ̄s2) iᾱ∗(s∗7 + θ̄s∗8) −ᾱ∗(s∗3 + θ̄s∗4)
α(s3 + θs4) α(s7 + θs8) α∗(s∗1 + θs∗2) α∗(s∗5 + θs∗6)
iᾱ(s7 + θ̄s8) ᾱ(s3 + θ̄s4) −iᾱ∗(s∗5 + θ̄s∗6) ᾱ∗(s∗1 + θ̄s∗2)

⎤⎦ .

(10)

Since we only change the sequence of the information
symbols in the codeword (the third and fourth infor-
mation symbols become the fifth and sixth, respectively,
and vice versa) and the information symbols are inde-
pendent from each other, the new codeword preserves
all the good attributes of the original 3D MIMO code
in distributed MIMO scenarios. More importantly, this
modification is based on the embedded orthogonalities in
the 3D MIMO codeword and yields an interesting code-
word structure which will be exploited to achieve lower
decoding complexity. The advantages brought by the new
codeword structure will be highlighted in the following
sections.

3.2 Key properties of the proposed 3D MIMO codeword
Due to the underlying Alamouti and golden structures,
the 3D MIMO code has some unique properties which
lead to simplified decoding algorithms. For the modified
3D MIMO code (10) over a 4 × 2 MIMO channel, the R
matrix in (8) is a 16 × 16 real-valued matrix. Rewrite R in
a block-wise form:

R =

⎡⎢⎢⎣
R11 R12 R13 R14
0 R22 R23 R24
0 0 R33 R34
0 0 0 R44

⎤⎥⎥⎦ , (11)

where Rjk ’s are 4 × 4 submatrices containing 〈qm, hn〉’s
withm = 4(j−1)+1, . . . , 4j and n = 4(k−1)+1, . . . , 4k.
Based on the new codeword in (10) and taking into

account (6), (3), and (4), we obtain a few interesting prop-
erties of R that can be made use of to achieve a low
decoding complexity.

Theorem 1. R11 is an upper triangular matrix with
〈q1, h2〉 = 〈q1, h4〉 = 〈q2, h3〉 = 〈q3, h4〉 = 0.

Theorem 2. R12 is a null matrix when the channel is
quasi-static, i.e., 〈qj, hk〉 = 0, ∀j = 1, 2, 3, 4, and k =
5, 6, 7, 8.

Corollary 1. R22 is an upper triangular matrix with
similar structure as R11, i.e., 〈q5, h6〉 = 〈q5, h8〉 =
〈q6, h7〉 = 〈q7, h8〉 = 0.

The proofs of Theorem 1, Theorem 2, and Corollary 1
are presented in the Appendices. The above properties are
visualized in Figure 1.

Figure 1 Rmatrix of the new 3DMIMO codeword. Illustration of the Rmatrix of the new 3DMIMO codeword given in (10) in quasi-static channel.
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Remark 1. Theorem 1 and Corollary 1 actually suggest
the independency between real and imaginary parts of the
information symbols. For instance, 〈q1, h2〉 = 〈q1, h4〉 =
〈q3, h4〉 = 0 means that the real parts of the first and sec-
ond received symbols, namely z̃(1) and z̃(3), do not con-
tain any contribution from sI1 and sI2. Similarly, 〈q2, h3〉 =
0 means that their imaginary parts, namely z̃(2) and z̃(4),
do not contain any contribution from sR1 and sR2 , either. As
we will show later, this real/imaginary independency leads
to independent and parallel detections for real part and
imaginary part, respectively.
The real/imaginary part independency comes from the

underlying golden and Alamouti structures. It has been
revealed that the complex-valued R matrix of the golden
code has a real upper left submatrix [19], which coincides
with the structure as presented in Theorem 1. It shows the
real/imaginary part independency of the golden code in its
2×2 codewordmatrix. The Alamouti-like arrangement of
the two golden codewords, on the other hand, helps create
this independency in the 4× 4 codewordmatrix of the 3D
MIMO code.

Remark 2. Theorem 2 indicates that some parts of the
information symbols are uncorrelated with others in the
received symbols. More precisely, the first two received
complex symbols, or equivalently z̃(1), z̃(2), z̃(3), and z̃(4),
do not contain any contribution from information sym-
bols s3 and s4. Hence, a group of six information symbols
s1, s2, s5, s6, s7, and s8 can be jointly determined, regardless
of the values of s3 and s4. It means that the ML decoding
can be achieved by joint searches over six, instead of eight,
information symbols. In other words, the ML decoding

complexity is expected to be O(M6) instead of O(M8).
Therefore, the 3D MIMO code is fast decodable.
It should be noted that Theorem 2 is partially enabled by

the embedded Alamouti structure in the codeword. The
channel coefficients should be constant within the dura-
tion of one codeword to validate the orthogonalities in the
Alamouti structure. Hence, Theorem 2 is only valid in the
quasi-static channelsc.

