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Abstract

Separate source and channel coding is known to be sub-optimal for communicating correlated sources over a
Gaussian multiple access channel (GMAC). This paper presents an approach to designing distributed joint
source-channel (DJSC) codes for encoding correlated binary sources over a two-user GMAC, using systematic irregular
low-density parity check (LDPC) codes. The degree profile defining the LDPC code is optimized for the joint source
probabilities using extrinsic information transfer (EXIT) analysis and linear programming. A key issue addressed is the
Gaussian modeling of log-likelihood ratios (LLRs) generated by nodes representing the joint source probabilities in the
combined factor graph of the two LDPC codes, referred to as source-channel factor (SCF) nodes. It is shown that the
analytical expressions based on additive combining of incoming LLRs, as done in variable nodes and parity check
nodes of the graph of a single LDPC code, cannot be used with SCF nodes. To this end, we propose a numerical
approach based on Monte-Carlo simulations to fit a Gaussian density to outgoing LLRs from the SCF nodes, which
makes the EXIT analysis of the joint decoder tractable. Experimental results are presented which show that LDPC
codes designed with the proposed approach outperforms previously reported DJSC codes for GMAC. Furthermore,
they demonstrate that when the sources are strongly dependent, the proposed DJSC codes can achieve code rates
higher than the theoretical upper-bound for separate source and channel coding.
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1 Introduction
Wireless communication of multiple correlated informa-
tion sources to a common receiver has become an impor-
tant research problem due to potential applications in
emerging information gathering systems such as wireless
sensor networks (WSNs) [1]. Most of the recent work
on this problem has been focused on approaches based
on the separation of source and channel coding, which
rely on using distributed source coding (DSC) [2] to first
generate independent bit streams from two sources and
then to use a multiple-access method (such as TDMA,
FDMA, or CDMA) [3] to convert a multiple-access chan-
nel (MAC) into a set of orthogonal channels. While it
is known that for communication of correlated sources
over orthogonal channels, the source-channel separation
is optimal [3-5], the same does not hold true for a MAC
[6-8]. Hence, there can be a loss of performance when
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separate source and channel coding is used to transmit
correlated sources over a MAC. This is because when
the sources are correlated, even if the transmitters cannot
communicate with each other, it is possible to generate
correlated inputs to a MAC by using a DJSC code and
thereby improve the performance relative to a systemwith
independent channel inputs. In contrast, with separate
source and channel coding, distributed source coding of
correlated sources yields independent bit streams, and
hence, the MAC inputs cannot be made dependent unless
the transmitters are allowed to collaborate in channel
coding. Therefore, DJSC coding can be expected to out-
perform separate source and channel coding in systems
such as WSNs which are equipped with low-complexity,
narrow-band sensors designed to communicate only with
a common information gathering receiver.
DJSC coding of correlated sources for a GMAChas been

studied sparsely in the literature. While there is no known
tractable way to optimize a DJSC code for a given set of
correlated sources and aMAC, a sub-optimal but effective
and tractable framework is to encode each source using
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an independent channel code in such a manner that the
resulting dependence between the MAC input codewords
can be exploited by a joint decoder [9,10]. In particu-
lar, the use of a systematic channel code for each source
preserves the dependence between the information bits
of the MAC input codewords. For example, [9] presents
an approach in which much of the correlation between
the sources is preserved in MAC input codewords by
encoding each source using a systematic low-density gen-
erator matrix (LDGM) code. However, as LDGM codes
exhibit a high error floor due to their poor distance prop-
erties, this approach requires the use of two concatenated
LDGM codes for each source to achieve good perfor-
mance which increases the delay and complexity. Further-
more, no known method exists for designing the LDGM
codes to ensure that the codes are in some sense matched
to the inter-source correlation and the channel noise level.
An improved system design based on LDGM codes is
presented in [10], which however requires an additional
channel between each source and the common receiver.
In another closely related work, Roumy et al. [11] consider
the joint design of LDPC codes for independent sources
transmitted over a two-input GMAC. The design of LDPC
codes for correlated sources transmitted over orthogonal
channels appears in [12].
In contrast to a previous work, in this paper, we present

a DJSC code design approach for a pair of correlated
binary sources, in which the degree profile of a system-
atic irregular LDPC (SI-LDPC) code is optimized for the
joint distribution of the two sources and the signal-to-
noise ratio (SNR) of the GMAC.Ourmotivations for using
SI-LDPC codes are the following: (1) systematic codes can
be used to exploit inter-source correlation in joint decod-
ing of the two codes, (2) LDPC codes can be optimized by
linear programming, in conjunction with the EXIT analy-
sis of the belief propagation (BP)-based joint decoder, and
(3) LDPC codes are known to be capacity achieving for
a single-user case [13] and hence will exhibit very good
performance in coding correlated sources as well. One of
the key issues addressed here is the mutual information
computation (as required for EXIT analysis) for messages
passed from factor nodes in the joint factor graph of
the two LDPC codes, referred to as source channel fac-
tor (SCF) nodes, which represent the joint probabilities
of the two sources and the output conditional probabil-
ity density function (pdf) of the GMAC. It is shown that
the analytical computation of mutual information based
on additive combining of incoming LLRs in variable nodes
and parity check nodes of a factor graph as done in sin-
gle LDPC codes does not apply to SCF nodes. In order to
make the mutual information computation in EXIT anal-
ysis, tractable using a Gaussian approximation [14], we
propose a simple numerical approach based on Monte-
Carlo simulations to fit a Gaussian pdf to outgoing LLRs

