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Abstract

Analog joint source-channel coding (JSCC) is a communication strategy that does not follow the separation principle
of conventional digital systems but has been shown to approach the optimal distortion-cost tradeoff over additive
white Gaussian noise channels. In this work, we investigate the feasibility of analog JSCC over multiple-input
multiple-output (MIMO) fading channels. Since, due to complexity constraints, directly recovering the analog source
information from the MIMO channel output is not possible, we propose the utilization of low-complexity two-stage
receivers that separately perform detection and analog JSCC maximum likelihood decoding. We study analog JSCC
MIMO receivers that utilize either linear minimummean square error or decision feedback MIMO detection. Computer
experiments show the ability of the proposed analog JSCC receivers to approach the optimal distortion-cost tradeoff
both in the low and high channel signal-to-noise ratio regimes. Performance is analyzed over both synthetically
computer-generated Rayleigh fading channels and real indoor wireless measured channels.

1 Introduction
The splitting of source compression and channel coding is
a fundamental design principle in digital communications
known as the ‘separation principle’. The use of separate
source and channel coding (SSCC) was introduced and
shown to be optimum by Shannon [1] for the case of
lossless compression and additive white Gaussian noise
(AWGN) channels. Source coding aims at compressing
the source information down to its ultimate entropy limit,
H. If the channel capacity limit, C, is larger than H, the
source information can be optimally sent over the channel
using an appropriate capacity-approaching channel cod-
ing method (such as Turbo codes or LDPC codes) with
rate Rc as long as RcH < C.
The separation principle has also shown to be optimum

by Berger [2] for lossy compression of analog sources. In
this case, the source is compressed down to a certain rate,
R(D), which depends on the desired distortion target, D.
Again, if RcR(D) < C, channel coding allows the source

information to be sent over the channel with no errors.
Nevertheless, it should be noticed that the optimality

of the separation principle grounds on the assumption of
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infinite complexity and infinite delay. Indeed, when digi-
tal communication systems are designed to perform close
to their theoretical limit, sources have to be compressed
using powerful vector quantization (VQ) and entropy
coding methods, and data has to be transmitted using
capacity-approaching digital codes that make use of long
block lengths. Thus, the suitability of the separation prin-
ciple for the design of practical communication systems
with severe constraints on delay and/or complexity is not
clear.
Discrete-time analog communication systems based on

the transmission of continuous-amplitude channel sym-
bols can be considered an attractive alternative to dig-
ital communication systems. For a lossy source-channel
communication system to be optimal, the source dis-
tortion and the channel cost should lie on the optimal
distortion-cost tradeoff curve. An example of such an
optimal system is the direct transmission of discrete-time
uncoded Gaussian samples over AWGN channels, both
with the same bandwidth [3]. In this case, optimality arises
because Gaussian sources are probabilistically matched
to the AWGN channel. This idea is further explored in
[4] where a set of necessary and sufficient conditions for
any discrete-time memoryless point-to-point communi-
cation system to be optimal is provided. These conditions
are satisfied not only by digital systems designed accord-
ing to the separation principle but also by analog joint
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source-channel coded (JSCC) systems for which the com-
plexity and delay can be reduced to the minimum while
approaching the optimal distortion-cost tradeoff.
Several authors [5-10] have recently investigated the uti-

lization of non-linear mappings for analog JSCC. These
mappings preserve complexity and delay at the minimum
and can be used for either bandwidth reduction or band-
width expansion. Nevertheless, performance of analog
JSCC is closer to the optimal distortion-cost curve when
the non-linear mappings are used for bandwidth reduc-
tion. This is because in the case of bandwidth expansion,
it is not possible to envisage a mapping that efficiently fills
the entire channel space without simultaneously creating
multiple neighbors that are far away in the source space
[8]. Thus, the utilization of analog non-linear mappings is
particularly well-suited for applications in which broad-
band analog sources, such as images or audio, are to be
transmitted over narrowband channels.
In the literature, most work on analog JSCC focuses