3.3 Comparison with the original 3DMIMO codeword
Figure 1 illustrates the R matrix of the new 3D MIMO
codeword. Compared with the original one as shown in
Figure 2, the new structure is actually more favorable for
the MIMO decoding. In the new codeword, the contribu-
tions of information symbol groups (s1, s2) and (s3, s4) are
totally uncorrelated in the received signal, which means
that the ML detection of eight information symbols can
be achieved by two independent and less complex detec-
tions of six information symbols. Moreover, the structures
of R11 and R22 enable the independent detections of real
and imaginary parts of (s1, s2) and (s3, s4), which leads to
further complexity reduction. Yet, this real/imaginary part
separation is not straightforward in the original codeword.
It should be emphasized that the new codeword only

changes the sequence of the information symbols in the
codeword to facilitate the decoding process. It does not
affect all the good properties of the 3D MIMO code.

4 ProposedML decoder with low complexity
In this section, a low-complexity ML decoding algo-
rithm exploiting the unique properties highlighted in the
previous section is proposed for the 3D MIMO code.

Figure 2 Rmatrix of the original 3DMIMO codeword. Illustration of the Rmatrix of the original 3D MIMO codeword given in (9) in quasi-static
channel.
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Generally speaking, the complexity reduction is achieved
in two steps. Based on Theorem 2, the joint detection of
eight information symbols is converted into two partially
independent detections of six information symbols. This
step reduces the worst-case decoding complexity from
O(M8) to O(M6). Consequently, using Theorem 1 and
Corollary 1, the detections of complex information sym-
bols are converted into independent detections of real
and imaginary parts, which further reduces the worst-case
complexity to O(M4.5).

4.1 Groupwise parallel detections
We divide the information symbols and received symbols
into four groups, i.e., a = ˜[ s1, s2]T, b = ˜[ s3, s4]T, c =
˜[ s5, s6]T, d = ˜[ s7, s8]T, z12 = ˜[ z1, z2]T, z34 = ˜[ z3, z4]T,

z56 = ˜[ z5, z6]T, and z78 = ˜[ z7, z8]T. Taking into account
the structure of R and Theorem 2, the decoding metric in
(8) can be rewritten as

‖̃z − R̃s‖2 = ‖z12 − R11a − R13c − R14d‖2 (12)

+ ‖z34 − R22b − R23c − R24d‖2 (13)
+ ‖z56 − R33c − R34d‖2 + ‖z78 − R44d‖2.

From (12) and (13), it can be seen that the contributions
from the information symbol groups a and b are uncor-
related in the received symbol. For instance, z12 does not
contain any information from b, and z34 is irrelevant to
a, either. This enables us to use groupwise conditional
detections to retrieve the ML solutions [23].
In particular, the ML solution ŝML =[ â, b̂, ĉ, d̂]T is

achieved in two search steps, namely, a joint ‘outer’ search
for [ ĉ, d̂]:

[ĉ, d̂] = arg min
[c,d]∈�4

(
‖v12 − R11a(∗)(c,d)‖2 + ‖v34 − R22b(∗)

× (c,d)‖2 + ‖z56 − R33c − R34d‖2 + ‖z78 − R44d‖2
)
,

(14)

and two independent ‘inner’ searches for â and b̂,
respectively:

â = a(∗)(ĉ, d̂), b̂ = b(∗)(ĉ, d̂), (15)

where

a(∗)(c, d) = arg min
a∈�2

‖v12 − R11a‖2, (16)

b(∗)(c, d) = arg min
b∈�2

‖v34 − R22b‖2, (17)

with v12 = z12−R13c−R14d, v34 = z34−R23c−R24d. The
outer search is carried out over the combinations of [ c, d].
For a given [ c, d], the search of a and the search of b are
performed in parallel. The concatenation of the outer and

inner searches (either a or b) results in a joint search of six
information symbols. Therefore, the worst-case decod-
ing complexity is reduced from O(M8) to O(M6). We
note that this complexity reduction does not rely on the
constellation that is adopted by the information symbols.
In other words, the 3D MIMO code requires a worst
decoding complexity of O(M6) for arbitrary modulation.

4.2 Independent detections of real and imaginary parts
If square-shape QAM modulations are considered, the
decoding complexity can be further improved. The square
M-QAM symbol can be separated into two indepen-
dent

√
M-PAM symbols on the real and imaginary axes,

respectively. Using Theorem 1 and Corollary 1, the real
and imaginary parts can be decoded separately. Take the
detection of a as an example. Denote its real and imagi-
nary parts as aR =[ sR1 , s

R
2 ]

T and aI =[ sI1, s
I
2]
T, respectively.