from the SCF nodes. Simulation results show that codes
designed based on this method can not only outperform
previously reported GMAC codes for both independent
and correlated sources [9,11], but can also achieve code
rates higher than the theoretical upper-bound for inde-
pendent sources over the same GMAC, when the sources
are strongly dependent.
This paper is organized as follows: Section 2 formulates

the DJSC code design problem addressed in this paper and
the code optimization procedure is presented in Section 3.
Section 4 studies the problem of modeling the pdf of out-
going LLRs from SCF nodes and presents a numerical
method for computing the mutual information of these
messages in the EXIT analysis. Section 5 presents and
discusses the simulation results. Conclusions are given in
Section 6.

2 Problem setup
A block diagram of the system under consideration is
shown in Figure 1. Let U1 and U2 be two dependent,
uniform binary sources. Let the dependence between the
two sources be described by the inter-source correlation
parameter α ∈[ 0, 0.5], where P(U1 �= U2) = α. A
sequence of source bits from Uk , k = 1, 2, is encoded
by a source channel code to produce a channel codeword
whose bits are modulated to produce the GMAC input
Xk ∈ {+1,−1} in equivalent base-band representation.
The output of the GMAC Y ∈ R can is given by

Y = X1 + X2 + W , (1)

where W ∼ N (0, σ 2) is the channel noise and N (μ, σ 2)
denotes the Gaussian pdf with meanμ and variance σ 2. In
general, the maximum sum rate achievable over GMAC
for two dependent sources is not known. However, when
the sources are independent, i.e. α = 0.5, it is known that
the maximum sum rate achievable by any code design is
I(X1,X2,Y ) [3]. In the case of dependent sources, we can
consider I(X1,X2,Y ) as an upper-bound to the achievable
sum rate. Consider the direct transmission of the sources
so that P(X1,X2) = P(U1,U2). In Figure 2, we have plot-
ted I(X1,X2,Y ) of a GMAC with noise variance σ 2 as a
function of α for different values of σ 2. Notice that the
maximumof I(X1,X2,Y ) depends on (α, σ 2), which shows
that optimizing the codes for the values of these parame-
ters will result in higher sum rates for dependent sources
over the same GMAC, compared to independent sources.
The optimal DJSC code for the given GMAC must

induce a distribution P(X1,X2) which maximizes the sum
rate of the two channel inputs [3]. While there appears to
be no known tractable approach for designing such a code,
the main idea pursued in this paper is to use a system-
atic channel code for each source, so that the two sources
are essentially transmitted directly over the GMAC and
therefore P(X1,X2) = P(U1,U2) for systematic bits of the
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Figure 1 Block diagram of the system considered in this paper.

channel input codewords (the parity bits of each source
are related to information bit as given by parity-check
equations of the code [15]). The two channel codes are
decoded by a joint decoder which observes the channel
output Y. This approach essentially exploits the inter-
source correlation to enhance the performance of channel
codes. In particular, if two sources are independent, then
each channel code requires a sufficient number of parity
bits to correct the errors due to channel noise and the
mutual interference between the the two independent bit
streams. However, when the two sources are dependent,

the joint distribution P(X1,X2) of the information bits of
the two channel input codewords provide an additional
joint decoding gain and hence the number of parity bits
required for encoding each source is reduced, or equiv-
alently the achievable sum rate is higher. With practical
(finite length) channel codes, this implies that the same
decoding error probability can be achieved at a higher
sum rate. Note that by construction, the aforementioned
DJSC coding scheme requires that the code length n and
the number of systematic information bits m (and the
code rate Rc = m/n) be identical for both sources, and
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Figure 2 I(X1,X2;Y ) as a function of inter-source correlation parameter α for different values of GMAC noise variance σ 2.
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therefore, the resulting designs correspond to symmet-
ric rates. Achieving asymmetric rates will possibly require
some form rate splitting [16] and will not be considered in
this paper.
The code design approach presented in this paper is

based on systematic irregular LDPC (SI-LDPC) codes.
First, consider an n-bit SI-LDPC code [17] whose par-
ity check matrix H can be represented by a factor graph
with code bit variable (CBV) nodes x(1), . . . , x(n) and
parity check factor (PCF) nodes (representing parity
check equations), channel output variable (COV) nodes
y(1), . . . , y(n), and the channel factor (CF) nodes. In the
case of a Gaussian channel, a COV node represents the
conditional pdf p (y(n)|x(n)). The channel outputs are
decoded by applying the BP algorithm to the factor graph
[17]. For the purpose of code design, a length n SI-
LDPC code can be completely specified by the parameters
(n, λ(x), ρ(x)), where λ(x) = ∑dvmax

i=1 λixi−1 and ρ(x) =∑dcmax
i=1 ρixi−1 are the edge-perspective degree polynomi-

als of variable nodes and parity check nodes, respectively,
and λi (resp. ρi) is the fraction of edges connected to
CBV (resp. PCF) nodes of degree i (a degree of a node is
the number of edges connected to it), satisfying the con-
straints