on AWGN channels. Exceptions are [11,12] that consider
a two-user single-antenna scenario under a flat fading
Rayleigh channel. Another exception is [13] where the
implementation on a software-defined radio testbed of a
wireless system based on analog JSCC is presented. Excel-
lent performance over wireless channels is attained when
the encoder parameters are continuously adapted to the
time-varying signal-to-noise ratio (SNR).
In this work, we study the feasibility of analog JSCC over

multiple-input multiple-output (MIMO) fading channels
that make use of multiple antennas at both transmission
and reception.
It is well known from information theory that MIMO

channels have a capacity considerably larger than that
of their single-input single-output (SISO) counterparts.
Thus, broadband analog sources can be transmitted over
MIMO channels using a significantly smaller amount of
bandwidth.
Optimum decoding of the vector symbols observed at

the output of a MIMO channel is difficult due to the non-
linear characteristic of the analog JSCC procedure.We cir-
cumvent this drawback by considering a low-complexity
two-stage receiver structure in which a linear detector
is first used to transform the MIMO channel into sev-
eral parallel SISO channels and then a bank of conven-
tional maximum likelihood (ML) SISO decoders is used
to recover the transmitted source samples. Feeding back
the SNR information of the equivalent SISO channels
allows us to adapt the encoder parameters to the chan-
nel time-variations and attain a performance close to the
theoretical bounds.
We then examine the feasibility of utilizing a decision

feedback (DF) MIMO detector rather than linear detec-
tion as the first stage of our receiver. The detector now has
a feedforward filter that transforms the MIMO channel

into an equivalent low diagonal MIMO channel with uni-
tary diagonal entries. Spatial interference can then be
sequentially eliminated with a feedback filter whose input
are the decoded symbols from previous antennas. We
will show that this non-linear receiver structure exhibits a
superior performance with respect to the linear scheme.
The rest of this paper is organized as follows. Section 2

describes the basic principles of analog JSCC and its
optimization over SISO channels. Section 3 focuses on
analog JSCC over MIMO fading channels. Section 4
presents performance results for the different analog JSCC
transmission techniques considered along this work. Two
types of channels were considered: synthetical computer-
generated Rayleigh fading channels and real indoor fad-
ing channels measured with a multiuser MIMO testbed.
Finally, Section 5 is devoted to the conclusions.

2 Analog joint source-channel coding
Figure 1 shows the block diagram of a discrete-time
analog-amplitude joint source-channel coded (JSCC)
transmission system over an AWGN channel that per-
forms N:1 bandwidth compression. As explained in the
previous section, analog JSCC systems that reduce band-
width are more interesting for wireless communica-
tions because they allow for a better usage of the radio
spectrum.
At the transmitter, N-independent and identically dis-

tributed (i.i.d.) analog source symbols are packed into the
source vector x = (x1, x2, . . . , xN ) and compressed into
one channel symbol s. The encoding procedure has two
steps: the compression function Mδ(·) and the matching
function Tα(·).
As explained in [8], Shannon-Kotel’nikov mappings can

be used to define compression functions Mδ(·) that map
theN source symbols into a single value θ̂ . As an example,
a particular type of parameterized space-filling continu-
ous curves, called spiral-like curves, can be used to encode
the source samples. These curves were proposed for the
transmission of Gaussian sources over AWGN channels
by Chung and Ramstad [5-7]. For the case of 2:1 compres-
sion (i.e., N = 2), they are formally defined as

zδ(θ) =
(
sign(θ)

δ

π
θ sin θ ,

δ

π
θ cos θ

)
, (1)

where θ is the angle from the origin to the point z =
(z1, z2) on the curve and δ is the analog JSCC parame-
ter that determines the distance between two neighboring
spiral arms. In the ensuing section, we explain that the
encoder parameter δ should be optimized if the optimal
cost-distortion tradeoff is to be approached.
Although other non-linear continuous mappings can

be used, spiral-like curves are frequently utilized for
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Figure 1 Block diagram of a bandwidth reduction N:1 analog JSCC systemwith AWGN channel.