Given [ c, d] and using Theorem 1, the detection of a in
(16) is rewritten as [19]

âR = arg min
aR∈�2

‖vR12 − RR
11a

R‖2,
âI = arg min

aI∈�2
‖vI12 − RI

11a
I‖2, (18)

where � is the set of
√
M-PAM constellation symbols.

vR12 =[ vR1 , v
R
2 ]T, and vI12 =[ vI1, v

I
2]T; R

R
11 and RI

11 are tai-
lored upper triangular matrices associated with real and
imaginary parts, respectively:

RR
11 =

[
R11(1, 1) R11(1, 3)

0 R11(3, 3)

]
,

RI
11 =

[
R11(2, 2) R11(2, 4)

0 R11(4, 4)

]
.

(19)

(18) means that the detections of real and imaginary parts
are similar and can be performed separately. Take the
real part as an example. We apply again the conditional
detection here. For a given sR2 , the metric for the real part
detection becomes

‖vR12 − RR
11a

R‖2 = (
wR
1 − R11(1, 1)sR1

)2 + (wR
2 )2, (20)

where wR
1 = vR1 − R11(1, 3)sR2 and wR

2 = vR2 − R11(3, 3)sR2 .
For a given sR2 , the best sR1 that minimizes the decod-
ing metric can alternatively be found by minimizing a
quadratic function of sR1 given on the right-hand side of
(20). The best solution of sR1 is easily found by
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sR1 = Q

(
vR1 − R11(1, 3)sR2

R11(1, 1)

)
, (21)

where Q(·) is the slicing operation providing the PAM
symbol that is closest to the given value. The best com-
bination of [ ŝR1 , ŝ

R
2 ]

T given [ c, d] is obtained after testing
(21) with all (

√
M) possible values of sR2 :

ŝR2 = arg min
sR2∈�

(|vR1 − R11(1, 1)sR1 − R11(1, 3)sR2 |2

+|vR2 − R11(3, 3)sR2 |2) . (22)

Consequently, ŝR1 is obtained by using the solution ŝR2 in
(21). Similar process can be applied to solve the imagi-
nary parts. The best solution of [ ŝI1, ŝ

I
2]

T given [ c, d] can
be found by

ŝI2 = arg min
sI2∈�

(|vI1 − R11(2, 2)sI1 − R11(2, 4)sI2|2

+|vI2 − R11(4, 4)sI2|2
)
,

(23)

where

sI1 = Q

(
vI1 − R11(2, 4)sI2

R11(2, 2)

)
. (24)

ŝI1 is computed by applying the solution ŝR2 in (24).
Using the same technique, the best solutions of b in (17)

can also be converted into independent detections of bR
and bI. Substituting R11, v1, v2, s1, and s2 in (21), (22),
(23), and (24) by R22, v3, v4, s3, and s4, respectively, it
yields the detections for s3 and s4. In general, for a given
[ c, d], the search of two complex symbols [ a, b] is turned
into four independent searches of

√
M PAM symbols. The

resulting overall complexity to decode a whole codeword
is O(M4.5).
In summary, the 3D MIMO code requires a worst

decoding complexity of O(M6) for any modulation
scheme and O(M4.5) for square M-QAM modulations.
The comparisons with other state-of-the-art fast decod-
able STBCs that are full rate for 4×2MIMO transmissions
are presented in Table 1. It can be seen that the 3DMIMO
code is among the simplest full-rate STBCs when the
square QAMmodulations are considered.

5 Proposed implementation of the simplifiedML
decoder

In the previous sections, we have illustrated the fast
decodability of the 3D MIMO code in theory. With this
knowledge, we propose an implementation of the sim-
plified ML decoder that can be used in practice. Using
the two-stage tree search structure and leveraging the
symmetry structure in the codeword, the proposed imple-
mentation requires a low average complexity in practice.
Moreover, various performance complexity trade-offs can
be easily achieved by replacing the sphere decoder by

Table 1 Comparison of ML decoding complexities of STBCs
for 4× 2MIMO transmission

STBC
ML decoding complexity

Any QAM Square QAM

New 3D MIMO O(M6) O(M4.5)

DjABBA [12] O(M7) O(M6)

Perfect code (two-layer) [24] O(M6) O(M5.5)

BHV [7] O(M6) O(M4.5)

EAST [9] O(M5) O(M4.5)

Srinath-Rajan [8] O(M5) O(M4.5)

IFS [11] O(M5) O(M4.5)

other suboptimal tree search algorithms such as K-best
algorithm [25] and fixed-complexity sphere decoder [26].

5.1 Two-stage decoding structure
Recall that the fast decodability is achieved by concatenat-
ing the joint search of four complex symbols and several
detections in parallel. Figure 3 presents the general struc-
ture of the proposed simplified ML decoder. A detailed
pseudocode is presented in Algorithms 1, 2, 3, and 4 so
that the proposed decoder can be implemented without
major effort.

