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Abstract

This paper focuses on wide-sense stationary signal processing within a compressive sensing framework, proposing
a new method of compressive sampling fast Fourier transform (FFT) accumulation method (CS-FAM). Depending on
how it is applied, CS-FAM has one or two steps, allowing for versatility in multiband signal detection and parameter
extraction. In the first step, the active sub-bands are detected using multiple measurement vectors (MMVs) and
multiuser detection is achieved using a bandwidth constraint. In applications where it is required, such as in
estimations of carrier frequency, symbol rate, or modulation format identification, the second step can be used to
reconstruct the cyclic spectrums of each user individually. Based on the results of first step, parameter extraction is
performed by searching for peaks in the cyclic spectrum rather than by the usual method of setting a threshold.
Compared to other cyclic feature detection methods based on sub-Nyquist sampling, CS-FAM is low in complexity,
allowing for practical implementation. Based on the results of the first step, parameter extraction from the cyclic
spectrum is performed by searching for peaks rather than by setting a threshold. Although CS-FAM can only
be employed for multiband signal detection, compared to other cyclic feature detection methods based on
sub-Nyquist sampling, it is low in complexity, which makes practical implementation possible. Numerical simulations
are presented to demonstrate the robustness of CS-FAM's multiband signal detection and the effectiveness of its
cyclic spectrum estimation against both sampling rate reduction and noise uncertainty.
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1 Introduction
Signal detection and parameter estimation of wideband
radio signals are increasingly important aspects of commu-
nication systems such as electronic countermeasures [1],
carrier tracking [2], and spectrum sensing [3]. However,
conventional detection techniques using standard analog-
to-digital converters (ADCs) have been primarily designed
to capture narrowband signals [4]. Wideband sensing based
on Nyquist sampling is similarly unsuitable in such applica-
tions, often yielding either an insupportable sampling bur-
den or an unacceptable sampling complexity. Additionally,
because of this, wideband receivers require a high sampling
rate, which typically results in high power consumption. In
contrast, analog front-ends have often been used to capture
sparse signals in scenarios such as cognitive radio networks
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and radar detection systems. Consequently, compressive
sampling (also known as compressive sensing [5]),
conducted using low rate ADCs, has been extensively
employed to detect wideband signals. With the under-
lying assumption of signal sparsity, this technology is
capable of complete signal recovery from a small
number of linear measurements [6].
A number of methods for radio signal detection using

compressive sampling have been presented in the litera-
ture. Several studies have focused on use of blind multi-
band signal reconstruction [7] and power spectrum
sensing [8-11]. These works aim to detect active sub-
bands distributed over a wide frequency spectrum, which
is a crucial step in dynamic spectrum access [12,13]. Other
literature has proposed methods for cyclic spectrum esti-
mation using sub-Nyquist sampling. Also known as cyclic
feature detection, these methods pertain not only to
spectrum sensing but also to symbol rate estimation, car-
rier frequency estimation, and modulation identification
[14-17]. In [18], the spectrum correlation function (SCF)
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(also known as cyclic spectrum.) of each narrowband sig-
nal was analyzed individually. This scheme recovered sig-
nals in the time domain using compressive sampling and
then computed the SCF at the Nyquist rate. The linear re-
lationship between the SCF and the time-varying covari-
ance function was first derived in [19] and [20]. This
operation makes the sparse approximation algorithms
generated by compressive sensing available for cyclic
feature detection. The scheme in [21] used the sym-
metry property of the cyclic autocorrelation function
for blind spectrum sensing. On another side, the time
smoothed algorithm known as the fast Fourier trans-
form (FFT) accumulation method (FAM) was presented
in [22] for effective cyclic spectrum estimation based on
the Nyquist sampling. A practical implementation of
this algorithm for spectrum sensing, presented in [23],
showcased its high efficiency and low complexity. In
this paper, a two-step compressive sampling FAM (CS-
FAM) scheme that employs multiple measurement
vectors (MMVs) is presented. Multiband detection is
accomplished in the first step by means of a modified
version of the periodogram method using sub-Nyquist
samples, while cyclic spectrum estimation is performed
in the second step.
The main characteristics of CS-FAM are as follows: (i)