bandwidth reduction in analog JSCC because they
can be interpreted as a parametric approximation to
power-constrained channel-optimized vector quantiza-
tion (PCCOVQ) [14]. Indeed, when connecting the adja-
cent vectors in a PCCOVQ codebook, we obtain a
non-linear continuous curve that, for moderate to high
SNR, is very similar to the spiral-like curve defined
before.
Once a spiral-like curve has been selected, the compres-

sion function Mδ(·) provides the value θ̂ corresponding
to the point on the spiral that minimizes the distance to
x, i.e.,

θ̂ = Mδ(x) = arg min
θ

‖x − zδ(θ)‖2. (2)

Therefore, each pair of analog source samples, x1 and x2,
that corresponds to a specific point in �2 is represented
by a value θ̂ ∈ � that corresponds to the point on the
spiral closest to x. It is possible to achieve higher compres-
sion rates (i.e., N > 2) by extending (1) to generate more
complex curves [15,16].
Next, we use the invertible function Tα(·) to transform

the compressed samples. In [5,7,8], the invertible function

Tα(θ) = sign(θ)|θ |α (3)

with α = 2 was proposed. However, as shown in [10],
the system performance can be improved if α is optimized
together with δ. We have empirically determined through
computer simulations that using α = 1.3 provides a good
overall performance for 2:1 analog JSCC systems over
AWGN channels and a wide range of SNR and δ values.
Finally, the coded value is normalized by √

γ to ensure
the average transmitted power is equal to one. Thus, the
symbol sent over the channel is constructed as

s = Tα(Mδ(x))√
γ

. (4)

Assuming an AWGN channel, the received symbol is

y = s + n, (5)

where n ∼ N (0,N0) is a real-valued zero-mean Gaussian
random variable that represents the channel noise with
variance N0. Notice that, since the power of the channel
symbols is normalized, the SNR is 1/N0.

At the receiver, we calculate an estimate x̂ of the trans-
mitted source symbols given the noisy observation y.
Previous work [5,6,8] considers ML decoding to recover
the source symbols from the received symbols. ML decod-
ing exhibits a very low complexity, but it presents a poor
performance at low SNRs. This drawback is addressed in
[10], where minimum mean square error (MMSE) ana-
log JSCC decoding is proposed as an alternative to ML.
When MMSE decoding is employed, the analog system
attains a performance close to the optimal distortion-cost
tradeoff in the whole SNR region. Unfortunately, it leads
to a significant increase on the overall complexity at the
receiver, since MMSE estimates are obtained after solving
an integral that can be only calculated numerically.

2.1 Two-stage approximation to analog JSCC decoding
Rather than directly decoding the source samples x from
the received symbol y, as in standard ML and MMSE
decoding methods, it is possible to use an alternative two-
stage decoding approach in which we first calculate an
estimate of the transmitted channel symbols ŝ and then
decode the source samples from this symbol estimate [17].
In the case of AWGN channels, the linear MMSE estimate
of the channel symbols s is given by

ŝ = y
1 + N0

.

Then, ML decoding is used to obtain an estimate of the
analog source symbol from ŝ

x̂ = arg max
x∈curve

p(ŝ|x) = zδ

(
sign(ŝ)|ŝ√γ |−α

)
. (6)

Notice that the complexity of our two-stage receiver is
the same as that of theML receiver, since the estimation of
the input channel symbol reduces to a simple factor nor-
malization. This factor normalization is key for the ML
decoder to approach the optimal cost-distortion tradeoff
at low SNR values.
It is interesting to note that the idea of introducing a

linear MMSE estimator prior to ML decoding in digital
communications has been analyzed in [18]. In this case,
it is shown that MMSE estimation is instrumental for
achieving the capacity of AWGN channels when using
lattice-type coding.
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The previously described two-stage decoding approach
can be readily extended to analog JSCC over SISO
Rayleigh channels. Under the assumption of a flat fading
channel, the symbols observed at the output of a SISO
Rayleigh channel can be expressed as

y = hs + n, (7)

where h is a random variable that represents the fading
channel response. In the case of Rayleigh fading channels,
h is a complex-valued zero-mean circularly symmetric
Gaussian-independent and identically distributed (i.i.d.)
random variable. Now the SNR fluctuates with the chan-
nel response h. Assuming normalized channel symbols,
the SNR in fading channels is given by

SNR(h) = |h|2
N0

. (8)

If the fading channel is normalized so that E[|h|2]= 1, the
average SNR is 1/N0.
Assuming this channel model, the linear MMSE esti-

mate of the transmitted symbol s is given by

ŝ = h∗y
|h|2 + N0

, (9)

where the super-index ∗ represents complex conjugation.
This symbol estimate ŝ can then be decoded using (6).