Algorithm 1: Simple ML decoder for 3D MIMO
code.
Input: ỹ,Heq
Output: ŝ

1 [Q,R] = QR (Heq);
2 z̃ = QTỹ, sZF = H†

eq̃y;
3 [−→s ZF ,

−→
H eq] = ColSwt (sZF ,Heq) ; % column switch

4 � = S-E (
−→s ZF) ; % Schnorr-Euchner enumeration

5 radius = ∞, d = 0;
6 ŝ = zeros(16, 1), s = zeros(8, 1);
7 l = 8; % start from root node
8 run SimpML (̃z, R, ŝ, s, radius, l, d, �);

5.1.1 Four-level tree search phase
The joint detection of [ c, d] is realized by a com-
plex sphere decoder with Schnorr-Euchner enumeration,
which is visualized by the search over a four-level tree as
shown in Figure 3. The nodes of the same level represent
all the solutions of a complex information symbol. Each
path from the root to a leaf node represents a possible
combination of [ c, d].
The details of the tree search is explicitly presented in

Algorithm 2. The search starts from the root node and tra-
verses the nodes of lower levels in a depth-first manner.
An adaptive search radius is used to speed up the con-
vergence of the algorithm by limiting the search within a
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Algorithm 2: Simple ML decoder SimpML.
Input: z̃, R, ŝ, s, radius, l, d, �
Output: ŝ, radius, d

1 dnew = dp = dt = 0;
2 z̃14 = z̃(1 : 8), z̃58 = z̃(9 : 16);
3 for j = 1 to

√
M do % check all nodes

4 s(l) = �(l, j);
5 dnew = |̃z58(l) − R(l + 8, l + 8 : 16)s(l : 8)|2 + d(l);

% overall distance of [ ŝ5 . . . , ŝ8]T
6 if dnew < radius then % inside sphere
7 if l 
= 1 then % tree search phase
8 run SimpML (̃z, R, ŝ, s, radius, l − 1, dnew,

�); % check lower layer
9 else % leaf node found

10 ĉ = s(1 : 4), d̂ = s(5 : 8);
11 compute v1, v2, v3 and v4;
12 run ParaDec (v1, v2, v3, v4, R, radius,

dnew); % parallel decision phase
13 dt = dp + dnew; % overall distance
14 if dt < radius then % better solution found
15 ŝ =[ â, b̂, ĉ, d̂]T;
16 radius = dt;

Algorithm 3: Parallel decision algorithm ParaDec.
Input: v1, v2, v3, v4, R, radius, d
Output: â, b̂, dp

1 R11 = R(1 : 4, 1 : 4), R22 = R(5 : 8, 5 : 8);
2 flag1 = flag2 = flag3 = flag4 = 1; % decision flags
3 τ1 = τ2 = τ3 = τ4 = ∞;
4 p1 = p2 = p3 = p4 = ∞;
5 d1 = d2 = d3 = d4 = ∞;
6 for j = 1 to

√
M do

7 if flag1 == 1 then
8 sR2 = �(3, j) ;
9 τ1 = |vR2 − R11(3, 3)sR2 |2 ; % current distance

10 if τ1 > p1||(τ1 + d2 + d3 + d4 + d) > radius then
11 flag1 = 0; % stop search in this branch
12 d1 = p1; %minimum distance of the branch
13 if flag1 = flag2 = flag3 = flag4 = 0 then
14 break; % terminate if all branches stop
15 repeat lines 7 to 12 for sI2, s

R
4 and sI4;

16 if flag1 == 1 then
17 sR1 = Q((vR1 − R11(1, 3)sR2 )/(R11(1, 1)));
18 τ ′

1 = |vR1 − R11(1, 1)sR1 − R11(1, 3)sR2 |2 + τ1 ;
% current distance of the branch

19 if τ ′
1 < p1 then

20 ŝR1 = sR1 , ŝ
R
2 = sR2 ; % current best solutions

21 p1 = τ ′
1 ; % current minimum branch

distance

22 repeat lines 16 to 21 for other branches;

23 â =[ ŝR1 , ŝ
I
1, ŝ

R
2 , ŝ

I
2], b̂ =[ ŝR3 , ŝ

I
3, ŝ

R
4 , ŝ

I
4] ; % best solution

24 dp = d1 + d2 + d3 + d4 ;% overall distance of [ ŝ1, . . . ŝ4]T

Algorithm 4: Column switch algorithm ColSwt.
Input: sZF ,Heq

Output:
−→
H eq,−→s ZF

1 compute εjk ’s ;
2 if ε14 < ε58 then % decode [ s5, . . . s8] by tree search
3 −→s =[ s1, s2, s3, s4, s5, s6, s7, s8] ;
4 if ε78 < ε56 then% valid only in 2-by-2 column switch
5