based on the FAM framework, this scheme has low
complexity, which is important because cyclic spectrum
analysis can lead to high complexity due to the use of
two-dimensional spectrum correlation computations, es-
pecially from compressive samples. For example, the
methods in [20] required matrices proportional to N4.
However, in implementations such as high-resolution
cyclic spectrum estimation by the order of N ×N, the
memory requirements are quite large, making cyclic
spectrum analysis especially difficult. (ii) Conventional
cyclic spectrum estimation methods require front-end
components capable of high rate sampling. In contrast,
in this work, the detection problem is addressed by
using a low rate sampling device to capture sub-Nyquist
samples. Another advantage of CS-FAM is that perform-
ing multiuser detection in the first step eliminates the
effect of signal superposition in the multiuser cyclic
spectrum, whereas conventional methods require an
additional signal separation process. (iii) Due to the use
of power spectrum estimation, the multiband signal de-
tection process is robust, compared to other methods
based on signal recovery from compressive sampling,
which are sensitive typically to noise. For example, the
power spectrum blind sampling (PSBS) method used in
[9] and [10] demonstrated poor estimation performance
in inactive bands, which also led to high complexity in
matrix operations. (iv) The process of CS-FAM is flexible
in regards to practical application. Multiuser detection is
achieved in only one step and, based on the results of the
first step, parameter estimation is accomplished in the sec-
ond step by searching for the peaks in the cyclic spectrum
rather than by setting a threshold.
The rest of the paper is organized as follows: Section

2 provides the system model along with the FAM algo-
rithm and compressive sampling framework. CS- FAM
is then developed within the framework of FAM. Signal
detection is addressed in Section 3. A simple signal re-
covery algorithm, simultaneous orthogonal matching
pursuit (SOMP) is employed for multiband detection. A
vector indicating the power distribution of the analog
input is then computed from the iteration of SOMP.
Following this, active sub-bands are identified using a
constant false-alarm detector, and multiuser detection
is achieved using a bandwidth constraint. If the signal is
reconstructed, the second step of CS-FAM, cyclic fea-
ture detection, can be performed. Simulations are pre-
sented in Section 4 to demonstrate the detection
performance of this scheme, followed by a summary in
Section 5.

2 System model
Modulated signals have a built-in periodicity, which is
characterized as cyclostationary [24]. The auto-correlation
function Rx(t, τ) = E{x(t)∗x(t + τ)} (* is the complex conju-
gate operator), which is periodic in the time domain with
a period T0, is given by

Rx t þ T 0; τð Þ ¼ Rx t; τð Þ: ð1Þ

The cyclic auto-correlation function (CAF) is repre-
sented in terms of Fourier coefficients as

Rα
x τð Þ ¼ 1

T 0

Z T0=2

−T0=2
Rx t; τð Þe−j2παtdt; ð2Þ

where α ≜ {k/T0}k ∈ ℤ represents the cyclic frequencies.
The SCF is defined by

Sαx fð Þ ¼
Z∞
−∞

Rα
x τð Þe−i2πf τdτ: ð3Þ

Wide-sense stationary signals can be detected from
stationary interference because general stationary signals
do not possess cyclic stationary characteristics. The ad-
vantage of cyclostationary feature detection lies in its
ability to separate the signal of interest (SOI) from noise
and interference in the spectral correlation plane, mak-
ing it well suited for modulation recognition and param-
eter estimation.
The framework of CS-FAM is illustrated in Figure 1. Be-

cause the detection method in this paper is based on a
process of cyclic spectrum estimation using compressive
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Figure 1 Flexible signal detection by CS-FAM.

Pan et al. EURASIP Journal on Wireless Communications and Networking 2014, 2014:218 Page 3 of 14
http://jwcn.eurasipjournals.com/content/2014/1/218
sampling, we will introduce the FAM algorithm and com-
pressive sampling framework first.

2.1 The FAM algorithm
Compared to other methods used to estimate SCF, time
smoothed algorithm is computationally efficient for general
cyclic spectral analysis [22]. Based on the time smoothed
cyclic periodogram, the parameter estimation is calculated
with a data tapering window of the length T sliding over the
data for a time span of Δt and Δt =N ′Ts (N ′ is the length
of x[n]), where Ts is the sample interval. The SCF of the

digital signal x[n] is defined as Sαx fð Þ ¼
X∞
b¼−∞

Rα
x bð Þe−j2πf b

with the discrete Fourier transform (DFT). The cyclic peri-
odogram [25] is defined as

