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Abstract

In this paper, we propose a model for mobile application profiles, wireless interfaces, and cloud resources. First, an
algorithm to allocate wireless interfaces and cloud resources has been introduced. The proposed model is based on
the wireless network cloud (WNC) concept. Then, considering power consumption, application quality of service
(QoS) profiles, and corresponding cost functions, a multi-objective optimization approach using an event-based finite
state model and dynamic constraint programming method has been used to determine the appropriate transmission
power, process power, cloud offloading and optimum QoS profiles. Numerical results show that the proposed
algorithm saves the mobile battery life and guarantees both QoS and cost simultaneously. Moreover, it determines
the best available cloud server resources and wireless interfaces for applications at the same time.
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1 Introduction

Popularity of smartphones and related applications in var-
ious fields are increasing in everyday life significantly.
These devices have a wide range of features (e.g., high-
speed processors and supporting multiple wireless inter-
faces). Furthermore, due to increasing complexity of
applications, smartphones require a significant computa-
tional capability. In addition, they have become a primary
computing platform for many users due to the well-
developed applications in realms such as mobile com-
merce, mobile learning, mobile health care, mobile com-
puting, mobile gaming, and etc. As applications become
more and more complex, mobile users experience shorter
battery lifetime. Most of the smartphone applications are
QoS-sensitive and computation-intensive to perform on a
mobile system. Mobile cloud computing is a new concept
in which mobile users access the cloud virtual resources
via the Internet. It is beneficial to QoS and battery saving
by means of mobile data offloading. Mobile computation
offloading technique shares application code between the
cloud server and the mobile. Most of the time, mobile
users need to maintain a low level of power consumption
and thus computation must be performed in the cloud
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which comes with cost. Therefore, mobile users always
face a trade-off between communication and computation
[1].

On the other hand, wireless network cloud (WNC) [2]
proposes an architecture to join wireless access systems to
cloud computing and shift the processing of base stations
with different technologies to a virtual cloud network.
Therefore, all wireless technologies is converging and is
suitable for next generation wireless networks. WNC and
cloud radio access network (C-RAN) [3] using similar
software-defined radio (SDR) concept tend to decrease
wireless network operating cost while enhancing the total
network performance. Accordingly, without doubt, the
next generation of wireless networks (5G) movement
toward wireless clouds is irresistible [4,5].

Despite flexibility and great potential applicability,
resource allocation problem in heterogeneous wireless
networks (HetNet) attributed with WNC and mobile
cloud computing has received scarce attention as of today.
Therefore, the prime contribution of the current research
has been based on bridging HetNet with WNC and mobile
cloud computing to better allocate resources to the end
user. In addition, a multi-objective optimization problem
considering cloud server power consumption, operating
cost, and QoS followed by a detailed trade-off amongst
user objectives have been studied.
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In this paper, we propose a model including the opera-
tors, clouds, applications, and mobile profile parameters.
Due to the fact that a part of the algorithm has to be con-
ducted in smartphones, complexity order of the problem
becomes a vital parameter. Estimation and approxima-
tion techniques have been used to linearly approximate
the parameters to decrease complexity order of our
algorithm. Using dynamic constraint programming [6,7],
event-based lexicographic multi-objective optimization
method [8] and QoS-based resource allocation solutions
[9,10] with consideration to the resources and applica-
tions constraints, network, and mobile resources have
been allocated to applications simultaneously.

It is worthy of note that the main objective of this
paper concerns performance metrics of mobile devices
and users, regardless of cloud computing centers and
wireless operators related challenges, [11-16] which have
not been considered in this paper.

The rest of the paper is organized as follows: this study’s
related works is discussed in Section 2, in Section 3, the
system model will be defined, followed by the optimiza-
tion algorithm in Section 4. Within Section 5, numer-
ical results reveal performance of the proposed multi-
dimensional algorithm. Finally, Section 6 concludes the

paper.

2 Related works
Rahimi et al,, [17], Fernando et al., [18], and Dinh et al.,
[19] give an overview of the mobile cloud computing
(MCC) presenting definition, architecture, applications,
and approaches, then, on the corresponding challenges
at the operational, user, and application levels have been
discussed. They introduced MCC as the dominant com-
puting model for mobile applications in the future.
Moreover, extensive research such as in [20-22] has
been done over wireless local area network (WLAN)/ cel-
lular interworking mechanisms, which combines WLANs
and cellular data networks into integrated wireless data
networks featured with QoS capabilities. Liu et al. [23]
suggest a new dynamic load balance (DLB) scheme to
improve communication performance focusing on under-
lying users. In their proposed scheme, joint session admis-
sion control is a basis for user mobility, cognition, and
service arrival awareness in integrated 3G/WLAN net-
works. Gazis et al.and Luo et al. [24,25] recommend a
standardization policy in the area of WLAN-cellular data
network integration for different interworking architec-
tures. Proposing the generic interworking architectures
in the technical literature, [26] studies general aspects
of integrated WLAN-cellular data networks. Access net-
work discovery and selection function (ANDSF) suggests
a function for selection of access network and control
offloading amongst 3rd generation partnership project
(3GPP) and other access networks. Such selections are
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based on the mobile battery saving, user preference, and
operator policies. However, ANDSF does not consider
application preferences, selection optimality, and simulta-
neous power allocation.