−→s =[ s3, s4, s1, s2, s7, s8, s5, s6] ;
6 else % decode [ s1, . . . s4] by tree search
7 −→s =[ s5, s6, s7, s8, s1, s2, s3, s4] ;
8 if ε34 < ε12 then% valid only in 2-by-2 column switch
9 −→s =[ s7, s8, s5, s6, s3, s4, s1, s2] ;

10 permute sZF andHeq according to −→s ;
11 return permutation results −→H eq, −→s ZF .

hypersphere S . For the node under checking, the partial
distance resulted by the current path is compared with the
radius. If the partial distance is smaller than the radius,
the search moves on to the children nodes on the next
level. Otherwise, the search jumps to another sibling node
on the current level. When all the nodes of the level have
already been checked, the search goes back to the upper
level. The radius is initially set to infinity and is adaptively
decreased according to the best solution already found in
the search. Specifically, the radius is updated, taking into
account the best combination of [ c, d], and [ a, b] (line 16
of Algorithm 2). The latter is obtained from the parallel
decisions phase. The tree search is terminated when all
the nodes within the hypersphere have been checked. The
best solution is the ML solution.
The sequence in which the sibling nodes are visited is

determined according to the their partial distances in an
ascending order. This is to guarantee that the promis-
ing candidates are visited first in order to reduce the
search complexity. This ordering process is referred to as
the Schnorr-Euchner enumeration [18,27,28]. It can sim-
ply be implemented by a lookup table [29,30] (line 4 in
Algorithm 1), and its complexity is merely the computa-
tion of the linear estimation ŝZF .

5.1.2 Parallel decision phase
Once a leaf node is achieved in the tree search, a better
solution of [ c, d] is found. Consequently, the tree search
process is suspended, and the new [ c, d] is used to trigger
the parallel detections of the rest symbols.
The parallel detection is depicted in Figure 4. The imple-

mentation details are presented in Algorithm 3. As shown
in Figure 4, the detections of [ sR1 , s

R
2 ], [ s

I
1, s

I
2], [ s

R
3 , s

R
4 ], and

[ sI3, s
I
4] are carried out in parallel. For each branch, a one-

level sphere decoder is used to traverse all possible PAM
symbols as given in (22). The visiting sequence is also
determined by the Schnorr-Euchner enumeration. The
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Figure 3 Two-stage sphere decoding.

detections in the different branches are synchronized by
a common clock signal because the operations are exactly
the same for all branches. All branches simultaneously
check the first candidate PAM symbol and then move on
to the second one, and so on.
Moreover, we propose a mechanism that terminates the

search in each branch not only based on its own results
but also taking into account the results from the other
branches. In particular, once the best solution of the jth
branch is found ahead of the others, the resulting branch
distance dj is recorded and shared with other branches to
speed up the overall search process.
Take the search of the first branch as an example. The

most promising PAM symbol in the unchecked symbol list

is assigned to sR2 (line 8 in Algorithm 3). The partial dis-
tance τ1 is calculated (line 9 in Algorithm 3). The search
is terminated in two cases: (a) if this partial distance is
greater than the current minimum branch distance (τ1 >

p1) and (b) if the overall distance is beyond the current
radius of the sphere decoder in the tree search phase
((τ1 + d2 + d3 + d4 + d) > radius).
Once the searches on all the branches are terminated,

the solution [ a, b] and the resulting distance dp are
returned to the tree search phase. The tree search process
is resumed. The overall distance is compared with the cur-
rent radius (line 14 in Algorithm 2) to determine whether
the current solution is a better one. If a better solution
is found, the radius is updated accordingly (line 16 in

S
-E

en
um

er
at

io
n

1st choice

2nd choice

3rd choice

4th choice

found

update d3
found

update d4

found

update d1
found

update d2

], RR
21 s[s

], II
21 s[s

], RR
43 s[s

], II
43 s[s

],
R

R 2
1

v[v ]
,

I
I 2
1
v

[v ]
, R

R

4

3 v
[v ], I

I

4
3 v[v

Figure 4 Parallel decisions of [ sR1 , sR2 ], [ sI1, sI2], [ sR3 , sR4 ], and [ sI3, sI4].



Liu et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:20 Page 10 of 16
http://jwcn.eurasipjournals.com/content/2014/1/20

Algorithm 2). The tree search process is moved on to the
next unchecked node.