2.2 Code optimization
The performance of analog JSCC systems is measured in
terms of the source signal-to-distortion ratio (SDR) with
respect to the SNR. The distortion is the mean square
error (MSE) between the decoded and source analog sym-
bols, i.e.,

MSE = 1
N
E

[‖x − x̂‖2] . (10)

Thus, denoting the source signal variance as σ 2
x , the SDR

is calculated as SDR = σ 2
x /MSE.

System performance not only depends on the SNR but
also on the non-linear encoder mapping. In the case of
spiral-like curves, the way they fill the multidimensional
source space depends on the parameter δ that determines
the separation between spiral arms. When considering
ML decoding, high SNR and α = 2, it is possible to
obtain an analytic expression for the optimal value of the
analog encoder parameter δ [8]. When α �= 2, however,
the analytical optimization of δ is not feasible. Instead, δ
can be numerically optimized by computing the SDR for
each SNR over a wide range of values for δ. As an exam-
ple, Table 1 shows the best values of δ that were found
via computer simulations for the 2:1 compression of a
Gaussian source with σ 2

x = 1, using α = 1.3 and for dif-
ferent SNR values. Optimum δ values were determined
by exhaustive search over the range 0 < δ < 10 using a

Table 1 Optimal values for δ

SNR (dB) δ

0 9.8

1 8.0

2 5.6

3 5.0

4 4.2

5 4.0

6 3.9

7 3.7

8 3.6

9 3.4

10 3.2

11 3.1

12 3.0

13 2.9

14 2.7

15 2.5

16 2.3

17 2.2

18 2.1

19 2.0

20 1.8

21 1.7

22 1.5

23 1.4

24 1.3

25 1.2

26 1.1

27 1.0

28 0.9

29 0.8

30 0.8

31 0.8

32 0.7

33 0.7

34 0.6

35 0.6

36 0.5

37 0.5

38 0.4

0.1 step-size. A similar optimization procedure can be fol-
lowed to determine the optimum analog encoder param-
eters as a function of the SNR for larger reduction ratios
(i.e., N > 2).
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In the case of fading channels, the fact that the trans-
mitter has to select the optimal encoder parameter δ

prior to transmission implies that δ has to be continu-
ously updated according to the instantaneous SNR, which
depends on h. In a practical setup, the SNR can be esti-
mated at the receiver and sent to the transmitter over
a feedback channel. The rate at which the SNR is to
be updated depends on the channel coherence time and
should be allowed by the feedback channel. The feedback
channel delay should also be smaller than the channel
coherence time for the available SNR to be an adequate
prediction of the actual SNR. Once the SNR is available,
the transmitter can select the optimal analog encoder
using a look-up table such as Table 1 that was obtained for
a 2:1 bandwidth reduction system.

3 Analog JSCC over MIMO channels
In this section, we focus on analog JSCC over MIMO
wireless channels with nT transmit and nR ≥ nT receive
antennas. We assume the source symbols are spatially
multiplexed over the nT transmit antennas. At each trans-
mit antenna, a vector xi of N analog source symbols is
encoded into the channel symbol si, i = 1, · · · , nT using
the encoder described in Section 2. Notice that bandwidth
reduction in this system setup is equal to NnT and signif-
icant bandwidth reductions can be achieved when using
multiple transmit antennas.
We assume channel symbols are sent over a frequency

flat MIMO fading channel represented by an nR × nT
channel matrix H whose entries hij are random variables.
The observed symbols at the MIMO channel output are
given by

y = Hs + n, (11)

where s, y, and n are the vectors that represent the channel
symbols, the received symbols, and the additive ther-
mal noise, respectively. The thermal noise is assumed
to be complex-valued zero-mean circularly symmetric
Gaussian and spatially white, i.e., the noise covariance
matrix is