Sαx n; fð Þ ¼ XT n; f 1ð ÞX�
T n; f 2ð Þ; ð4Þ

where f = (f1 + f2)/2 and α = f2 − f1. XT(n, f ) denotes a
complex demodulator, which is expressed as

XT n; fð Þ ¼
XN 0=2−1

r¼−N 0=2

w rð Þx n−rð Þe−i2πf n−rð Þ=N 0
; ð5Þ

where w(n) is a data tapering window, which is well ac-
complished by using a Hamming window. The limited
cyclic spectrum with the discrete-time span of N ' is de-
fined in terms of the time smoothed cyclic periodogram as

Sαx n; fð ÞN 0 ¼
XnþN 0=2−1

r¼n−N 0=2

XT r; f 1ð ÞX�
T r; f 2ð Þg n−rð Þ: ð6Þ

where g(n) is a data tapering window of length N '. An
implementation based on time smoothed cyclic periodo-
gram is illustrated in Figure 2. As shown in [25] and
[26], if the time windows w(n) and g(n) are properly nor-
malized, the time smoothed cyclic periodogram con-
verges to the cyclic spectrum in the limit as follows:

lim
Δf→0

lim
N 0→∞

Sαx n; fð ÞN 0 ¼ Sαx fð Þ: ð7Þ
In order to obtain a substantial reduction in random ef-
fects using a time-smoothed approach, the time-spectrum
resolution product must significantly exceed unity

ΔtΔf >> 1: ð8Þ
Thus, substantial observation time is needed to obtain

a reliable SCF estimate, where a smaller spectral reso-
lution is required to resolve the individual features of
the SCF. The output filter g(n) is not as crucial as the in-
put filter w(n). Therefore, for simplicity, g(n) is taken to
be a rectangular window, as is commonly done in FAM
algorithms. The computational efficiency of (6) can be
improved by decimating the outputs of the filter w(n).
With a decimating factor D, (6) is modified to

Sαx Dn; fð ÞN 0 ¼
XL=2−1

r¼−L=2

XT rD; f 1ð ÞX�
T rD; f 2ð Þ; ð9Þ

L=N '/D. The filter w(r) ensures that no aliasing takes
place after D-decimation [27-29]. Since the outputs of chan-
nelization are oversampled by a factor of N, the sampling
rate can be reduced to fs/D, D ≤N before aliasing occurs
[22,28]. The effects of these parameters on the FAM algo-
rithm are analyzed in [22], which discusses resolution, reli-
ability, and computation reduction. In this paper, we have
selected D=N to satisfy the compressive sampling frame-
work expressed by (12). However, the filter is always not
ideal. Then, the leakage will influence the estimation per-
formance. While the selection D=N leads to a slight in-
crease in cycle leakage, it significantly reduces complexity.
Considering the frequency shifting of the production se-
quence from α to α+ qΔα, where q is an integer, (9) becomes

SαþqΔα
x n; f ið ÞN 0 ¼

XL=2−1
r¼−L=2

XT r; f lð ÞX�
T r; f k
� �

e−i2πrq=L:

ð10Þ
Here, fl and fk are the frequency values in correlating

two spectral components. The FAM estimate computed
in (10) corresponds to α = (fl − fk) and fj = (fl + fk)/2. The
length of w(n) is N and the frequency resolution is Δf =
fs/N, where fs is the sampling frequency. The other



Figure 2 Implementation of time smoothed cyclic periodogram.
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dimension α describes the cyclic frequency and the reso-
lution Δα = fs/N '. The FAM is a computationally efficient
algorithm by adopting N-point FFT operation to (5) after
decimating and L-point FFT to (10), respectively.
Figure 3a presents a block diagram of the FAM algo-

rithm. The first step includes channelization using data
tapering and the N-point FFT operation. Data channeli-
zation divides the input x[n] into L segments where the
size of each segment is N. The complex demodulator of
(5) after decimating is computed by the N-point FFT op-
eration in the first step of Figure 3, which is derived as

X f½ �N�L ¼ FWX0 n½ �
¼ FW F−1F

� �
X0 n½ �

¼ �WX0 f½ �;
ð11Þ

where n and f denotes the data is expressed in the time
domain and in the frequency domain, respectively. F is
the N-points of the DFT matrix and F(i,j) = [e− j2πij/N]. X0