In general, international standards and standardization
bodies such as WiMAX and 3GPP decide to move toward
creating a seamless integrated wireless technology enti-
tled HetNet [27]. HetNet by its nature includes a variety
of wireless access technologies. Access networks are con-
nected through a backbone which is a network core for
all of them. Moreover, HetNet consists of both macro and
micro cells as well as low power nodes which have distinct
or overlapped coverage areas. When a multi-interface
device moves within a HetNet environment, its default
network for every connection can be determined based
on a set of predetermined parameters of network nature
such as QoS settings, signal strength, backbone utiliza-
tion, speed preference, selected cost or service, and mobile
node’s remained battery life.

Furthermore, some researchers have studied power con-
sumption in smartphones. Murmuria et al., [28] and
Carroll and Heiser [29] measure, analyze, and model
power usage of smartphones by characterizing their sub-
systems power usages. Balasubramanian et al. [30] con-
sider wireless interface selection problem as a statistical
decision problem and propose an algorithm to select
the wireless network interface considering the context of
the mobile applications in order to improve the battery
lifetime. Hence, the features of wireless access interface
selection also has fundamental impact on the perfor-
mance of mobile computing applications and their power
consumption.

There are some trade-offs amongst power consump-
tion, QoS parameters, and costs. These objectives are
dependent on network parameters, applications profiles,
and cloud resources. Cuervo et al. [31] aim to optimize
energy consumption of a mobile device by estimation and
evaluating the trade-off between the energy consumed
by local processing versus the transmission of code and
data for cloud offloading. Decision process in [31] consid-
ers information and complex characteristics of the mobile
environment. A framework for smartphones is introduced
in [32]. It shifts smartphone application processing into
the cloud centers. It is based on the concept of smart-
phone virtualization in the cloud and addresses lack of
scalability by creating virtual machines of a complete
smartphone system on the cloud. ThinkAir [32] provides
on-demand resource allocation by dynamically manag-
ing VMs in the cloud via using an execution controller.
The execution controller handles decision-making and
communication with the cloud server. It considers execu-
tion time, energy, and cost to make decision in order to
achieve optimum performance. With regard to the net-
work profile parameters, device profile parameters, and
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program profile parameters of the smartphone, ThinkAir
dynamically allocates the available cloud resources to the
programs simultaneously. Kumar and Lu [33] suggest
that cloud computing can potentially save energy through
offloading of applications processing with limited relia-
bility and quality of service requirements. This reflects
the fact that for some applications such as delay-sensitive
ones, migrated offloading to the clouds could not sig-
nificantly offer energy savings to the smartphones while
satisfying QoS parameters.

Trade-off between system throughput and energy con-
sumption of mobile devices has been addressed in [34].
Based on the Lyapunov optimization approach, an online
control algorithm is designed to balance energy and
throughput. It maximizes a joint utility using stability-
utility parameters while bounding the traffic queue length,
via making instantaneous decisions to control the trans-
mission pattern. The admission control algorithm dimin-
ishes the need for statistical estimation of traffic arrivals
and link conditions.

In order to allocate resources amongst the cloud users
efficiently, a communication framework amongst cloud
users and service providers has been designed in [35].
There, authors propose a biding language in order to
convert cloud user demands into the organized requests
which helps cloud providers to support heterogeneous
user demands while protecting the systems from selfish
user behavior. Moreover, online compatible online cloud
auction (COCA) mechanism is implemented to make
users incentive to reveal their honest valuations. Finally,
they have considered the sum of all the valuations of the
allocated resources as the benchmark.

A QoS-aware resource-allocation multiple cooperative
subtasks of jobs in cloud-based computing and data store
services are investigated in [36]. Defining the objective
function as a weighted sum of the expense and the job
completion time and job execution time deadlines and
budget constraints, game theory approach is used to solve
the scheduling problem. First, considering users as their
chosen strategy regardless of the others, a binary inte-
ger programming method is proposed to obtain the initial
independent optimization solution. Then, an evolutionary
strategy is designed to achieve the optimal solution.