∑
i λi = 1 and

∑
i ρi = 1 [17]. The parameters

dcmax and dvmax are typically chosen in such amanner that
the sparsity of the corresponding factor graph is main-
tained (i.e., the edges in the factor graph grow linearly with
the codeword length [17]). It is known that a concentrated
degree polynomial of the form ρ(x) = ρxs−2 + (1 − ρ)xs
for some s ≥ 2 and 0 < ρ ≤ 1 is sufficient for achieving
near optimal performance ([13], Theorem 2).
Now consider, a two-input GMAC with an SI-LDPC

code applied to each input. Since (1) is symmetric with
respect to X1 and X2 and the same rate is used for both
sources, the same channel code can be used for both
sources.While the parity checkmatrixH of each SI-LDPC

code whose code bits are xk(1), . . . , xk(n) can be repre-
sented by a factor graph, for the joint decoding of the two
codes, the combined factor graph as shown in Figure 3
has to be used, where the COV nodes y(1), . . . , y(n) are
linked to factor nodes φ ( y(i), x1(i), x2(i)), i = 1, . . . , n
which represent (combined) SCF nodes. As described
later in this paper, the message passing to and from these
nodes in BP decoding is also crucial to the design of the
codes as well. To determine the φ(·), consider the maxi-
mum a posteriori (MAP) decoding of the codeword xk =
(xk(1), . . . , xk(n)) transmitted on GMAC input k = 1, 2,
based on the GMAC outputs y = ( y(1), . . . , y(n)). Let
x[i]k denote those code bits in xk , except xk(i). Also, for
k ∈ {1, 2} define

k̄ =
{
1 if k = 2
2 if k = 1

Then, it is easy to verify that the MAP decoded value
of the ith bit of the input codeword of GMAC input k is
given by

x̂k(i) = arg max
xk(i)∈±1

∑
x[i]k

∑
xk̄

f (x1, x2, y), (2)

where i = 1, . . . , n,

f (x1, x2, y) = p( y|x1, x2)P(x1, x2)I{x1 ∈ C}I{x2 ∈ C}

=
⎛
⎝ n∏

j=1
p( y( j)|x1( j), x2( j))P(x1(j), x2( j))

⎞
⎠

× I{x1 ∈ C}I{x2 ∈ C},

=
⎛
⎝ n∏

j=1
φj

(
y( j), x1( j), x2(j)

)⎞⎠ I{x1 ∈ C}I{x2 ∈ C},

(3)
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Figure 3 Combined factor-graph used for joint decoding of the two LDPC codes. Bit remapping is used to convert the systematic channel
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C denotes the set of all codewords of the code, I{·} denotes
the indicator function, and

φj
(
y(j), x1(j), x2(j)

) = p(y(j)|x1(j), x2(j))P(x1(j), x2(j)). (4)

In the factor graph, representation of (3), each factor
node represents a term in the product [17]. As usual,
the factors I{x1 ∈ C} and I{x2 ∈ C} are represented
by the PCF nodes of the two codes, respectively. On the
other hand, each term φi(·), i = 1, . . . , n, which is a
function of the code bits x1(i) and x2(i), and the chan-
nel output y(i) is represented by a SCF node as shown in
Figure 3. As the codes are systematic, for information bits
P(x1(i), x2(i)) is identical to the joint distribution P(u1,u2)
of the source bits. For parity bits of an LDPC code (which
has a dense generator check matrix), it can be assumed
that P(x1(i), x2(i)) = P((x1(i))P((x2(i)) with P(x1(i)) =
P(x2(i)) = 0.5 [18].
Sparse parity checkmatrices obtained through the EXIT

analysis design procedure does not necessarily correspond
to systematic generator matrices. As usual, the codes
can be converted to systematic form by using Gaussian
elimination. However, the resulting codes have dense
parity-check matrices which makes the computational
complexity of BP decoding impractically high. In order
to get around this problem, a bit re-mapping operation is
used in the joint decoder to rearrange the systematic code-
bits, so that the codewords correspond to sparse matrices,
as shown in Figure 3.

3 Code optimization
A well-known simple method for constructing a near-
capacity achieving SI-LDPC code for a single-input
AWGN channel with noise variance σ 2 and some fixed
ρ(x), is to determine the coefficients λi which maxi-
mize the rate of the code under BP decoding, subject to
Gaussian approximation (GA) for the messages passed
in the decoder [13]. The code design in this case is a
linear programming problem of the form ([17], Ch. 4):
maximizeλi

∑
i≥2 λi/i, subject to constraints (1)

∑
i λi =

1, (0 < λi ≤ 1) (normalization constraint), (2) λ2 <

exp( 1
2σ 2 )/

∑
j(j−1)ρj (stability condition), and (3) a linear

inequality to ensure the convergence of the BP algorithm
([13], Sec. 3) (decoder convergence constraint).
In optimization of an SI-LDPC code for two correlated

sources to be transmitted over a GMAC, the objective is to
determine the degree distribution λ(x) which maximizes
the code rate Rc, given the source correlation param-
eter α, the GMAC noise variance σ 2, and some fixed
ρ(x). Clearly, the objective function and the constraints
(1) and (2) remain the same as for single channel code
design. However, since the two sources are decoded jointly
using a combined factor-graph, the third constraint has to
be re-established. Specifically, let the mutual information
between the code bits Xk and the LLRs passed from the

corresponding CBV nodes to the PCF nodes be I(k)v→p(l),
where l is the iteration in EXIT analysis. Then, for the con-
vergence of BP decoding of the codes on the combined
factor graph, it is required that