[f] = FX0[n]. �W ¼ FWF−1 and F− 1 is the N-points of the
IDFT matrix. W is a diagonal matrix whose diagonal ele-
ments are determined from the N-point Hamming win-
dow. X0[n] is the data matrix of size N × L, which is
Figure 3 The scheme of CS-FAM. (a) FAM base on Nyquist sampling. (b)
generated from x[n] using channelization. x[n] is the
digital signal from the Nyquist sampling.
There are three operations in the second step of FAM as

shown in Figures 2 and 3. The complex demodulators are
downshifted in frequency to baseband by down conversion.
The SCD function is then estimated by multiplying its com-
plex conjugate. The second FFT is a smoothing operation,
which is executed by L-point FFT. More details on this
process are given in [22,24-26]. In this paper, the proposed
method is based on the framework of FAM from sub-
Nyquist samples as presented in Figure 3b. The process of
obtaining X0[f] from compressive samples in the first step of
CS-FAM is discussed in following section, while the merits
of CS-FAM's second step are presented in Section 3.2.
2.2 Compressive sampling
According to compressive sampling theory, a small
amount of signal data obtained through inner-product
operations can be used to reconstruct the original signal
with overwhelming accuracy [5,6]. The holy grail of
compressed sampling is an acquisition device that ex-
ploits signal structure in order to reduce the sampling
CS-FAM base on compressive sampling.



Figure 4 Joint row sparse based on MMV model.
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rate. An example of this is the analog-to-information
converter (AIC) [30], which is used in place of the ADC
in the front-end of a sampling device. As illustrated in
Figure 3b, using an AIC, the output from compressive
sampling is expressed as

Y n½ � ¼ AX0 n½ �; ð12Þ

where A is a measurement matrix of the size M ×N
(M <N), the elements of which are randomly selected. A
measurement matrix obeying the restricted isometry prop-
erty (RIP) in [6] can be used for CS-FAM (e.g., Gaussian
random matrix or ±1 distribution matrix obeys the RIP
with high probability). In this paper, the elements are se-
lected from {−1, 1}, which facilitates hardware implemen-
tation by using integrate-and-dump processes [31]. The
average sampling rate is equal to the Nyquist rate multi-
plied by M/N. F is invertible. Therefore, we can have

Y n½ � ¼ AF−1FX0 n½ �
¼ ΦX0 f½ �; ð13Þ

where Φ =AF− 1. The output of the first step in CS-
FAM is derived by X0 f½ � ¼ �WX0

0 f½ � from (11) as illus-
trated in Figure 3b. X0 ′ [f] is the sparse approximate
matrix of X0[f], which is recovered from compressive
samples Y[n] and only contains the signal in active
bands. X0 ′ [f] is computed in Section 3.2.

3 Joint signal processing from compressive samples
In this article, multiband detection and parameter
extraction are performed in the frequency domain.
The process of signal reconstruction using the MMV
model will be introduced first. Due to the sparsity of
wideband signals, only a few rows of X0[f] contain
large values, denoted as signals with additive noise.
In the other rows, where only noise is present, the
values are very small. In this study, we let K be the
number of rows where the signal is present in X0[f],
and the value of K is small because there are only a
few active sub-bands in the whole frequency range.
This has given rise to the problem of sparse signal
recovery using the MMV model [31] to analyze joint
row sparsity, as shown in Figure 4 and which will be
addressed below. However, it has been shown that
signal recovery rate is greatly increased by using the
MMV rather than the single measurement vector
(SMV) model. The results in [32-34] reveal the ad-
vantages of the MMV model, including the key
assumption that the support (i.e., the indexes of the
signal entries) is identical in every column of X0[f].
The literature also endorses increasing L for better
recovery performance.
Many effective algorithms have been proposed for

solving the MMV problem, such as convex relax-
ation methods using mixed norms, greedy search
mechanisms, and sparse Bayesian learning. Com-
pared to other methods, the algorithms based on
greedy search mechanisms have the advantageous
characteristic of low complexity. Therefore, we
selected the simple algorithm SOMP [35], which has
proven that under certain conditions, the OMP
algorithm can find the sparsest representations from
the MMV model with computational efficiency. The
SOMP algorithm is modified in this paper as
follows:
where (.)T denotes the matrix (or vector) transpose
and Φk is the k-th row of Φ. X is used to obtain the
sparse approximate matrix X0 ′ [f] in Section 3.2. The it-
eration times l should be larger than K. If K is unknown,
l should be chosen such that it is sufficiently large. To
distinguish between signal and noise measurements, in
this paper, the threshold λk is computed by (23). There-
fore, in practice, we can give the iteration a termination
condition of d[k] < λk. When the best matching column
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in Φ is found in step 2 of SOMP, ΦT
k Ri−1

�� �� indicates
the value of ‖Xk‖, where ‖Xk‖ is the k-th row in X.
Therefore, it is possible to use d to identify the active
sub-bands using a technique that is similar to the peri-
odogram method, as shown in Figure 5b.