Regarding the scalability advantage of public clouds
and better QoS especially delay and power consump-
tion of local clouds, MAPCloud is proposed in [37].
This provided a means to select local and public clouds
for mobile applications in order to increase the perfor-
mance and scalability of the applications. Interestingly,
for a fixed price, MAPCloud decreases 32% of the delay
and power consumption while providing scalability. Then,
cloud resource allocation for mobile applications (CRAM)
using heuristic methods has been developed as a resource
allocation module for mobile applications achieving 84%
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of the optimal power saving solutions for large amount of
users.

Rahimi et al. [38] focused on modeling the mobile appli-
cations as location-time workflows (LTW) of task. 2D
location map is used to locate mobile hosts and cloud
resources. Moreover, trajectory has been associated with
mobile users. Defining QoS as a function of delay, power,
and price, an efficient heuristic algorithm called MuSIC is
proposed to maximize the mobile utilities while ensuring
high-application QoS.

Applying the game theory approach, coalition of the
cloud service providers is addressed in [39] where the
uncertainty of internal users from each provider has been
taken into account. First, with respect to randomness of
demand, a stochastic linear programming game model
to study the resource and revenue sharing for cloud
providers is developed. Then, using the Markov chain to
model coalitional arrangement, the coalitional game for
forming the cooperation to share resource and revenue are
investigated.

In this paper, we address performance modeling of
mobile applications using MCC and WNC. A resource
allocation algorithm is proposed to allocate resources and
mobile transmission power and process power.

3 System model

In this section, we present a system model for opti-
mum resource allocation. We assumed that mobile users
access application clouds via WNC and the Internet.
Figure 1 shows the presumed topology based on [2] and
[19]. However, as of today, smartphones just support
WLAN/cellular technologies simultaneously.

We assume that there are a number of active appli-
cations on a mobile phone that support both WLAN
and cellular technologies. In order to achieve a bet-
ter performance and improve power saving, a portion
of the processing workload has to be offloaded to the
clouds. As depicted in the Figure 2, each application must
choose a proper wireless interface and a cloud network
to offload the processes to. However, the said selection
process depends on parameters such as battery lifetime
and required processing load. In addition, a feasible QoS
profile for the application needs to be determined.

In order to conceive this model presumption, we defined
sets of variables according to application profiles, com-
puting resource profiles, and network profiles. A =
{1,2,..,i,.1} states a set of mobile applications, CR =
{1,..,),,..J} states a set of available cloud computing
resources, and WN = {WNj,.., WNy,,.WNgk} repre-
sents accessible wireless network interfaces collection.
Note that/, /, and K are the number of active applica-
tions, available clouds, and wireless interfaces, respec-
tively. Each collection element is a vector of characteristics
which is related to the cost, power consumption, and
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Figure 1 Network topology.
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QoS. An operating point OPy = (Uy, Py, Cy) is defined
to describe the mobile system behavior over the nth time
slot. U, shows the utilization associated with mobile user
satisfaction and is strictly related to the QoS indexes
of applications. P, represents mobile phone power con-
sumption, and C, demonstrates mobile phone cost func-
tion. In this paper, appropriate j € CR and k € WN are
assigned to the ith application in order for better formu-
lation of controlling and optimizing the operating point.
Therefore, operating point indicates important objectives
of mobile user such as mobile power consumption at each
time slot. All parameters of the model are detailed in
Table 1.

Moreover, there are some limitations and restrictions on
resources and user profiles which are strictly dependent

on the mobile application QoS requirements and net-
work parameters. In the following subsections, the objec-
tive functions and constraints will be investigated. Traffic
rate of the ith application is defined discretely between
AL and AL, where i belongs to {1,2,..,]}. Due to the
bound limits, different functions of downlink traffics
are linearly approximated using affine functions and the
Taylor series. Such approximations decrease the com-
plexity order in a dramatic way while errors remain

small.

3.1 QoS utilization and constraints

As explained before, utilization function is related to
application QoS characteristics. Objective utilization
function will be as follows:

2
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Figure 2 Algorithm architecture.
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Table 1 Table of parameters

Parameters Indicator

Moin Minimum required incoming traffic rate of the ith
application

Mnax Maximum required incoming traffic rate of the ith
application

Aj Incoming traffic rate of the ith application

Si Effective processor speed (instructions per second)
dedicated to the ith application in a mobile device

G Instructions of ith application per time slot

R, Minimum required transmission rate of the ith application

Rl Maximum required transmission rate of the ith application

Ri Transmission rate of the jth application

Vi Instructions have to be processed in cloud servers ith
application

X,.dep Utilization factor of the jth application dependent on

) incoming traffic rate

X,-mdep Utilization factor of the ith application independent from
incoming traffic rate