I(k)v→p(l + 1) ≥ I(k)v→p(l), l = 1, . . . ,∞, (5)

for k = 1, 2. In the following, I(k)v→p will be shown to be lin-
ear in λi. Since the objective function and the constraints
are all linear in the code parameters λi, we can use a lin-
ear program to solve the problem. The rest of this section
is devoted to EXIT analysis of BP decoding on the joint
factor graph and the iterative computation of I(k)v→p(l).
The details of BP decoding algorithm and the EXIT

analysis for single-user LDPC codes can be found in
[17,19]. In EXIT analysis, the analytical computation of
mutual information is feasible only if the outgoing LLRs
from the nodes in the factor graph have a Gaussian (or
Gaussian-mixture) distribution [19]. When the channel
is binary-input AWGN (BiAWGN) channel, the outgo-
ing LLR values are Gaussian distributed [14]. For other
types of channels, the Gaussian approximation of LLRs
is known to be a good approximation, due to the univer-
sality of the LDPC codes (a code designed for one type
of channel performs well on a another type of a channel)
[15]. The analytical expressions for iterative mutual infor-
mation updates through CBV nodes and PCF nodes in
EXIT analysis is well known [17]. In particular, the mutual
information update through a CBV node stems from the
message update through that variable node and the cen-
tral limit theorem. That is, since an outgoing message of
a given node has the mean equal to the sum of means
of incoming messages to that node, given a reasonably
high node degree, the outgoing message is approximately
Gaussian. The mutual information update for a PCF node
on the other hand relies on the deterministic relationship
between the PCF node and the CBV nodes connected to
it, as defined by the parity check equations. As a result, the
mutual information update for a PCF node can be com-
puted by simply using duality relationship that it has with
a CBV node [20].
In the case of LDPC codes applied to two correlated

sources transmitted over a GMAC and decoded by using
a combined factor graph, the mutual information updates
through CBV nodes and PCF nodes can be analytically
computed as in the case of single-user LDPC codes.
Denote the messages passed between various nodes in
the factor graph as in Figure 4. Accordingly, the message
passed from a degree dv CBV node of the code k ∈ {1, 2},
along its jth edge to a PCF node is given by

m(k)
v→p,j =

dv−1∑
i=1
i�=j

m(k)
p→v,i + m(k)

s→v. (6)
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and the message passed from a PCF node of degree dc on
its jth edge to a CBV node is given by

m(k)
p→v,j = 2tanh−1

⎛
⎜⎜⎝

dc∏
i=1
i�=j

tanh
m(k)

v→p,i
2

⎞
⎟⎟⎠ , (7)

see ([17], Ch. 2). Similarly, the LLR passed from a CBV
node to a SCF node can be formed by the summation of
incoming LLRs from the PCF nodes, i.e.,

m(k)
v→s =

dv−1∑
i=1

m(k)
p→v,i. (8)

Note however that the LLRs computed by an SCF node
cannot be formed as the sum of incoming LLRs, but are
determined by (4). In the Appendix, it is shown that when
sources are uniformly distributed

m(1)
s→v = log

(
P(x(1)

i = +1|yi)
P(x(1)

i = −1|yi

)

= log
(

q1,1( yi)(1 − α)em
(2)
v→s + q1,−1( yi)α

q−1,1( yi)αem
(2)
v→s + q−1,−1( yi)(1 − α)

)
,

(9)

where qj,k( y) � f ( yi|x(1)
i = j, x(2)

i = k), j, k ∈ {−1,+1},
and we have used the fact that m(2)

v→s = log
(

P(X2=1)
P(X2=−1)

)
.

Similarly,

m(2)
s→v = log

(
q1,1( yi)(1 − α)em

(1)
v→s + q−1,1( yi)α

q1,−1( yi)αem
(1)
v→s + q−1,−1( yi)(1 − α)

)
.

(10)

4 EXIT analysis
Let the mutual information between two random vari-
ables r and s be I(r; s) and define the following: I(k)v→p �

I(Xk ;m(k)
v→p), I(k)p→v � I(Xk ;m(k)

p→v), I(k)v→s � I(Xk ;m(k)
v→s),

and I(k)s→v � I(Xk ;m(k)
s→v). In the l + 1th iteration of EXIT

analysis, given I(k)v→p(l) and I(k)v→s(l), I(k)p→v(l+1) and I(k)s→v(l+
1) are first updated, followed by I(k)v→p(l+1) and I(k)v→s(l+1).
The convergence of the degree polynomial λ(x) to a valid
code is then verified by (5).
Let μ

(k,d)
v→p = E{m(k)

v→p,j}, where v represents degree d
CBV nodes in the factor graph, d = 2, . . . , dvmax. Given
that all incoming messages to a CBV node are indepen-
dent, the outgoing message is given by