Cn = E[nnH ]= N0InR , (12)

with InR being the nR-dimension identity matrix. Channel
symbols are also spatially white and normalized so that the
radiated power at each antenna is 1/nT (i.e., total radiated
power is one). Thus, the covariance matrix of the channel
symbols is

Cs = E[ssH ]= 1
nT

InT , (13)

with InT being the nT -dimension identity matrix. Hence,
the MIMO SNR is

SNR(H) = tr
(
HCsHH)
tr (Cn)

= tr
(
HHH)

nTnRN0
,

where tr(·) denotes the trace operator and the super-index
H represents conjugate transposition. If the MIMO fading
channels are normalized so that EH

[
tr

(
HHH)] = nTnR,

the average SNR is 1/N0.
The optimum MMSE receiver [10] for this channel

model would be given by

x̂MMSE = E
[
x|y] =

∫
x p(x|y)dx

= 1
p(y)

∫
x p(y|x)p(x)dx, (14)

where the mapping function Mδ(·) is used to obtain the
conditional probability p(y|x) and x represents the vec-
tor with the NnT source samples. Notice that the integral
in (14) can only be calculated numerically because Mδ(·)
is discontinuous and highly non-linear. The complexity
of such detector would be extremely high even for an
small number of antennas, since it would involve the
discretization of an NnT dimensional space.
As an alternative, we can extend the two-stage receiver

described for SISO channels to the MIMO case. Instead
of directly calculating an MMSE estimate of the source
symbols, we first perform an estimation of the channel
symbols transmitted from each antenna using a conven-
tional MIMO detector and then proceed to the decoding
of the estimated channel symbols. In this work, we will
study two suboptimal MIMO detectors: the MMSE linear
detector and the MMSE DF with ordering detection. The
basic premise of these two detectors is to perform a spatial
filtering of the observations to cancel the spatial inter-
ferences and thus transform the MIMO channel into nT
parallel SISO channels. This way the analog JSCC encod-
ing and decoding procedures described in the previous
section can be applied.

3.1 MIMO analog JSCC decoding with MMSE linear
detection

Figure 2 shows the block diagram of an analog JSCC
MIMO transmission system with MMSE linear detection.
The MMSE filter that minimizes the mean squared error
between the channel symbol vector s and the estimated
symbol vector ŝ = Wy is given by

WMMSE = (
HHH + nTN0InT

)−1HH . (15)

Notice that, contrarily to zero-forcing linear detection,
WMMSE does not completely cancel the spatial interfer-
ence of the MIMO channel, i.e., at ŝi, the desired symbol
si is corrupted by thermal noise and a residual spa-
tial interference from symbols transmitted through other
antennas. Considering this residual spatial interference as
Gaussian noise that adds to the thermal noise, it is shown
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Figure 2 Analog MIMO systemwith MMSE linear detection.

in [19] that the equivalent SNR at each output of the
MMSE linear receiver can be expressed as

SNRi = μ2
i

μi − μ2
i

= μi
1 − μi

, i = 1, . . . , nT , (16)

where μi = (WMMSEH)ii. Thus, the equivalent channel
that comprises the concatenation of the MIMO channel
and the MIMO linear MMSE receiver can be interpreted
as a set of SISO parallel channels, each with an equivalent
SNR given by (16). Each entry of the estimated symbol
vector can be decoded independently using the analog
JSCC decoding approach explained in Section 2.
Similarly to the SISO case, we assume that our MIMO

system setup is equipped with a feedback channel that
estimates the SNRi values at reception and sends them to
the transmitter (see Figure 2). This way we can approach
the optimal cost-distortion tradeoff because we can con-
tinuously adapt the analog JSCC encoder parameters δi.
Again, the look-up Table 1 can be used to select the
optimal analog encoders for a 2:1 bandwidth reduction
system.
It should be noticed that linear MMSE detection is