D Delay threshold of ith application traffic

D; Delay of ith application traffic

ni Mobile data offloading to clouds instructions of ith
application

TD; Uploading data of ith application

Ry Maximum achievable transmission rate using kth
interface

Hy Channel quality indicator of the kth interface

Dwﬁh Achievable guaranteed downlink delay of kth interface

Dk Downlink delay of kth interface

a) Cost coefficient of kth wireless download rate
(per instruction)

Ok Downlink QoS exponent of kth interface

m Download rate of kth interface

Prnaint (K) Connection power consumption of kth interface

i Error rate threshold

ﬂj” Delay between the wireless cloud and jth cloud server at

A the nth time slot

ﬂl” Estimation of the ,B/”

% Effective processor speed of jth cloud server

ot Cost coefficient of downlink traffic of jth cloud server

S

o; Cost coefficient of uplink traffic of jth cloud server

o Cost coefficient cloud computation of jth cloud

Pcomp Process power consumption per processing speed unit
En nth moment

e(n) Mobile energy level at the nth time slot

Bg(n) Mobile budget fee at the nth time slot

P (M Ry) A+ x4 (1)

1
u=>y ("
i=1

where Xid P (i, R)) depends on the upload and download

rate. Conversely, x dep i independent from the upload

and download rate in the ith application utilization func-
tion.

Delay process consists of two parts, namely process-
ing delay and communication delay. Also, communication
delay includes two parts: wireless link delay and internet
network delay. Applications such as cloud mobile gam-
ing (CMGQ) interact closely with cloud servers. Therefore,
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uplink delay is a significant parameter as well. In addi-
tion, effective capacity concept has been used to model
downlink wireless link delay. Assuming that arrival rates
and service rates of the wireless links are all stationary and
independent, according to the Gartner-Ellis limits [40,41],
wireless link delay violation probability of kth wireless
interface is approximated by [42-44]:

pr(Dy > D" ~ e 0Dy @)

Internet delay (delay between the wireless network
cloud and cloud servers) for interactive applications such
as CMG denotes the round trip time delay, and for stream-
ing applications denotes the one-way delay. Calculat-
ing the Internet delay requires a complicated procedure.
However, assuming that the mobile cloud computing cen-
ters are near the wireless access network, Internet delay
may be considered as a Gaussian random variable. There-
fore, linear estimator [45] based on adaptive algorithm
proposed in [46] is used to predict the Internet delay:

pr=pr""+ (ﬂ” - prh 3)
ﬂ/
where r is equal to
| BB —EBMB - EBY) W
(E(B] — EBNAEPB] — E(B)?)

,3]” represents the Internet delay of the jth cloud server
with the application in the nth time slot. After cloud server
selection process, a cloud server is mapped to the ith
application. Hereafter, we assume that the jth cloud server
and kth wireless interface are assigned to the ith appli-
cation. Therefore, total delay of ith application could be
written by

D, = processdelay + wirelessuplinkdelay + internetdelay
+ cloudprocessdelay + wirelessdownlinkdelay

(5)

In Equation 5, the first part denotes the processing delay
in the mobile phone related to the number of instructions
per time slot executed in the mobile phone. Mobile pro-
cess delay is approximated by ‘ =1 where 7; represents
the offloading instructions to the cloud and S; denotes
effective processor speed dedicated to ith application. The
second part denotes the uploading delay of smartphone
approximated b
work delay represented by B;. The forth part denotes the
processing delay of the cloud server considered as nityi,

Finally, the last part implies the downlink delay of the kth
interface represented by Dwy. Dwy is considered a ran-
dom variable and its expected value is of great benefit to
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decision-making. The expected delay has to be less than
the application delay threshold. QoS characteristics of the
ith application could be written as follows:

Qi = {)‘f'nin’ )\'f—nax¢ )\-ix Rinin’ Rinax’Rl" DL’DlTh} (6)

3.2 Power consumption process

Power consumption also consists of two main parts,
namely transmission power consumption and processing
power consumption. The formulation will be as follows:

P = processing power + transmission power (7)

The first part indicates the processing power consump-
tion, and the second part is the transmission power. Pro-
cessing power may be approximated linearly as a function
of effective processor speed dedicated to the applications.

I
Processingpower = (Z PcompSi) 8)

i=1

Transmission power itself consists of connection main-
tenance power consumption [47] and data transmission
power consumption.

K
Transmissionpower = (Z(P,t(’ (Hi» Ri) + Prmaint (k)))
k=1

)

Transmission power depends on the channel state infor-
mation (CSI) and transmission rate of the mobile phone.
Without a doubt, OFDM is the dominant technology in
the current and future transmission technologies. With
respect to the CSI on the receiver side, “Water filling’ could
be an optimum algorithm to allocate the transmission
power to the sub-carriers. Considering a single antenna, it

will be equal to
_ hmk)
Liertmi

(10)

M, h
k mk
my=1 log, ( i)

K 2( Rk
o R
PY(HpR) = Y (e Ve

mk:I

where Wy represents the kth interface sub-channel band-
width. /4, is the mth sub-channel quality indicator of
kth interface. 'y indicates coding gain of kth interface,
1, states the mth sub-channel noise of the kth interface,
and My represents the number of subcarriers of the kth
interface.