μ(k,d)
v→p = (d − 2)μ(k)

p→v + μ(k)
s→v, (11)

Under the assumption that LLRs generated by a CBV node
are Gaussian with mean μ and variance 2μ, the mutual
information I between the code bit represented by the
CBV node and the LLR is given by

I = J(μ) (12)

where J(·) is given by Equation twenty four of [21]. Thus,
the mutual information between degree d CBV nodes and
the messages passed to PCF nodes is

I(k,d)
v→p = J

(
(d − 2)J−1

(
I(k)p→v

)
+ J−1

(
I(k)s→v

))
. (13)

Therefore,

I(k)v→p =
dvmax∑
d=2

λdJ
(
(d − 2)J−1

(
I(k)p→v

)
+ J−1

(
I(k)s→v

))
.

(14)

Let mutual information between a CBV nodes and the
messages it receives from a degree d PCF nodes be I(k,d)

p→v .
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Then, from the duality approximation ([17], pp. 236), it
follows that,

I(k)p→v =
dcmax∑
d=2

ρ
(k)
d I(k,d)

p→v

= 1 −
dcmax∑
j=2

ρ
(k)
d J

(
(d − 1)J−1

(
1 − I(k)v→p

))
.

(15)

Furthermore, the average mutual information between
CBV nodes and themessages passed to SCF nodes is given
by

I(k)v→s =
dvmax∑
d=2

λdJ
(
(d − 1)J−1(I(k,d)

p→v)
)
. (16)

Next consider the computation of mutual information
I(1)s→v and I(2)s→v between the CBV nodes and the messages
m(1)

s→v and m(2)
s→v as given by (9) and (10), respectively,

passed from SCF nodes. Unfortunately, it is not straight-
forward to compute these quantities, as the mean values
ofm(k)

s→v, k = 1, 2 cannot be computed using an analytical
relation as in (11). In this case, μ(k)

s→v is a function of μ(k̄)
v→s,

α, and σ 2. As will be demonstrated below,m(k)
s→v is in gen-

eral not Gaussian-distributed, even if m(k)
v→s is Gaussian.

However, in order to be able to apply EXIT analysis based
on (12) suppose that, by using a suitable approach, we
model the pdfm(k)

s→v by a Gaussian function with variance
equal to twice the mean. Then, we can obtain the required
mutual information simply as

I(k)s→v = J
(
μ(k)
s→v

)
. (17)

On the other hand, if we model the pdf ofm(k)
s→v by a more

general Gaussian mixture

a(k)
1 N (μ

(k)
1 , 2μ(k)

1 ) + a(k)
2 N (μ

(k)
2 , 2μ(k)

2 ),

where a(k)
1 , a(k)

2 , μ(k)
1 , and μ

(k)
2 are now functions of μ

(k̄)
v→s,

α, and σ 2, then [20]

I(k)s→v = a(k)
1 J(μ(k)

1 ) + a(k)
2 J(μ(k)

2 ). (18)

Next, we present an approach to numerically estimate
themean valuesμ

(k)
s→v. In order to get an idea about the pdf

of m(1)
s→v, let the LLR m(2)

v→s ∼ N
(
μ

(2)
v→s, 2μ(2)

v→s
)
passed

from a CBV node v of X2 to a SCF node s as shown in
Figure 4. Figure 5 shows the histograms ofm(1)

s→v obtained
through Monte-Carlo simulations for several values of α

and μ
(2)
v→s, suggesting that the pdf of m(1)

s→v can be highly
skewed or even bi-modal depending on the values of α

and μ
(2)
v→s. Similar observations hold form(2)

s→v. Therefore,
the problem at hand is to find a suitable method to fit a
Gaussian pdf to m(k)

s→v, which is effective for range values
of α and σ 2.

For approximating an arbitrary distribution by a
Gaussian, the transformation-based methods are widely
used, see [22,23]. These methods are essentially para-
metric where the parameter estimation is usually done
through methods such as maximum likelihood (ML) or
Bayesian inference. They also require performing the
inverse transform operation once the required processing
is done on the Gaussian density. For our problem, both
parameter estimation and inverse operation can make the
LDPC code optimization algorithm intractable. Since our
code optimization procedure is based on mutual infor-
mation transfer through SCF nodes as computed in (17),
we seek a computationally simple Gaussian approxima-
tion which yields the maximum mutual information I(1)s→v
for the messages m(1)

s→v, for given μ
(2)
v→s, α, and σ 2. To this

end, we consider the following three approaches.

• Mean-matched Gaussian approximation - The mean
μ is estimated from observations and variance set to
2μ.

• Mode-matched Gaussian approximation - The mode
m of the pdf is estimated from observations and we
set the mean μ = m and variance 2μ. The fitting of a
Gaussian distribution at the mode of an arbitrary
distribution is closely related to the Laplace
approximation [24].

• Two-component Gaussian mixture approximation -
The density is approximated by fitting a two
component Gaussian mixture
a1N (μ1, σ 2

1 )+a2N (μ2, σ 2
2 ), whereμ1,μ2, σ 2

1 , σ
2
2 , a1,

and a2 are estimated from the observations.