3.1 Multiband signal detection from compressive samples
If M is large enough (M > 2K is an empirical condition for
SOMP), X is accurately recovered by SOMP with high
signal-to-noise ratio (SNR). Constant false-alarm rate en-
ergy detection is employed for multiband detection using
the periodogram method [36]. The decision statistic for
energy detection in the k-th row of X is

~d k½ � ¼ 1
L

XL−1
l¼0

X k;lð Þ
�� ��2 k ¼ 1; 2;…;Nð Þ; ð14Þ

where X(k,l) is the (k, l)-th element in X. In the follow-
ing, the detection model is represented by

H0 : ~d0 ¼ n0 signal absent
H1 : ~d1 ¼ sþ n0 signal present;

ð15Þ

where s is signal sample, and n0 is circular complex zero-
mean Gaussian independent and identically distributed
Figure 5 The decision statistic by SOMP algorithm. (a) The results com
(i.i.d.) noise with a variance of σ2. With this model, ~d0 is
the sum of the squares of L independent identically dis-
tributed zero-mean Gaussian random variables. Therefore,
the model produces a random variable using a chi-
squared distribution that has L degrees of freedom. To
achieve predefined sensing performance, the sample frame
number L is always large. Therefore, we can use the cen-

tral limit theorem to approximate ~d0 as the Gaussian
function

~d0 ∼CN σ2;
2σ4

L

� �
: ð16Þ

A binary hypothesis test is then formulated using a de-
cision rule, resulting in

H0 : ~d k½ � < λ
H1 : ~d k½ � ≥ λ:

ð17Þ

The threshold λ is chosen according to a target false-

alarm probability PFA where PFA ¼ Pr
~d > λ H0gj�

and is
given by
puted by (14). (b) The results computed by the step.3 of SOMP.



 !

Table 1 Operation complexity of the second step

FAM CS-FAM

Down conversion 2LN 2KL

Cross multiplication LN2 L
XNg

i¼1

b2i

FFT N2 L
2 log Lð Þ L

2 log Lð Þ
XNg

i¼1

b2i
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λ ¼ 1þ
ffiffiffi
2
L

r
σ2Q−1 PFAð Þ: ð18Þ

where Q(.) stands for the tail probability of the Gaussian
distribution

Q xð Þ ¼
Z ∞

x

1
2π

exp −
u2

2

� �
du: ð19Þ

However, it must be noted that the recovery perform-
ance of compressive sensing is sensitive to the number
of sampling branches and to the SNR [37]. When M <
2K or the noise level is large, X cannot be accurately re-

covered by SOMP and errors may be introduced into ~d ,
as illustrated in Figure 5a. Performance is even worse if
the SNR < 0 dB. Therefore, in our scheme, we employ
the vector d from SOMP as the input to ensure testing
accuracy. The approximate value of the residual Ri is ob-
tained using steps 4 to 6 of SOMP.

Ri ¼ BX; ð20Þ

B is a submatrix of Φ by removing the columns same
with S (S is derived from SOMP algorithm). Then,

d k½ � ¼ ΦT
k BX

�� ��2; ð21Þ

where Φk is the k-th column of Φ. The correlation be-
tween two different columns of the sampling matrix is
weak, i.e., ΦT

k Φk≫ΦT
k Φk′ (k ′ ≠ k), which satisfies the

basic RIP condition for compressive sampling [6]. The
element in A is selected from {1, −1}, so the sign of the el-
ements in Φ is usually random and ΦT

k Φk′ is close to
zero. We then have

d k½ �≈
XL−1
l¼0

ΦT
k ΦkX k;lð Þ

�� ��2
¼ ρk

XL−1
l¼0

X k;lð Þ
�� ��2;

ð22Þ

where X(k,l) is the (k, l) -th element of X, ρk ¼
ΦT

k Φk

�� ��2. The threshold of decision statistic d[k] is

λk ¼ 1þ
ffiffiffi
2
L

r !
ρkσ

2Q−1 PFAð Þ: ð23Þ

Taking this into account, the binary hypothesis test
(16) is rewritten as
H0 : d k½ � < λk
H1 : d k½ � ≥ λk :