5.2 Column switch based on ZF estimation
In the proposed algorithm, the search of eight sym-
bols is divided into a tree search for four symbols and
parallel detections for the other four symbols. Due to
the symmetric structure of the codeword matrix (10),
some parts of the codewords can be exchanged with-
out changing the properties of the 3D MIMO code.
For instance, we have the same properties as illus-
trated in Section 3 after exchanging the positions of
[ s1, s2, s3, s4] with [ s5, s6, s7, s8]. Similarly, if we exchange
[ s1, s2] with [ s3, s4] and exchange [ s5, s6] with [ s7, s8]
simultaneously, the structure of R matrix maintains, as
well. That is to say, besides the original symbol sequence,
the proposed low-complexity decoding algorithm is also
valid with other three permuted symbol sequences,
i.e., [ s5, s6, s7, s8, s1, s2, s3, s4], [ s3, s4, s1, s2, s7, s8, s5, s6], and
[ s7, s8, s5, s6, s3, s4, s1, s2].
The exchanging of the symbol sequences can be

achieved by permuting the corresponding columns in the
equivalent channel matrix Heq. Note that the aforemen-
tioned column permutations do not affect the decoding
performance. This permits us to choose the symbols that
will be determined by the tree search and the ones that
will be decoded in the parallel detections.
The proposed column switch method is presented in

Algorithm 4. The basic idea is to use the tree search to
determine the more difficult half part and use the parallel
detections to find the easier half part. The reason behind
this idea is that the parallel decoding is more efficient to
decode the reliable symbols separately. The more accu-
rate the linear estimation, the faster is the convergence
speed for each individual detection branch. On the other
hand, the tree search phase is a joint serial detection in
nature which is more suitable to decode those unreliable
symbols.
The next question is how to properly choose the unre-

liable symbols. In the literature, Barbero and Thomp-
son proposed to sort the decoding sequence based on
the norm of subchannels in the fixed-complexity sphere
decoder [26]. However, it is not applicable here because
the 3D MIMO code achieves full diversity, and the equiv-
alent subchannels have similar norm values. In addition,
as we have to maintain the structure of the R matrix, the
unconstrained subchannel sorting proposed in [29] is not
applicable, either.
Alternatively, we propose to sort the information sym-

bols according to the aggregate error of the linear
estimation:

εjk =
k∑
l=j

|ŝZF(l) − sZF(l)|2, (25)

where sZF = H†
eqy is the unconstrained estimation of the

information symbols in which H†
eq represents the inverse

of the equivalent channel matrix; ŝZF = Q(sZF) is the con-
stellation point that is closest to sZF . The metric is the
distance between the estimated information symbols and
the nearest constellation points, i.e., an indicator of the
estimation accuracy.
Using (25), the decoding sequence can be determined in

two levels. We first compare the aggregate errors of the
first half and second half parts of the symbols (line 2 in
Algorithm 4). The half with worse accuracy is assigned
to the tree search (put in the latter part of the decod-
ing sequence). Consequently, within this half part, the
errors of the first two symbols and the second two are
compared. The two symbols with worse accuracy are
put closer to the root of the tree. If this two-symbol-
by-two-symbol exchange takes place in the second half
of the symbols which are to be decoded using the tree
search, the same two-symbol-by-two-symbol exchange
should be done accordingly in the other half in order
to maintain the structure of the R matrix. If only the
symbol exchange between the two halves of the sym-
bols is carried out, it is referred to as ‘4-by-4 column
switch’. Otherwise, if the exchange within each half is
also performed, it is called ‘2-by-2 column switch’. The
advantage of the column switch will be shown in the next
section.

6 Simulation results
6.1 BER performance
Figure 5 presents the uncoded symbol error rate of the
proposed simplified decoders in quasi-static independent
Rayleigh flat fading channel. The performances of the ML
decoder and the sphere decoderwith Schnorr-Euchner (S-
E) enumeration proposed byGuo andNilsson [28] are also
given as references. The Guo-Nilsson sphere decoder is a
low-complexity implementation of sphere decoder with S-
E but is sub-optimal in terms of symbol error rate. It can
be seen that the proposed decoders achieve the same per-
formance as ML decoder with both QPSK and 16-QAM
modulations. In addition, the proposed decoders out-
perform the Guo-Nilsson sphere decoder with 16-QAM
modulation. A gain of around 0.7 dB can be observed at
symbol error rate level of 1 × 10−4.

6.2 Computational complexity
Figures 6 and 7 present the complexity in terms of number
of visited nodes for decoding each codeword with QPSK
and 16-QAM, respectively. For the proposed decoders,
this number is calculated as the number of visited nodes
in the tree search phase plus the maximum visited nodes
among the four search branches. The Guo-Nilsson sphere
decoder is also given as a reference. Since the process-
ing of each node requires roughly the same operations
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Figure 5 Symbol error rate comparison. Uncoded symbol error rate obtained with the Guo-Nilsson sphere decoder with S-E for 3D MIMO code,
ML decoder, and the proposed simplified ML decoders in quasi-static Rayleigh channel with QPSK and 16-QAM.