The rationale for using these approximations can be
seen from Figure 5. Note that for some values of α, μ(2)

v→s
and channel noise variance σ 2, the density of m(1)

s→v dis-
plays two dominant modes. Note also that, for some
values, the density does resemble a Gaussian (for which
the mean and mode are equal), while for some values,
the density is uni-modal but highly skewed. In particu-
lar, the skewed density functions suggest the use of the
mode-matched approximation. In order to compare the
performance of these approaches on the basis of mutual
information of outgoing messages from SCF nodes, we
present in Figures 6 and 7 I(1)s→v as a function of I(2)v→s
for two cases selected from Figure 5. In Figure 6, we
compare the mean-matched and mode-matched approxi-
mations for a case in which the density is uni-modal, and
hence, the Gaussian mixtures do not provide a better fit.
In Figure 7, we have chosen a case in which the histogram
is bi-modal and hence a Gaussian mixture is a better fit. It
is however evident that in either case, the highest output
mutual information is achieved with the mode-matching
approach. The mode-matched method was also found to
yield themaximum output mutual information for various
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Figure 5 Histograms of outgoing messagesm(1)
s→v from SCF nodes for different values of incomingmessagemeanμ

(2)
v→s for different

values α ( σ 2 = 5).

other values of α, μ
(2)
v→s and σ 2. Furthermore, as will be

shown (see Figure 8), the joint codes designed by using
this approximation also yield the lowest decoding bit error
probability compared to the other two approaches.
With all three approximation methods the mean value

μ
(k)
s→v of the pdf of m(k)

s→v can be estimated using Monte-
Carlo simulation. For example, μ

(k)
s→v can be estimated

using mean-matched or mode-matched approximations
as follows:

Step 1:Given the mean valueμ
(k̄)
v→s generate a sufficiently

large number of N samples ofm(k̄)
v→s ∼ N (μ

(k̄)
v→s, 2μ(k̄)

v→s).
Step 2:Given P(X1,X2) and σ 2, generateN samples from

the pdf of the GMAC output y.
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Figure 6Mutual information update through SCF nodes. I(1)s→v (output mutual information) as a function of I(2)v→s (input mutual information) for
μ

(2)
v→s = 1.8 and α = 0.01. The corresponding message histogram is shown in Figure 5.
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Figure 7Mutual information update through SCF nodes. I(1)s→v (output mutual information) as a function of I(2)v→s (input mutual information) for
μ

(2)
v→s = 3.24 and α = 0.01. Note the corresponding bi-modal histogram in Figure 5.

Step 3: Use (9) (if k = 1) or (10) (if k = 2) to compute the
corresponding N samples of m(k)

s→v. Estimate the mean m
of the pdf of m(k)

s→v using either mean-matched or mode-
matched approximations described above. Set μ

(k)
s→v = m

and var(m(k)
s→v) = 2m.

In the case of Gaussian mixture approximation, mean val-
ues μ1, μ2 and the weights a1, a2 can be estimated from
the sample set ofm(k)

s→v [25].

5 Simulation results
In this section, we present simulation results obtained by
designing DJSC codes for a pair of uniformly distributed
binary sources (whose statistical dependence is given by
α) and a GMAC with noise variance σ 2.
First, we investigate the impact of the three message

density approximation considered in Section 4. As evi-
denced by Figures 6 and 7, codes designed by using the
mode-matched approximation gives the maximum output

Figure 8 Decoding error probability of codes designed with three approximation methods shown in Figure 7 (σ 2 = 5, α = 0.01).
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mutual information from a SCF node. In order to compare
the three approximationmethods on the basis of code per-
formance, in Figure 8, we present the probability of decod-
ing error of codes designed using each of these methods.
Here, the correlation parameter α and the channel noise
variance σ 2 are identical to those used in Figure 7 (for
which the density of outgoingmessages from SCF nodes is
bi-modal). These results confirm that the mode-matched
approximation tends to yield the best codes, owing to the
skewed nature of the pdf of the output messages from SCF
nodes. For example, at the error probability of 10−6, the
codeword length required with mode-matched approxi-
mation is approximately 1.7 × 104 bits, while that with
mean-matched approximation is approximately 3.8 × 104
bits. In obtaining simulation results in the rest of this
section, we have used the mode-matched approximation.
As discussed in Section 2, the capacity of a GMAC can

be higher for dependent sources as compared to indepen-
dent sources. Table 1 presents examples of several DJSC
code designs together with their code rates Rc for sources
with a correlation level of α = 0.1. The table also indicates
the maximum code rate achievable (channel capacity)
with independent sources 1