ð24Þ

In a multiuser network, a single user signal usually oc-
cupies successive frequency bands in high-resolution
spectrums. Therefore, d can be divided into Ng groups
where the length of i-th group is bi, the number of users
is Ng, and the i-th user occupies bandwidth Bi. To elim-
inate false spurs in the decision results with the thresh-
old (23), a multiband signal bandwidth constraint is
given by

Bi ¼ bi
N
f s≥

bmw

N
f s

ΔB≥
bmi

N
f s;

ð25Þ

where bmw is minimum frequency bin and bmi is mini-
mum interval frequency bin. bmw

N f s is minimum band-

width of a user and bmi
N f s is minimum bandwidth interval

between two adjacent users.

3.2 Cyclic spectrum estimation
Another objective of the SOMP algorithm is to recon-
struct X0[f], which involves signal recovery from com-
pressive samples in the frequency domain. However,
using CS-FAM for signal detection differs from using
the SOMP algorithm. SOMP directly assigns X0[f] = X,
where X is the output of SOMP. In contrast, according
to the first step of CS-FAM, the row index of X0[f] indi-
cating only the presence of signal is known. The sparse
approximate matrix X0 ' [f] is computed by

X0
0 f½ � ¼ argminX Y−XΦ0k k

s:t: Xk ¼ 01�L; k∈V:

ð26Þ

Xk is the k-th row of X, the elements of which are set to
zero, as it indicates only the presence of noise. Φ ' is the
submatrix of Φ with removing the columns whose index k
supports k ∈V. The element of set V are defined by (24)
as the row index of k, s.t. d[k] < λk. Equation (26) is
then solved using the least square (LS) method assuming
M >K. It is obvious that if the iteration of SOMP algo-
rithm is ended by the termination condition of d[k] < λk,
we can have X0 ' [f] =X, where X is the output of SOMP.



Table 2 Peak pairs of digital modulation

Modulation Peak pairs (f, α)

BPSK f c; 1T
� �

, (0, 2fc), 0; 2f c � 1
T

� �
MSK f c; 1T

� �
, 0; 2f c � 1

T

� �
AM (0, 2fc)

QAM f c; 1T
� �
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If the approximate matrix X0 ' [f] is obtained, cyclic
spectrum estimation is processed in the second step. Cyc-
lic feature detection in CS-FAM aims to extract parame-
ters rather than to merely detect whether a signal is
present or not.
The complexity of the second step is greatly reduced be-

cause only K rows are nonzero following (26). Compared
Figure 6 The process of spectrum sensing in the first step of CS-FAM
results of d computed by SOMP algorithm. (c) The decision results with th
bandwidth constraint.
to FAM, which is used to estimate the whole span of
the spectrum, CS-FAM computes solely the occupied fre-
quency regions of each user. The operation complexity of
cyclic spectrum estimation in the second step is illustrated

in Table 1. Due to
XNg

i¼1

bi ¼ K≪N , this complexity of the

second step is substantially reduced.
Different modulation formats result in different type

of spectral peaks. The pairs of the peaks exhibited by for
some common digital modulations [38] are summarized
in Table 2, where fc is carrier frequency and 1/Tb is
symbol rate. If the occupied frequency areas have been
identified in the first step, the peaks can be detected in
the second by searching within the support range rather
than by setting a threshold with the allowable false-
alarm rate. For example, if a user with band of (fc − fa, fc
. (a) The spectrum of original multiband signal, SNR = 0 dB. (b) The
e constant false-alarm detector. (d) Eliminate the false spurs by
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+ fa) is detected from the first step of CS-FAM, the sup-
port range of its cyclic spectrum [24] is given by

Sαz fð Þ ¼
( 0 fj j− α=2j jj j≤f c−f a or

fj j þ α=2j jj j≤f c þ f a
Sαx fð Þ otherwise

:

ð27Þ
Once the peaks are obtained, modulation classifica-

tion is performed. Some literature on the subject of
automatic modulation classification based on cyclic
spectrum analysis is summarized in [39]. The symbol
rate and carrier frequency are obtained after the
modulation format is identified. Because CS-FAM
separates multi-signals in the first step, the multiuser
cyclic spectrum reconstruction problem of conventional
Figure 7 The spectrum sensing performance of CS-FAM. (a) The test re
performance for various SNR. (c) The detection performance for various sen
sampling branches.
methods becomes simply multiple operations of a single
user problem, avoiding signal separation from the whole
cyclic spectrum. Performing multiuser detection in the
first step of CS-FAM also avoids cyclic spectrum super-
position of different users, which may lead to false
peaks.