In the rest of the paper, we use Equation (10) as the
transmission power function. Connection maintenance
power consumption has a linear relation with transmis-
sion time. According to central limit theorem, allocated
processing power for applications is approximated by a
Gaussian random variable. Then, mobile CPU process

sharing feasibility is defined by Pr (ZLI Si > S) <p
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therefore, <Z€=1 wsiy +¢ XL, 05@) < S where § =
®~1(1—p), & is the inverse function of the CDF of nor-
mal distribution with ps;) and os;) as the first and the
second moments, respectively. For the proof, see [48].

3.3 Costfunction
The cost function consists of the following two parts:

Cost = wirelessoperatorcosts + cloudservicecosts
(11)

We assumed that each active application receives service
from a specific cloud server and a wireless interface is
selected for communication of each application. Based on
the proposed cost model in [49], the mobile cloud service
cost function could be written as follows:

J
cloud service costs = Z (acomp(yj + nj)+a].ULR,'+ot}DLA;>
j=1
(12)

where k} denotes the sum of the incoming traffic rates
of applications which the jth cloud server is assigned
to them. We assumed that each application is linked
to a cloud server. First part indicates the computation
cost while the second and the third parts represent the
cost associated with data upload and download to cloud
servers, respectively. Wireless access network costs also
could be approximated linearly by

K
" "
wirelessoperatorcosts = Z afhy + o R
k=1

(13)

)\;; and R; denote the sum of incoming and outgoing
traffic rates, respectively, of applications which the kth
interface is assigned to them. Accordingly, the follow-
ing characteristics for clouds and wireless network inter-
faces are proposed: CR; = {oszL,oszL,ﬂj, S}} and WN; =
{ofs Hie, R, Prmaint(k)} (See Table 1).

It is also possible to define objective functions and
constraints with respect to application tasks instead of
applications alone. Changing the scale from application
to task increases resource allocation accuracy as well as
complexity order of the algorithm.

4 Problem formulation and solution

4.1 Problem definition

Less power consumption, user satisfaction, and cost are
of great interest to many mobile users. In this section,
we propose a multi-objective dynamic resource allocation
algorithm to optimize the aforementioned topics of inter-
est in the form of objective function and processes with
respect to the network resources and mobile and appli-
cation constraints. Dynamic constraint programming and



Vakilinia et al. EURASIP Journal on Wireless Communications and Networking 2014, 2014:201

http://jwcn.eurasipjournals.com/content/2014/1/201

lexicographic-event-based optimization method [8] have
been used to solve the multi-objective optimization prob-
lem. However, complexity order of the proposed algo-
rithm also needs to be considered. Moreover, the pre-
viously highlighted measures of interest usually are not
available in a closed form and are mostly obtained from
numerical data. Henceforth, linear interpolation method
for numerical data and the Taylor series for closed form
function have been applied to approximate the input data
or non-linear functions in a short interval, e.g., X; €
(Al AL ]. However, as it will be explained shortly, the
proposed protocol architecture design does not depend
on linear functions of the system model. In fact, applica-
tion of non-linear functions will not impact the complex-
ity order drastically.

Figure 3 shows the overall structure of the proposed
algorithm. The algorithm takes the parameters of cloud
profiles, wireless access networks, mobile devices, and
mobile applications as its input. In addition, it linearly
approximates inputs such as cloud server delay based on
which the state and corresponding events are selected.
In the next level, optimum wireless network interface,
best available cloud servers, offloading coefficients of

Cellular

WLAN

Interface
Handler | Handler
Resource
Handler

m

Figure 3 The proposed algorithm structure.
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applications, processing power and transmission power
of the mobile phone and optimum QoS profile will
be selected. Obtaining an optimum offloading solution,
the execution controller introduced in [32] manages the
shared process between the mobile phone and cloud
servers.

4.2 Problem formulation
Objective processes could be written as follows:

Fl(n) = —U(n) (14)
Fi(n) = P(n) (15)
Fi(n) = cost(n) (16)

Here, we used negative utilization factor to convert
the maximization problem to a minimization problem.
Mobile device and resources constraints are Vi € A

0 < ni(n) < Ci(n) (17)
Bl (s, (n) + ¢os,(m) < S (18)
ho () < pge(m) (19)

Application QoS profile constraints (Qmin < Q; < Qmax)
are considered as follows: Vi € A

E{D;(n)} < D (20)
AL < Afm) < AL, (21)
R < Ri(nm) <RL,, (22)

The current delay model approximates the real delay
scenarios. To accommodate a more complicated type of

o
—
Energy Saving /—_Q

Mode

/]

Best QoS Strategy

N

Cost Effective
Mode

Figure 4 FSM structure.
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delay, Equation (20) can be replaced by arbitrary complex
constraints.