optimum only when the channel symbols are Gaussian,
which is not the case. Indeed, even when the sources are
Gaussian, the analog JSCC encoder is a non-linear trans-
formation that produces non-Gaussian channel symbols.
It is possible to formulate the optimum non-linear MMSE
detector but this requires knowledge of the channel sym-
bols probability p(s) and the calculation of an integral
similar to that in (14). Notice the extraordinary complex-
ity of the optimum non-linear MMSE detector. On the
one hand, p(s) has to be discretized and estimated using
Monte Carlo methods since it is not possible, in general,
to find an analytical expression for p(s). When consid-
ering fading channels, knowledge of p(s) is particularly
difficult since it depends on the analog JSCC encoding
parameters which in turn change with the SNR. On the
other hand, the non-linear MMSE detection integral has

to be computed numerically which requires a refined dis-
cretization of p(s) to approach optimality. In the ensuing
subsection, we investigate the utilization of a non-linear
receiving structure for analog JSCC over MIMO chan-
nels that, although suboptimal, outperforms linearMMSE
detection while keeping complexity at a low level.

3.2 MIMO analog JSCC decoding with decision feedback
detection

Figure 3 plots the block diagram of an analog JSCCMIMO
transmission system with a DF receiver. Both the feed for-
ward (FF) and the feed backward (FB) filters are optimized
according to theMMSE criterion. The FF filter is obtained
from the Cholesky factorization of

HHH + nTN0InT = LH�L,

where L is an nT × nT lower triangular matrix and � is an
nT × nT diagonal matrix. If we define the whitening filter
BH = �−1L−H , the FF filter is the product of the matched
and whitening filters, i.e., WDF

MMSE = BHHH . The overall
response of the FF filter and the channel is

WDF
MMSEH = L − nTN0�

−1L−H . (17)

In order to simplify the derivation of the DF receiver, we
will assume that there are no decoding errors. Under this
assumption, the spatially causal component of the inter-
ference in (17) can be successively removed with the FB
filter L − InT without altering the noise statistics at the
decoder inputs. An advantage of analog JSCC is that there
is no delay in the encoding and re-encoding steps which
significantly simplifies the implementation of DF MIMO
receivers.
Similarly to the case of linear detection, we assume the

instantaneous SNR at the decoder inputs is known at the
transmitter thanks to the existence of a feedback channel
(see Figure 3). This allows the continuous update of the δi
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Figure 3MIMO analog JSCC systemwith decision feedback detection.

parameters following the look-up Table 1. It can be easily
shown that Equation (16) is also valid to calculate the SNR
value of each equivalent SISO channel with

μi = (
BHHHH − L + InT

)
ii

= (
InT − nTN0�

−1L−H)
ii . (18)

Finally, notice that decoding ordering is important
and significantly impacts the performance of DF MIMO
receivers [20]. Nevertheless, contrarily to [20], the opti-
mum ordering in our case is the one that minimizes the
MMSE at the decoder input, i.e.,

MMSE = N0tr
(
�−1 (

InT − N0L−HL−1�−1))
≈ N0tr

(
�−1) , (19)

where the approximation holds when N0 � 1.
Ordering can be interpreted as a permutation of the

columns of the MIMO channel matrix, i.e., H̄ = HP
where P is a permutation matrix. Thus, the optimum
ordering is

Popt = arg min
P

N0tr
(
�̄

−1) , (20)

where �̄ results from the Cholesky factorization of
H̄HH̄+nTN0InT . This optimization problem can be read-
ily solved by searching over the nT ! possible permutation
matrices and selecting the one that minimizes the MMSE
cost function (19). Computer simulations show that, in the
low SNR regime, the same ordering results are obtained
when considering either the exact or the approximate
expression in (19).

4 Experimental results
In this section, we present the results of several com-
puter experiments that were carried out to illustrate the
performance of the proposed MIMO analog JSCC trans-
mission methods. We considered two types of source

distributions: Gaussian and Laplacian. These distribu-
tions are typically encountered in practical applications
such as image transmission or compressive sensing. Sys-
tem performance is evaluated in terms of the SDR at
reception for the given scenario and channel SNR. In
the computer experiments, we generated 1,000,000 source
symbols of a given distribution, simulate their trans-
mission over the considered channel with given chan-
nel SNR, and calculate an estimate of the MSE between
the received symbols x̂ and the original symbols x
(see (10)).
The optimal distortion-cost tradeoff is the maximum

attainable SDR for a given SNR. In the literature, this
theoretical limit is known as the optimum performance
theoretically attainable (OPTA) [21]. The OPTA is calcu-
lated by applying RcR(D) = C, that is, by equating the
product of the number of source samples transmitted per
channel use, Rc, and the rate-distortion function, R(D), to
the channel capacity, C.
Expressing the rate-distortion as a function of the SDR

and the channel capacity as a function of the SNR, and
since we are sending Rc = 2NnT source samples in each
channel use, the OPTA is calculated as

