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Abstract

This work addresses opportunistic distributed multiuser scheduling in the presence of a fixed packet deadline delay
constraint. A threshold-based scheduling scheme is proposed which uses the instantaneous channel gain and
buffering time of the individual packets to schedule a group of users simultaneously in order to minimize the average
system energy consumption while fulfilling the deadline delay constraint for every packet. The multiuser environment
is modeled as a continuum of interference such that the optimization can be performed for each buffered packet
separately by using a Markov chain where the states represent the waiting time of each buffered packet. We analyze
the proposed scheme in the large user limit and demonstrate the delay-energy trade-off exhibited by the scheme. We
show that the multiuser scheduling can be broken into a packet-based scheduling problem in the large user limit and
the packet scheduling decisions are independent of the deadline delay distribution of the packets.
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1 Introduction

We consider a wireless communication system with K
users and a single central base station. Each user is sub-
ject to both time-varying frequency-selective fading and
position-dependent path loss. This setting was addressed
before in, e.g., [1], where proportional fair scheduling was
compared to hard fair scheduling. While proportional fair
scheduler [2] does not guarantee any upper bound on
the delay of a data packet, hard fair scheduling enforces
that each data packet is scheduled instantaneously. Packet
delay can further be classified into average tolerable delay
and maximum tolerable delay. This work focuses on the
later definition of delay which is also called packet dead-
line.

In a practical system, information will be outdated
after a certain delay time has passed and scheduling an
outdated packet will be obsolete. There are two proper
approaches to deal with the fact that packets become
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outdated: Either to drop them if they have not been sched-
uled in time or to force their transmission if they are
reaching their deadline. Which way is more appropriate
to go depends on the particular application, i.e. on the
potential damage caused by a lost packet. In both cases,
there is a trade-off between delay, throughput and power
consumption.

Reference [3] deals with the trade-offs between aver-
age delay and average power. Reference [4] uses mul-
tiuser diversity to provide statistical quality of service
(QoS) in terms of data rate, delay bound, and delay
bound violation probability. In [5], an exact solution
for the average packet delay under the optimal offline
scheduler is presented when an asymmetry property of
packet inter-arrival times and packet inter-transmission
times holds. Online scheduling algorithms that assume no
future packet arrival information are discussed as well.
Their performances are comparable to those of the offline
schedulers which assume identically and independently
distributed inter-arrival times. The results of [3] have been
extended to the multiuser context in [6]. It is found that to
achieve an average power within the O(1/V) of the min-
imum power required for network stability, there must
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be an average queuing delay greater or equal to Q(v/V),
where V' > 0 is a control parameter.

In [7], the authors consider the energy minimization
problem for packet deadline-constrained applications.
The channel of each user is discretized to one of a
finite number of states. They consider two cases of rate-
power curves. For both the cases, they obtain dynamic
programming-based optimal solutions. When the rate-
power relation is linear, they obtain a threshold-based
scheduler which follows the optimal stopping theory for-
mulation in [8]. For the case of a convex rate-power curve,
a heuristic algorithm is proposed which gives a solution
quite close to the optimal. A similar approach is applied
in [9] where the authors consider the same problem for
a point-to-point network. They consider a packet of B
bits which has to be transmitted within the hard deadline
of N time slots. During the transmission of the packet,
no other packets are scheduled. The authors obtain close
form expressions for the optimal policy only for the case
N = 2 using dynamic programming. For N > 2, the opti-
mal policy is numerically determined. It should be noted
that the optimal solution is obtained only when either
the rate-power curve is linear [7] or scheduling of a sin-
gle packet is considered [9] following the framework of
optimal stopping theory.

The problems of finding optimum solutions and the
need for dynamic programming result from the interde-
pendence of the users’ scheduling decisions. However, as
the number of users becomes large, the instantaneous
effect of the other users converges to its statistical average
and optimum scheduling decisions can be made by each
user individually without considering the fading states and
queue lengths of the other users. In this context, this
principle was first reported in [10]. It runs under vari-
ous names in literature, e.g., large-system limit, mean-field
approach, self-averaging, etc. For a more general discus-
sion on the range of its applicability, see, e.g., [11,12].
The many-user limit was applied in [13] and an algo-
rithm called opportunistic superpositioning (OSP) was
proposed to provide all users their desired average data
rates while guaranteeing a certain average delay. The
average delay of the users is inversely proportional to
the scheduling probability and the scheduling thresh-
old is used to control the delay. In the many-user limit,
it is shown analytically that the required power can be
made arbitrarily small at the expense of increased average
delay.