4 Detection performance and simulation results
In this section, we demonstrate the performance cap-
acity of the proposed method with performance test re-
sults. In Section 4.1, we examine multiband signal
detection performance from compressive samples, as-
suming that the received signals contain only zero-mean
Gaussian i.i.d. noise. Section 4.2 is dedicated to examin-
ing cyclic spectrum estimation performance.
sults of probability of false-alarm for various SNR. (b) The detection
sing time. (d) The detection performance for various number of
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4.1 Multiband signal detection performance
The process of multiband detection using CS-FAM is il-
lustrated in Figure 6. The analog input content was pro-
vided by three binary phase shift keying (BPSK)
modulated signals, N = 1,000, M = 400, and L = 50, shaped
by a raised-cosine filter. Figure 6a shows the spectrum of
the received signals, which were transmitted through the
additive Gaussian white noise (AWGN) channel. The SNR
was 0 dB. The normalized frequency in Figure 6b, c, d is
presented with the resolution of fs/N, where fs is the sam-
pling frequency. The result of d, computed by the SOMP
algorithm, is presented in Figure 6b. We then applied the
constant false-alarm detector with PFA = 0.05. The signal
detection results are shown in Figure 6c, where it can be
seen that the false-alarm detector identified a number of
false spurs. Figure 6d presents the final detection results
following elimination of false spurs using a bandwidth
constraint of bmw = bmi = 2. All of the active sub-bands
were detected and all three users identified.
An evaluation of the performance of the CS-FAM test

is shown in Figure 7. The reference line of Theory in Fig-
ure 7a was set by P ' FA = PFA, so it presents as a diagonal
line. Because using the bandwidth constraint eliminated
some of the false spurs, the probability of false-alarm
occurrence was lower in the test than in the theoretical
Figure 8 Spectrum sensing based on power spectrum estimation. (a)
PSBS method. (b) Power spectrum estimation by PSBS, M = 100, N = 250. (c
value computed by (23). In addition, the rate of false-
alarm occurrence using CS-FAM was identical under
various noise levels.
Detection performance of the test is presented in

Figure 7c, d. The multiband signal contained two BPSK
modulated signals. The main lobe of each signal occu-
pied the spectrum from − 0.032π to 0.032π in the base-
band. The threshold was set by (23) according to the
target false-alarm rate. Figure 7b shows the detection
performance under different noise levels, illustrating that
the detector demonstrates better performance in higher
SNR scenarios. The quality of detection is improved by
increasing sensing time, as shown in Figure 7c. However,
the results also show that this effect is limited when L is
very large. Detection performance with various compres-
sion ratios is shown in Figure 7d, which indicates that
the ratios are improved by increasing the number of
sampling branches.
As mentioned before, the CS-FAM multiband detec-

tion method is based on power spectrum estimation.
Therefore, a comparison between CS-FAM and PSBS
[9,10] is presented in Figure 8. As illustrated in Figure 8a,
the probability of false alarms in the test was higher
when using PSBS than when using CS-FAM, meaning
that the PSBS method has poor estimation performance
The test results of probability of false alarm for various SNR by the
) Power spectrum estimation by CS-FAM, M = 400, N = 1,000.



Figure 9 Cyclic feature detection by CS-FAM. (a) Cyclic spectrum estimation based on FAM from the Nyquist samples. (b) The whole cyclic
spectrum estimation by CS-FAM without multiuser detection. (c-d) Two different BPSK signals are separated by CS-FAM with multiuser detection.

Figure 10 The BPSK identification performance of CS-FAM.
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in the inactive bands where there is no signal. This
shortcoming is clearly shown in Figure 8b. Compared
to the PSBS method, CS-FAM identifies a wide dispar-
ity between signals and noise, as shown in Figure 8c,
which is advantageous for signal detection using a
threshold. Another drawback of PSBS is that the size of
the matrix used in this method is proportional to
3M2 × 3N, so the values of M and N chosen for PSBS
were much smaller than those selected for CS-FAM, as
shown in Figure 8. When using PSBS, a large M value
leads to high complexity, which further demonstrates
that the PSBS method is not suitable for high spectral
resolution sensing.