for both decoders, these experiments actually give the
comparison of the processing time latency [19,28]. It can
be seen from the results that the proposed decoders
require much less processing time than the ML decoder
which needs to traverse all M8 possibilities. In the QPSK
case, the proposed decoders always yield less latency

than the Guo-Nilsson sphere decoder. For instance, the
proposed decoder with the 2-by-2 column switch visits
only 254.6 nodes on an average at SNR of 0 dB. Com-
pared with the Guo-Nilsson decoder which visits 1276.6
nodes at SNR of 0 dB, the proposed one achieves a pro-
cessing time reduction of 80%. The reductions are 50%
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Figure 6 Complexity in terms of visited nodes with QPSK. Computational complexity in terms of visited nodes required by Guo-Nilsson sphere
decoder with S-E for 3D MIMO code and proposed simplified ML decoders, in quasi-static Rayleigh channel with the QPSK modulation.
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Figure 7 Complexity in terms of the visited nodes with 16-QAM. Computational complexity in terms of the visited nodes required by
Guo-Nilsson sphere decoder with S-E for 3D MIMO code and proposed simplified ML decoders, in quasi-static Rayleigh channel with the 16-QAM
modulation.

and 49% at 10 and 20 dB, respectively. In addition, the
improvements brought by the proposed column switch
technique can also be seen in the results. For instance,
the 2-by-2 column switch yields a processing time reduc-
tion of 38% at 0 dB compared with the decoder without
column switch. This improvement is less significant in
high-SNR region (e.g., greater than 15 dB). In the 16-QAM
case (see Figure 7), the proposed decoder with the 2-by-2
column switch also brings processing time reduction in
low-SNR region. At 8 dB, it visits 1301.1 nodes on aver-
age, yielding a time reduction of 84% compared with the
Guo-Nilsson decoder. The proposed decoder needs sim-
ilar time latency as the Guo-Nilsson decoder in higher-
SNR region (e.g., greater than 15 dB). Taking into account
the symbol error rate performance given in Figure 5, 8 ∼
15 dB is the SNR range where the error correction abil-
ity of the channel coding will be carried out significantly.
That is to say, the improvements are achieved in a SNR
region of interest.
Figures 8 and 9 give the overall required multiplications

to decode each codeword. For the proposed decoders, the
multiplications spent by the tree search and by all the
four search branches are taken into account. The compu-
tation overheads such as the QR decomposition and the
linear estimation are also included in the results to give
the overall complexity of the decoders. It can be seen from
the results that in the QPSK case, the proposed decoder
with the 2-by-2 column switch spends 11%, 21%, and 3%
more multiplications than the Guo-Nilsson decoder at a

SNR of 0, 6, and 20 dB, respectively. In the 16-QAM case,
it needs 5% less multiplication at 8 dB but spends 85%
and 9%more multiplications at 14 and 28 dB, respectively.
However, it is worth noting that with the cost of increased
multiplications, the proposed decoders provide less pro-
cessing latencies. For instance, the proposed decoder with
the 2-by-2 column switch achieves 62% processing time
reduction at SNR of 6 dB with QPSK and 42% reduction
at 14 dB with 16-QAM, respectively.
Finally, Figures 10 and 11 present the overall divisions

spent by the decoders. The proposed decoders require
less divisions than the Guo-Nilsson. For instance, the pro-
posed decoder with the 2-by-2 column switch requires
47%, 9%, and 5% less divisions at SNR of 0, 10, and 20 dB,
respectively, with QPSK. In the 16-QAM case, it achieves
79% reduction of divisions at 8 dB. In the meantime, the
two decoders spend roughly the same number of divisions
in higher-SNR region, e.g., greater than 18 dB.
In general, we can see the different trade-offs achieved

by the different decoders. The proposed decoder achieves
ML performance with less time latency and less divi-
sions than the Guo-Nilsson. On the other hand, the
Guo-Nilsson decoder needs less multiplications with
some performance loss with 16-QAM.

7 Conclusion
The 3D MIMO code has been shown to be efficient
and robust in distributed MIMO scenarios. Yet, it suf-
fers from high ML decoding complexity. In this paper, we
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Figure 8 Complexity in terms of multiplications with QPSK. Computational complexity in terms of multiplications required by the Guo-Nilsson
sphere decoder with S-E for 3D MIMO code and proposed simplified ML decoders, in quasi-static Rayleigh channel with the QPSK modulation.

first proposed a new form of the the 3D MIMO code-
word and investigated some important properties of the
new codeword. With these properties, the 3D MIMO
code is proven to be fast decodable. Consequently, we
proposed a reduced-complexity ML decoder for the 3D

MIMO code which offers the same performance as that of
the ML decoder. The simulation results demonstrate that
the novel low-complexity decoder yields much less pro-
cessing time latency than the classical Guo-Nilsson sphere
decoder with Schnorr-Euchner enumeration. Moreover,
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Figure 9 Complexity in terms ofmultiplications with 16-QAM. Computational complexity in terms of multiplications required by theGuo-Nilsson
sphere decoder with S-E for the 3DMIMO code and proposed simplified ML decoders, in quasi-static Rayleigh channel with the 16-QAMmodulation.
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Figure 10 Complexity in terms of divisions with QPSK. Computational complexity in terms of divisions required by the Guo-Nilsson sphere
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the proposed 2-by-2 column switch technique can signifi-
cantly reduce the average decoding complexity, especially
with the 16-QAMmodulation.