2 I(X1,X2,Y |α = 0.5) over the
same channel (noise level), as well as the actual value of
the joint mutual information 1

2 I(X1,X2;Y |α = 0.1) of
the DJSC code. In particular, note that the DJSC codes
can actually achieve code rates (bits/channel-use) higher
than the capacity of the GMAC for independent sources.
While the capacity of GMAC for correlated sources
remains unknown, these results clearly demonstrate
that the proposed codes are able to outperform separate
source and channel coding for GMAC (with separate
source and channel coding, a good DSC would render
the two sources nearly independent). In Figure 9, we
compare the joint source-channel coding (JSC) rates in
channel-uses/source-bit RJSC, achieved by the proposed
DJSC codes as a function of α, at a codeword length of
106 bits and a decoding error probability of 10−6. The

rate lower-bound for independent sources [3] over the
same GMAC is also shown. Note that for α ≤ 0.36, DJSC
codes can achieve JSC rates below the theoretical lower-
bound for independent sources with the same marginal
probabilities.
In order to further demonstrate the advantage of the

proposed DJSC codes compared to separate source and
channel coding, we next compare three different system
designs which differ in terms of the use of prior infor-
mation about the inter-source correlation parameter α, as
follows:
Scheme 1: Regardless of the actual inter-source corre-

lation α, the two sources are assumed to be independent
(α = 0.5) in code design as well as in decoding. Essentially,
these codes at best can only achieve a channel capacity of
I(X1,X2;Y |α = 0.5). We denote this scheme by (αdesign =
0.5,αdecode = 0.5).
Scheme 2: Independent sources are assumed for code

design (αdesign = 0.5), but the actual value of α is used
in joint decoding. We denote this scheme by (αdesign =
0.5,αdecode = αactual).
Scheme 3: The actual value of α is used for both code

design and in joint decoding. We denote the scheme by
(αdesign = αdecode = αactual).
Figure 10 shows the code rates (measured in bits per

channel use) achieved by scheme 2 and scheme 3 for dif-
ferent values of correlation parameter α, for σ 2 = 1
and a decoding error probability of 10−6. While the rate
achieved by both schemes increases as the inter-source
correlation increases (α decreases) as expected, note that
for α = 0.1 and α = 0.2, Scheme 3 can actually
achieve code rates higher than the theoretical upper-
bound for independent sources over the same channel,
which demonstrates the advantage of optimizing the code
for the joint distribution of the sources. Figure 11 shows
the decoding error probability of the three schemes,
as a function of α. As expected, the codes optimized
for the joint distribution of the sources yields the best

Table 1 Degree profiles for LDPC codes generated by the proposed design algorithm

σ 2

0.3 0.4 0.5 0.6

ρ(x) x9 x8 x7 x6

λ(x) 0.284x + 0.3124x2 0.3012x + 0.3321x2 0.3111x + 0.3544x2 0.4411x + 0.4235x2

+0.0222x4 + 0.1344x7 +0.0982x3 + 0.1322x10 +0.1655x3 + 0.0786x11 0.0233x17 + 0.0321x17

+0.0977x8 + 0.1277x19 +0.1363x99 +0.0321x16 + 0.0583x99 +0.0682x99

+0.08x99

Rc 0.5614 0.5226 0.4857 0.4528

Iind 0.5014 0.4731 0.4393 0.4113

Ic 0.6328 0.6017 0.5744 0.5509

For binary sources with α = 0.1 and different channel noise levels σ 2 . Rc is the code rate, Iind = 1
2 I(X1, X2; Y|α = 0.5) is the maximum code rate achievable (channel

capacity) with independent sources, and Ic = 1
2 I(X1, X2; Y|α = 0.1) is the actual value of the joint mutual information of the DJSC code.
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Figure 9 JSC rate RJSC (channel uses per source bit) of proposed DJSC codes. σ 2 = 0.5 and codeword length is 106 bits. The theoretical
lower-bound for independent sources over the same GMAC is also shown.

performance. It can also be seen that even the codes
designed for independent sources can achieve a signifi-
cant performance improvement if the actual value of joint
probabilities of the sources are used in joint decoding.
Note that with (αdesign = 0.5,αdecode = 0.5) and (αdesign =
0.5,αdecode = αactual), the same pair of codes have been

used for all values of α. As α decreases, the improve-
ment achieved by incorporating the joint source statistics
for both code optimization and joint decoding becomes
more pronounced. Figure 12 shows the probability of
decoding error of the three schemes as a function of code-
word length n for several values of SNR of the GMAC (for
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Figure 10 Code rates (in bits per channel use) achieved by Scheme 2 and Scheme 3. The points correspond to α = 0.5 (lowest rate points),
0.4, 0.3, 0.2 and 0.1 (highest rate points). The decoding error probability is 10−6, σ 2 = 1, and the codeword length is 106 bits.
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Figure 11 Comparison of three code-design/decoding schemes at different values of inter-source correlation (codeword length is 106 bits).

a given value of SNR, the JSC rates are kept the same for
all three schemes).
It is of interest to compare the performance of the pro-

posed LDPC code constructions with the concatenated
LDGM codes reported in [9]. The use of LDGM codes
has the advantage that all bits of two GMAC input code-
words are correlated, whereas in the proposed scheme
with systematic LDPC codes, only the information bits

are correlated. However, LDGM codes have an inherent
disadvantage that they typically have a high error floor
[17]. To get around this problem, the authors in [9] have
used serial, parallel, and hybrid concatenation of LDGM
codes with interleavers, but this also increases the encod-
ing complexity. This problem is not present in the LDPC
codes. Additionally, unlike LDGM codes in [9], the degree
polynomials of the LDPC codes can be optimized to

Figure 12 The performance of three code-design/decoding schemes schemes as a function codeword length, at different channel SNR
values (α = 0.2).
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Figure 13 Comparison of the proposed LDPC codes with LDGM codes in (Figure eight of [9]); α = 0.1). The SNR gap refers to the difference
between the SNR of the actual channel for which the code is designed and the SNR corresponding to the theoretical limit for independent sources.