We use lexicographic optimization method to solve the
proposed multi-objective optimization problem. Objec-
tive functions are prioritized based on the state of the
system. In fact, only one objective function is selected
in each state and others are considered as constraints.
The state of the system depends on the next occurring
event. A finite state model (FSM) is proposed for optimal
resource allocation while considering different events to
transit amongst the states. Figure 4 shows the proposed
FSM structure.

The states are as follows:

1. Best QoS strategy: in this state, we try to maximize
user utilization while considering other objectives as
constraint.

2. Cost-effective mode: in this state, considering the
QoS and power consumption constraints, the
proposed resource allocation algorithm attempts to
minimize the cost of the system.

3. Energy-saving mode: in this state, the proposed
algorithm minimizes the power consumption of the
system considering QoS and cost constraints.

The transition events take place as detailed below:

Q occurs when €(n) < e(n”) where €(n) and €(nth)
denote the mobile energy in the nth time slot and its
threshold, respectively. It shows that mobile energy is in
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a critical situation. 2 occurs when: €(n) < e(n) and B
happens when €(n) > €(n—1) meaning that mobile device
is being charged and is not in a critical situation energy
wise. ¢ happens when Bg(n) < Bg"” where Bg and Bgth
denotes the mobile budget fee in the nth time slot and
its threshold, respectively, reflecting the fact that mobile
user budget is approaching levels lower than its threshold.
Also, ¢> occurs when Bg(n) > Bgth. QoS-sensitive state is
considered as the initial state. According to the occurring
events, dynamic constraint programming is applied to
find the optimal solution. The state of the system is shown
by x, where x belongs to the set of states; X = {1,2,3}. In
each state, we solve the following optimization problem:

Argmin wn,cran R SFL
ST:F. <F" VieX,x+#x
XX X
(17), (18), (19), (20), (21), (22)
where Equations (17), (18), (19) and Equations (20),

(21), (22) are the resources and the mobile applications
constraints, respectively, and

A ={A1, . A A}

n = {n1 e Mis 11}

R ={Ry,...R;, ..R;}

S ={Sy,....5i,...S1}

Not only proper mobile cloud computing center and
interface should be selected for the applications but also

Table 2 Numerical validation parameters

Parameters Indicator

)J'mm iid rv between 10 and 384 kbps with uniform distribution

Mo iid rv between 100 and 2 Mbps with uniform distribution
800 MHz

G iid rv between 100 and 107 with uniform distribution

Rmin iid rv between 0 and 100 kbps with uniform distribution

R iid rv between 10 and 250 kbps with uniform distribution

,dep iid rv between 0 and 1 with uniform distribution
Indep iid rv between 0 and 1 with uniform distribution

o iid rv between 50 ms and 20 s with uniform distribution

TD; iid rv between 0 and 100 KB with uniform distribution

Ry Maximum achievable transmission rate through using kth
interface

Dwh 50 ms interface

Dwy iid rv between 10 and 250 kbps with uniform distribution

o) iid rv between 10 and 250 kbps with uniform distribution

Ik k™ iid rv between 100 kbps and 2 Mbps with uniform
distribution

B iid rv between 20 ms and 5 s with uniform distribution

aJDL Cost coefficient of downlink traffic of jth cloud server

at Cost coefficient of uplink traffic of jth cloud server

afomp Cost coefficient cloud computation of jth cloud

Praint (k) iid rv between 120 and 400 mw with uniform distribution for
WiFiinterfaces and iid rv between 500 and 800 mW

Peomp 2.34 x 1071°W/Hertz




Vakilinia et al. EURASIP Journal on Wireless Communications and Networking 2014, 2014:201

http://jwcn.eurasipjournals.com/content/2014/1/201

Page9of 14

100

Utilization Indicator

Cost Indicator ~ 80
90

100

40

Figure 6 Operating point tracking on the time.

90

70
60

Power Consumption Indicator

offloading, downloading, and uploading rates also should
be determined in order to optimize the objective functions
considering the constraints.