Endnotes
aWe assume that the receiver has perfect knowledge of

the channel in our work. In practice, the channel

coefficients should be estimated using some channel
estimation techniques.

bNote that this construction is different from those of
the quasi-orthogonal code [5] and the EAST code [9].

cThe fast decodability of the other STBCs such as
DjABBA, BHV, Srinath-Rajan, and IFS codes also
requires quasi-static channel assumption.
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Figure 11 Complexity in terms of divisions with 16-QAM. Computational complexity in terms of divisions required by the Guo-Nilsson sphere
decoder with S-E for the 3D MIMO code and proposed simplified ML decoders, in quasi-static Rayleigh channel with the 16-QAMmodulation.
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Appendix
Definition of the QR decomposition
If we write Heq =[ h1, . . . , h2κ ], the Heq’s QR decomposi-
tion Heq = QR is achieved by Gram-Schmidt procedure
such that Q �[ q1, . . . , q2κ], where the columns qj’s are
orthogonal, and

R �

⎡⎢⎢⎢⎣
‖r1‖2 〈q1, h2〉 · · · 〈q1, h2κ〉
0 ‖r2‖2 · · · 〈q2, h2κ〉
...

...
. . .

...
0 0 · · · ‖r2κ‖2

⎤⎥⎥⎥⎦ , (26)

where r1 = h1, rj = hj − ∑j−1
k=1〈qk , hj〉qk , qj = rj/‖rj‖,

j = 1, . . . , 2κ .

Proof of Theorem 1
Based on Heq, after some straightforward computation, it
yields 〈h1, h2〉 = 〈h1, h4〉 = 〈h2, h3〉 = 〈h3, h4〉 = 0.
According to the definition of QR decomposition, q1 =
h1/‖h1‖. Hence, 〈q1, h2〉 = 〈q1, h4〉 = 0.
In addition, r2 = h2 − 〈q1, h2〉q1 = h2, q2 = r2/‖r2‖ =

h2/‖h2‖. Taking into account that 〈h2, h3〉 = 0, it yields
〈q2, h3〉 = 0.
Moreover, r3 = h3 − ∑2

j=1〈qj, h3〉qj = h3 − 〈q1, h3〉q1
and q3 = r3/‖r3‖ = (h3 − 〈q1, h3〉q1)/‖r3‖. Therefore,
〈q3, h4〉 = (〈h3, h4〉 − 〈q1, h3〉〈q1, h4〉)/‖r3‖ = 0.
This completes the proof of Theorem 1.

Proof of Theorem 2
Based on Heq, after some straightforward computation, it
yields 〈hj, hk〉 = 0, ∀j = 1, 2, 3, 4, and k = 5, 6, 7, 8. Using
q1 = h1/‖h1‖ and q2 = h2/‖h2‖ which have been proven
in the proof of Theorem 1, it yields 〈qj, hk〉 = 0, ∀j = 1, 2,
and k = 5, 6, 7, 8.
Using q3 = (h3 − 〈q1, h3〉q1)/‖r3‖ which has been

proven in the proof of Theorem 1, it yields 〈q3, hk〉 =
(〈h3, hk〉−〈q1, h3〉〈q1, hk〉)/‖r3‖ = 0, ∀k = 5, 6, 7, 8. Simi-
larly, since q4 = (h4−〈q2, h4〉q2)/‖r4‖, it yields 〈q4, hk〉 =
(〈h4, hk〉 − 〈q2, h4〉〈q2, hk〉)/‖r4‖ = 0, ∀k = 5, 6, 7, 8.
This completes the proof of Theorem 2.

Proof of Corollary 1
Using the similar method as in the proof of Theorem 1,
it can be computed from the definition of Heq that
〈h5, h6〉 = 〈h5, h8〉 = 〈h6, h7〉 = 〈h7, h8〉 = 0. In addition,
using Theorem 2, it can be obtained that q5 = h5/‖h5‖.
Hence, 〈q5, h6〉 = 〈q5, h8〉 = 0.
Using 〈q5, h6〉 = 0 and Theorem 2, it yields q6 =

h6/‖h6‖. Hence, 〈q6, h7〉 = 0.
Finally, using 〈q6, h7〉 = 0 and Theorem 2, it yields r7 =

h7−〈q5, h7〉q5 and q7 = r7/‖r7‖ = (h7−〈q5, h7〉q5)/‖r7‖.
Therefore, 〈q7, h8〉 = (〈h7, h8〉 − 〈q5, h7〉〈q5, h8〉)/‖r7‖ =
0.
This completes the proof of Corollary 1.
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