correlated sources, as proposed in this paper. While the
theoretical limit of SNR required to achieve a given decod-
ing error probability is not known for correlated sources,
Figure eight of [9] shows the SNR gain of LDGM codes
compared to the theoretical limit for independent sources.
In Figure 13, we compare SNR gain of proposed LDPC
codes and LDGM codes in Figure eight of [9]. The SNR
gap (in decibels) in this figure is the difference between

the channel SNR for which the code is designed and the
theoretical limit of SNR for independent sources.
While the proposed LDPC code design is aimed at DJSC

coding of correlated sources over a GMAC, they can also
be applied to channel coding of independent sources over
a GMAC, similar to [11]. Specifically, recall that DJSC
codes designed for α = 0.5 yields a channel code for
independent sources. Figure 14 compares performance

Figure 14 Channel coding of independent sources over a GMAC: comparison of proposed LDPC codes designs with those reported in
(Figure three of [11]). Rc is the code rate.
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Table 2 Degree profiles for LDPC codes used in Figure 14

Code rate Rc

0.3 0.5 0.6

ρ(x) 0.3x7 + 0.7x8 0.3x7 + 0.7x8 0.29x7 + 0.71x8

0.145x + 0.231x2 0.308x + 0.282x2 0.398x + 0.321x2

λ(x) +0.154x3 + 0.086x5 +0.121x3 + 0.176x6 0.021x3 + 0.179x4

+0.055x11 + 0.329x48 +0.021x22 + +0.092x48 +0.032x40 + +0.049x48

of channel code designed in this manner with that of the
codes reported in (Figure 3 of [11]). The degree profiles
of the LDPC codes are given in Table 2. For example, the
proposed code designs achieve a coding gain of ≈ 0.2 dB
at a decoding error probability of 10−3 for all coding rates
considered here. While the approach in [11] is also based
on a combined factor graph for two codes, the improved
performance of the codes proposed in this paper is due
to more accurate approximation of the density functions
of the outgoing messages from SCF nodes as discussed in
Section 4.

6 Conclusions
An approach to designing a DJSC code with symmetric
rates for a pair of correlated binary sources transmitted
over a GMAC, based on SI-LDPC codes has been devel-
oped. For EXIT analysis of the joint BP decoder for two
sources, the accurate modeling of the density function
of the outgoing LLRs from factor nodes in the com-
bined factor graph of two LDPC codes, which represent
the joint source probabilities and GMAC output condi-
tional density (SCF nodes), has been investigated. While a
tractable analytical expression appears difficult to obtain,
a numerical method appropriate for EXIT analysis has
been proposed for fitting a Gaussian or Gaussian mixture
to model the density function of outgoing LLRs from SCF
nodes. Experimental results are presented which show
that SI-LDPC codes designed with this approach outper-
form previously reported DJSC codes. Furthermore, these
results demonstrate that, for strongly dependent sources,
the proposed DJSC code can achieve code rates higher
than the theoretical upper-bound for independent sources
over the same GMAC.

Appendix

Sincem(2)
s→v = log P(x(2)

i =+1)
P(x(

i2)=−1)
, we have

L(2)
i = P(x(2)

i = +1)
P(x(2)

i = −1)
= em

(2)
s→v .

Also, define Pj,k = P(x(1)
i = j, x(2)

i = k) where j, k ∈
{−1,+1}. It follows that,

P1,1 = P(x(2)
i = +1)P(x(1)

i = +1|x(2)
i = +1)

= P(x(2)
i = +1)(1 − α),

and similarly P1,−1 = P(x(2)
i = −1)α, P−1,1 = P(x(2)

i =
+1)α, and P−1,−1 = P(x(2)

i = −1)(1 − α). Now consider

p(x(1)
i = +1|yi)

= p(x(1)
i = +1, yi)
p( yi)

= p( yi, x(1)
i =+1, x(2)

i =+1)+p( yi, x(1)
i =+1, x(2)

i =−1)
p( yi)

= p( yi|x(1)
i =+1, x(2)

i =+1)P1,1+p( yi|x(1)
i =+1, x(2)

i =−1)P1,−1
p( yi)

= q1,1( yi)P1,1 + q1,−1( yi)P1,−1
p( yi)

.

Similarly, it can be shown that

p(x(1)
i = −1|yi) = q−1,1( yi)P−1,1 + q−1,−1( yi)P−1,−1

p( yi)
.

Therefore

p(x(1)
i = +1|yi)

p(x(1)
i = −1|yi)

= q1,1( yi)P1,1 + q1,−1( yi)P1,−1
q−1,1( yi)P−1,1 + q−1,−1( yi)P−1,−1

= q1,1( yi)P(x(2)
i = +1)(1 − α) + q1,−1( yi)P(x(2)

i = −1)α
q−1,1( yi)P(x(2)

i = +1)α + q−1,−1( yi)P(x(2)
i = −1)(1 − α)

= q1,1( yi)L(2)
i (1 − α) + q1,−1( yi)α

q−1,1( yi)L(2)
i α + q−1,−1( yi)(1 − α)

from which (9) follows.
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