2NnTR(SDR) = C(SNR). (21)

For a generic MIMO nT × nR system, the channel
capacity (expressed in nats per channel use) is given by

C(SNR) = EH

[
log det

(
InR + SNR

nT
HHH

)]
, (22)

where EH[·] represents expectation with respect toH. On
the other hand, the rate-distortion function depends on
the considered distribution. If we assume the MSE as the
measure of distortion, the rate-distortion of a Gaussian
source can be expressed as a function of the SDR as

R(SDR) = 1
2
log (SDR) . (23)
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Figure 4 Performance of 2:1 analog JSCC over 2 × 2 MIMO
Rayleigh channels with Gaussian sources.

There is no closed-form expression for the rate-
distortion of a Laplacian source, but it can be approxi-
mated by the Shannon lower bound for the squared error
distortion of any distribution, given by [2]

R(D) >= h(x) − 1
2
log(2πeD), (24)

where D is the distortion and h(x) is the entropy of
the source. The entropy of a Laplacian distribution with
variance σ 2

x is given by

h(x) = 1 + 1
2
log

(
2σ 2

x
)
, (25)

which, substituting in (24) yields

R(SDR) ≥ 1
2
log

( e
π
SDR

)
. (26)

Two types of channels were considered during our
computer experiments: computer-generated synthetic
Rayleigh fading channels and real fading channels
obtained after a measurement campaign carried out in a
multiuser indoor scenario.
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Figure 5 Performance of 2:1 analog JSCC over 2 × 2 MIMO
Rayleigh channels with Laplacian sources.
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Figure 6 Performance of 2:1 analog JSCC over 4 × 4 MIMO
Rayleigh channels with Gaussian sources.

4.1 Synthetic MIMO Rayleigh channels
In this subsection, symmetric channels with nT = nR =
2 and 4 transmit and receive antennas were syntheti-
cally generated with random numbers obtained from a
computer program. In particular, we emulated ergodic
spatially white MIMO Rayleigh fading channels whose
entries hij are realizations of complex-valued zero-mean
circularly symmetric Gaussian independent and identi-
cally distributed (i.i.d.) random variables.
Figures 4 and 5 show the performance results obtained

for a 2:1 bandwidth reduction analog JSCC system over
a 2 × 2 MIMO Rayleigh channel with Gaussian and
Laplacian source symbols, respectively. The SDR versus
SNR performance curves for the two analog JSCC MIMO
receivers described in Section 3, together with the OPTA,
are plotted in each figure. Notice that the plotted OPTA
is an upper bound of the actual performance limit in the
case of Laplacian sources. It can be seen that for Gaussian
sources and high SNR values, the SDR obtained with
DF MIMO receivers is 2 dB below the OPTA while the
SDR obtained with linear MMSE MIMO receivers is 3
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Figure 7 Performance of 2:1 analog JSCC over 4 × 4 MIMO
Rayleigh channels with Laplacian sources.
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Figure 8 Picture of the real indoor scenario setup during measurement campaign.

dB below the OPTA, i.e., DF MIMO receivers produce a
distortion that is 1 dB better than that obtained with lin-
ear MIMO receivers. For Laplacian sources, DF MIMO
receivers perform only slightly better than linear MIMO
receivers. The SDR distance to the OPTA for high SNR
values is about 2.5 dB in both cases.
Performance differences between DF and linear MIMO

receivers are significantly larger as the number of trans-
mit and receive antennas increases. Figures 6 and 7
show the performance results obtained for a 2:1 band-
width reduction analog JSCC system over a 4 × 4 MIMO
Rayleigh channel with Gaussian and Laplacian source
symbols, respectively. Notice the similarity between the
OPTA curves in Figures 4 and 5 (2 × 2) and Figures 6
and 7 (4 × 4) caused by the MIMO fading channel
normalization EH