4.2 Cyclic spectrum estimation performance
Cyclic spectrum estimation is performed in the second step
of CS-FAM, assuming that the active sub-bands have been
detected in the first step. Here, we discuss the application
of cyclic spectrum estimation from compressive samples. In
the following tests, BPSK signals that exhibited spectral
peaks at several (f, α) pairs in the cyclic spectrum were se-
lected for analysis. The results showed that three distinct
peaks are present at (fc, 1/Tb), (0, 2fc), and (0, 2fc ± 1/Tb).
From these spectral peaks, the carrier frequency, symbol
rate, and modulation format can be obtained.
The results of cyclic spectrum estimation using com-

pressive samples are presented in Figure 8. In this test,
the analog input contains two BPSK signals and the
Figure 11 The performance of CS-FAM for various K and M.
power of the weaker signal was one quarter that of the
larger one. The carrier frequencies of the weaker and
stronger signals were f1 = 3 kHz and f2 = 7.1 kHz, re-
spectively, where N = 660 and M = 160. Contour graphs
of the estimation results are given in Figure 9. As
Figure 9a shows, the cyclic spectrum of the two BPSK
signals exhibits special peaks when using the FAM
method with the Nyquist sampling. A similar estimation
result is obtained using CS-FAM (from compressive
samples without multiuser detection in the first step) is
shown in Figure 9b. The number of the areas with a large
magnitude was 16, including eight false areas yielded by
the superposition of the two signals. Figure 9c, d presents
the cyclic spectrum estimation results of each signal
using CS-FAM with multiuser detection. The signal
was correctly identified by the CS-FAM method, as
shown in Figure 9c, d, whereas the FAM method failed
to identify the peaks of the weaker signal, as shown in
Figure 9a. Using FAM, a complex separating operation
was required to identify the weaker signal correctly. In
contrast, using the CS-FAM scheme, the smaller signal
is separated during the first step and is not masked by
the larger one.
In the next experiment, we examined the cyclic feature de-

tection performance of CS-FAM using different compressive
ratios. Three BPSK signals with different carrier frequen-
cies were selected as analog inputs. A simple binary hy-
pothesis test statistic was employed by
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H0 : U 0 ≠U format is not identified
H1 : U 0 ¼ U format is identified;

ð28Þ

where U is the reference set of a modulated signal
from Table 2, i.e., U = {(fc, 1/Tb), (0, 2fc), (0, 2fc ± 1/Tb)} if
the input is a BPSK signal. U ' is the set composed of the
detected peaks. This matching decision method is stric-
ter than the approaches used in [39] because the goal is
to demonstrate cyclic spectrum estimation performance
rather than signal classification. The resulting U ' set
contained four detected peaks for the BPSK signals.
Figure 10 shows the symbol rates of the three BPSK sig-
nals, which were 5fs/N, N = 500, and L = 48. To recon-
struct the cyclic spectrum with an order similar to N ×
N, the methods in [20] require matrices proportional to
(500)4, which is unacceptable for common devices. It
is clear that, when using CS-FAM, estimation quality
improves with compressive ratio and that it converges
towards the Nyquist rate obtained using FAM.
In Figure 11, a BPSK signal is selected with different

bandwidth, indicated by K. SNR = 0 dB and N = 500. The
process of cyclic spectrum estimation requires more
sampling branches than multiband detection does.
Therefore, if the second step is operated effectively, the
assumption of the active bands been detected is stated
for (26). In addition, the results indicate that both of the
steps require more sampling branches to maintain high
performance when the wideband signal is less sparse.

5 Conclusions
This paper has introduced a joint scheme for low complex-
ity cyclic spectrum estimation and robust multiband signal
detection method based on compressive sampling. The
process is divided into two steps. First, active sub-bands
are identified from MMVs using joint sparse recovery and
multiuser detection is performed using a bandwidth con-
straint. The proposed multiband detection method demon-
strates striking robustness with sampling rate reduction
and noise uncertainty. In the second step, the cyclic spec-
trums of each user are individually reconstructed. We also
examine signal identification performance under different
sampling rates and noise levels. The flexible nature of this
scheme, accomplishing multiband and multiuser detection
in its first step and parameter extractions in its second, al-
lows for implementation in many practical applications.
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