For instance, considering x = 2, the optimization
problem will be as follows:

Argminy ;. rs <Zl{:1 Pcompsi) + (Zl,le (Pt (Hy, Ri) + Pmaint(k))>
d di ind.
ST: Zzl'=1 (Xi,fp()\-i) + Xi,ij(Ri) + Xim ep) < Uy,
211:1 (acomp(yj + ) + Ol]»ULR]' + a;)LA})
+ Y% (@ + 0'Ry) < Costyy
E{D;(m)} <D Vie A
R <R(nm) <R, VicA
0<nim) <Ci(n) Vic A
1, (s, (n) + Lo, (m) < S
Mon S M) <A, VieA

A (m) < pui(n) Yk e WN

Here, first the best possible wireless network interface
and cloud have to be selected for each active application.
Next, process offloading, and variables such as down-
load/upload rate and effective processor speed dedicated
to the applications with the goal of minimizing the power
consumption of the device will be calculated.

4.3 Problem solution

wi, is considered as the input of the proposed algorithm
corresponding to the ith application such as WN, CR
collections in the x state. #/, also is considered as the con-
trol variable vector related to the ith application such as
offloading factor and ith application incoming traffic rate
at the x state. ., is selected from a predetermined set U.
U c R!is restricted to Equations (17), (18), (19), and
(21). We assumed that s; is non-zero in all applications,
because all applications need some process in a mobile
phone. After multiplying Equation (5) by s;, all constraints
and objective functions will be linear in terms of 7 ,A, and
S. The only non-linear variable is power transmission rate.
Bender decomposition method [7] is used to decompose
the problem into functions linear in variables (i.e., n, A,
and S) and non-linear in variable R. Minimum amount of
R; could be easily found through Equations (5) and (20) as
follows:

Dlgh _ (3] + Cts;l’h + %) — E{Dw;}

Rinin = TD: :
i

(23)
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Figure 7 Utilization indicator for different power thresholds and different number of applications.

Then, R; could be found by

Ri = RE + erey (24)
where ep(;) is dependent on the objective function and
objective constraints. In order to find the eg(;), simple
incremental selection algorithm [50] is used. It ranges
from O to R}, —R! ;... However, if the transmission power
consumption is linearly approximated in terms of trans-
mission rate [30], then optimization problem will be sim-
plified to a bilinear matrix inequality problem which could
be solved with less complexity. fx‘ (ul, wL(j, k) | x) shows
the xth objective function derived from the ith applica-
tion. Therefore, cost to go function could be written as
below:

-1

Fl = £, whi, ) 1 %) + Y fx (@l wh(G,K) | %) (25)

i=1
Thus,

Fim foIIx(ui,Wi(j, k) | x) “I‘Fl_l

XX

(26)

Also, the following constraint should be satisfied for the
successive objective functions:

Fl, =} whGi k) | ) + FL ! < FL

X — XX

Ve X,x#x
(27)

Optimal solution to this problem could be found using
dynamic programming (DP). It should be noted that appli-
cations are sorted according to their priorities and impor-
tance. Hence, the initial value of the objective is related
to the most prioritized application. However, due to the
constraints, computation complexity is much higher than
a usual dynamic programming problem with brute-force
search. A diagram based on [9] is proposed to find the
optimal solution. Moreover, a method of learning from the
mistakes [7] is used to restrict the feasible optimization
region. Figure 5 shows the proposed algorithm structure.
Using DP, the network and cloud resources are selected.
In each DP step, linear programming output determines
control variables of the system ... In order to decrease the
complexity order, instead of brute-force search in resource
and network selection, a policy is developed to assign
the resources with the lowest objective values considering
the application and resources constraints. The algorithm
pseudo code is shown in Algorithm 1.

To improve modeling, TD; and C; could be approxi-
mated linearly by ; and A;

TD; = Yrpni + Z1p;; Ci = Y, hi + Zg; (28)
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Algorithm 1: Dynamic constraint programming
Data: CR,WN,Qmin, Qmax
Result: n,Q, F,

1 events and states initialization;

2 while Y(u, w) € {Valid}FL(u*, w*) = minFL(u, w) do

3 for i=1— Ido

4 for jeCR, ke WNdo

5 ‘ ch ZArgmmj,k(fxi | Qmin)

6 end for

7 uﬁc = LPoptimizaFion (ch 1 %)
/1Argmin,i f (W, ;1 %)

8 if Q(9) ¢ (Qmin (i), Qmax(i)) then

9 update the valid region

10 BREAK

11 end if

12 f* (wfc, uﬁc) :f(wi, uﬁc)

13 Vx € X, FL(u*, w*) =
Firl(u*, w*) + £ (Wi, ul)

14 end for

15 | ifVie X,k #x FLw*,w*) < F” then

16 update the valid region

17 BREAK

18 end if

19 end while

where Y7p, and Z7p, are coefficients used in linear
approximation of the uploading data of ith application in
terms of offloading computation. Y, is the incoming traf-
fic dependent part of the ith application process while Z¢,
is its independent part.