[
tr

(
HHH)] = nTnR and the chan-

nel symbols covariance matrix normalization given by
(13). It can be seen that for Gaussian sources and high
SNRs, the SDR obtained with DF MIMO receivers is 2
dB below the OPTA while this difference is 4 dB for
linear receivers, i.e., DF MIMO receivers produce a dis-
tortion that is 2 dB better than that obtained with linear
MIMO receivers. For Laplacian sources, the performance
of the proposed MIMO receivers is worse than that with
Gaussian sources: the distortion obtained with DF and
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Figure 9 Performance of 2:1 analog JSCC over indoor measured
2 × 2 MIMO channels with Gaussian sources.

linear MIMO receivers is 3 dB and 4.2 below the OPTA,
respectively. Yet, DF MIMO receivers clearly outperform
linear MIMO receivers yielding a 1.2 dB better SDR. Sim-
ilarly to the digital case, the superior performance of DF
MIMO receivers is due to the non-linear decoding and
reencoding operations carried out during the decision
feedback stage.

4.2 Real indoor channels
In order to get a more complete assessment of the ana-
log JSCC scheme considered in this work, we carried out a
series of computer experiments considering real channels
measured from an indoor scenario. Within the COMON-
SENS project (http://www.comonsens.org), a wireless net-
work hardware demonstrator was constructed for the
practical evaluation of multiuser multiantenna transmis-
sion techniques. The testbed was jointly designed and
implemented by two research groups from University of
Cantabria (UC) and University of A Coruña (UDC) in
Spain. The testbed consists of three transmit and three
receive nodes each equipped with MIMO capabilities. For
a detailed description of the COMONSENS Multiuser
MIMO testbed, see the URL above.
Figure 8 shows a picture of the setup where the loca-

tion of the different transmitters and receivers is clearly
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Figure 10 Performance of 2:1 analog JSCC over indoor
measured 2 × 2 MIMO channels with Laplacian sources.
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appreciated. A number of 5,844 2×2MIMO channel real-
izations were obtained after the measurement campaign.
These are freely available to the research community and
can be downloaded from the COMONSENS project web
page. In this same web address, there is a detailed descrip-
tion of the setup and the measurement campaign from
which the real channels were obtained.
Figures 9 and 10 plot the performance results for the

proposed scheme when transmission is performed over
real measured indoor 2×2MIMO channels with Gaussian
sources and Laplacian sources, respectively. The result-
ing distortion when DF detection is applied is within 1 dB
from the OPTA for Gaussian sources, and within 2 dB for
Laplacian sources. Contrary to the synthetic case, a sig-
nificant improvement in performance (2 dB) is obtained
with either Gaussian or Laplacian sources when using
DF MIMO detection rather than linear MIMO detection.
This is due to the differences in the eigenvalue spread (i.e.,
the quotient between the largest and the smallest eigen-
value) between the synthetic and measured channels.
Similarly to the digital case, the superior performance of
DF over linear MIMO receivers is more obvious when
the channel eigenvalue spread increases. Such eigenvalue
spread is quite small in the synthetic channels whereas it
is large in a significant number of measured channels.

5 Conclusions
Analog JSCC of discrete-time continuous-amplitude
sources over MIMO wireless channels has been investi-
gated. Since directly recovering the analog source infor-
mation from the MIMO channel output is not possible,
we proposed the utilization of two-stage receivers that
separately perform detection and analog JSCC decoding.
We considered analog JSCC MIMO receivers that utilize
either linear MMSE or DF MIMO detection. Different
computer experiments were carried out to illustrate the
ability of the different analog JSCC MIMO receivers to
approach the optimal distortion-cost tradeoff. Both syn-
thetic computer-generated Rayleigh fading channels and
real indoor wireless measured channels were considered.
Particularly remarkable is the performance of analog JSCC
DFMIMO receivers, which attain distortion values within
3 dB from the OPTA over all considered channels for both
Gaussian and Laplacian sources.
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