For more precise resource allocation under some con-
ditions, it is possible to approximate the functions by
higher order of the Taylor series or other functions (e.g.,
exponential family). The proposed algorithm, using ben-
der decomposition method, always breaks the optimiza-
tion method into two different parts, namely linear and
non-linear optimization part.

Arg”’qinug(unonlin) + pUlin
ST : z(unonlin) + qthiin < G

N (29)
resource constraints

applications constraints

where ujin, Unonlin represent linear and non-linear con-
trol variables, respectively. Therefore, master problem
is divided into sub-problems. Using column generation
techniques, two sub-optimization problems are min-
imized simultaneously. Integration of the two afore-
mentioned linear and non-linear subproblems restricts
the optimization feasible region and despite of the
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increasing complexity, it converges to an optimal
solution.

5 Numerical results
In this section, some numerical results are presented
to verify analysis of the previous section. Resources
and application constraints are usually based on [28-30].
The resource characteristics considered in the numeri-
cal results are shown on Table 2. In the studied problem,
we assumed that a main application such as CMG, video
call, or media streaming is always present within the
network, while considering presence of others as minor
applications such as online social networks, health mon-
itoring, or file and application download (I is considered
a random variable between 2; 10 over the time). Fifty
different cloud service providers with different character-
istics have been considered in the network. The number
of available WiFis is a random variable between 0 to 4.
However, the number of available cellular networks varies
from 1 to 5. If available resources are not enough for
all applications, then the proposed algorithm allocates
resources in order to maximize the objective function
ignoring applications with less weight in the objective
function. Connection maintenance power consumption
includes elements such as receiving data power consump-
tion. Receiving power consumption itself depends on sev-
eral transmission parameters such as network contention
[51].
Objective

Uindicator (1) =

indicators are defined as follows:
wm 100, Pindicator (1) = Pmin(D) 100

Umax (1) p(n)

and costindicator (1) = % x 100 where umax(n),
Pmin (1), and costmin (1) represent the extremum achiev-
able utilization, cost, and power consumption without
considering the constraints of the mobile device at the
nth time slot. Figure 6 shows the mobile device perfor-
mance with respect to the time. As demonstrated, the
mobile device had started with the best QoS strategy state
and had a large utilization factor. After budget reduction
state changed to cost effective mode, the algorithm min-
imized the cost of the mobile usage. Finally, when the
remaining battery energy went lower than the thresh-
old (10%) the state was changed to energy-saving mode
which minimizes the device power consumption. Blue
line shows the average tracking of the operating point
through the time. Red points are the operating point
samples during different time slots. Figure 7 shows power
efficiency factor for different number of applications and
different power consumption thresholds. As it is shown
in Figure 7, generally with higher power consumption
thresholds and more applications, utilization function
tends to increase. However, for higher levels in number of
applications with low power consumption threshold, uti-
lization function is lower in comparison with applications
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1with the same power threshold limit due to larger num-
ber of constraints. Figure 8 depicts the system power
efficiency over the time domain for different average
network delays. Value of power efficiency function shows
the state transition from the best QoS strategy or cost-
effective mode to energy-effective mode. Figure 8 shows
that state transition takes place earlier for larger amounts
of E(B). This indicates flexibility of the network in the
proposed algorithm. However, for large values of E(B),
algorithm could not find a feasible optimum point
satisfying all the constrains. In addition, power efficiency
decreased in a dramatic way. Also, Figure 9 shows the
power efficiency in terms of different utilization thresh-
olds and cost thresholds. It is obvious that with decrease
in average utilization threshold, while average cost
threshold increases, power efficiency increases as well.
The complexity order of the proposed optimization
algorithm is less than the complexity of brute-force search
method. As depicted in Figure 10, the programming effort
required which is defined by logarithm of the syntax lines
to code the algorithm for the proposed dynamic constant
programming is much less than the brute-force search.

6 Conclusions

In this paper, based on WNC concept, a system model
for next generation of mobile communication has been
considered. Cost, QoS, and power consumption func-
tions are defined based on the system model. Next, a
multi-dimensional optimization algorithm is proposed to
optimize the objectives of a mobile user. The proposed
multi-dimensional optimization algorithm takes network
parameters, mobile device, and application constraints
as input to optimally select the network resources and
applications QoS profiles with optimum offloading coef-
ficients. The proposed algorithm is established on event-
based lexicographic optimization method and dynamic
constraint programming. Numerical results for different
environmental variables revealed that the proposed algo-
rithm could be dynamically adaptive to environmental

parameters variation. We have solved the optimization
problem assuming particular linear approximations which
may not be always valid. The next step could be extend-
ing the current work to the case of nonlinear func-
tions and processes. In addition to the objectives of
mobile users, performance metrics of cloud computing
data centers and wireless operators can be considered as
well.
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