In contrast to [13] and most other works discussed
above, this paper addresses a system with a strict packet
deadline (and not average) delay constraint. The packet
deadline delay varies from packet to packet. The aim is
to minimize the system energy while obeying the packet
deadline delay constraint for each arriving packet. We first
address the many-user limit where scheduling decisions
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can be taken based on each user’s own queue without loss
of optimality. In this context, scheduling is not restricted
to schedule one user at a time, but to schedule a finite
fraction of the users, which experience favorable channel
conditions and/or whose packets are close to their dead-
line, simultaneously. Though these users interfere with
each other, they can be separated by means of superpo-
sition coding. Their effects onto each other decouple in
the many-user limit and we can reformulate the multiuser
scheduling problem as an equivalent single-user schedul-
ing problem following the lines of thought in [14]. To the
best of our knowledge, packet deadline-based scheduling
has not been addressed in multiuser settings before. We
apply the scheduling strategy which we find optimum in
the many-user limit to the finite-user case and show that
it, though suboptimum there, performs very well. We gen-
eralize the approach in [15], where an identical deadline
is assumed for all the arriving packets and the simpli-
fied multiuser scheduler is limited to the policy of either
scheduling all the buffered packets (simultaneously) or
waiting for the next time slot. In this work, we provide
a complete mathematical framework for the energy opti-
mal packet-based scheduling and analyze the proposed
scheme using Markov chain in the many-user limit. We
show analytically that the scheduling decisions are inde-
pendent of the deadline distribution but system energy
depends on the deadline distribution. We discuss stochas-
tic optimization techniques for optimization and show
that the complexity in computing the thresholds remains
acceptable.

The remainder of this paper is organized as follows:
Section 2 describes the system model and Section 3
addresses the many-user considerations used in this work.
The proposed multiuser scheduling scheme is presented
in Section 4. The steady-state analysis of the queue is
discussed in Section 5. We discuss the optimization pro-
cedure for the proposed scheme in Section 6. In Section 7,
implementation issues of the proposed scheme are con-
sidered while numerical results are presented in Section 8.
Section 9 concludes with the main results and contribu-
tions of this paper.

2 System model

We consider a multiple-access system with K users ran-
domly placed within a certain geographical area. Each
user is provided a certain fraction of the resources avail-
able to the system. We consider a time-slotted system.
Arrivals occur at the start of a time slot and are queued
in a finite buffer before transmission. Scheduling is per-
formed at the end of a time slot taking into account
the new arrivals within the current time slot. We con-
sider an uplink (reverse link) scenario but the results
can be generalized to a downlink (forward link) scenario
in a straightforward manner using the multiple-access
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broadcast duality of the Gaussian channel [16] and the fact
that scheduling decisions decouple in the many-user limit.

2.1 Channel model
The fading environment of the multi-access system is
described as follows. We model the frequency-selective
short-term fading by a multi-band channel with indepen-
dent Rayleigh fading within each band. Each user k experi-
ences a channel gain gx(¢) in slot ¢£. The channel gain g (¢)
is the product of path gain s; and short-term fading f; ()
i.e. gr(t) = sifr(¢). Path loss and short-term fading are
assumed to be independent. The path gain is a function of
the distance between the transmitter and the receiver and
we assume it not to change within the time-scales con-
sidered in this work. Short-term fading depends on the
scattering environment and occurs when the coherence
time of the channel is shorter than the delay requirement
of the application. Short-term fading changes from slot
to slot for every user and is independent and identically
distributed across both users and slots but remains con-
stant within each single transmission. This model is often
referred to as block fading. For a multi-band system with
M channels, short-term fading over the best channel is
represented by fi (£) = max k(l)(t),fk(z) ®),... ,fk(M) (0}
Ef (t) and Ei(¢) respectively represent the received and
the transmitted energy per symbol of each user & such that

EX W) = sk OEc (). (1)

Note that the distribution of gi(¢) differs from user
to user. Let Ny denote the noise power spectral density.
The channel state information is assumed to be known
at both the transmitter and the receiver side. This can be
accomplished by channel estimation on the opposite link
(downlink) in time-division duplex systems or by commu-
nication of explicit side information within the coherence
time of the channel.

2.2 Physical layer communication

It is mandatory to allow multiple users to be scheduled
simultaneously in the same time slot and in the same
frequency band. Otherwise, a packet deadline of a finite
number of time slots could not be met without allowing
non zero dropping probability?, as the number of packets
that have reached the deadline could exceed the number
of available frequency bands.

In our settings, there is no limit on the number of users
scheduled simultaneously thanks to many-user considera-
tions (discussed in the following); and a theoretical frame-
work with zero outage probability is considered without
loss of generality.

The simultaneously scheduled users are separated
by superposition coding. Let K, be the index set
of users to be scheduled in frequency band m. Let
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1//1(m) s, w,ﬁm), s ‘l/I(IVCnrlI be a permutation of the sched-
uled user indices for frequency band m that sorts the

channel gains in increasing order, i.e. g ym S S
1

g, om < --- < g ow . Then, the energy per symbol of

Vi Viiom

user ,Em) with rate R o> 38 scheduled by the scheduler
k

to guarantee error free communication, is given by [1,17]

No [.R,om YR
E o= —2" [2 " —1}2 P )
Vi g¢(m>

k

This energy assignment results in the minimum total
transmit energy per symbol for the scheduled users. On
the receiver side, the data from the user with the worst
channel is decoded first, treating the signals from all other
users as noise. The data from the current user is decoded
after decoding the data from the previous users whose
signals have been subtracted from the received signal.
All users are decoded by repeating this step successively.
This is the well-known successive interference cancelation
(SIC). Collisions between simultaneous transmissions are
avoided because in a multiuser environment, superposi-
tion coding and successive decoding ensure that data from
multiple users are decoded successfully without errors on
the receiver sideP.

2.3 Queuing model

At each time slot, none, one, or several packets arrive to
the queue of each user. In general, an arriving packet is
characterized by two parameters: its size and its dead-
line. Formally, the deadline is defined as the number of
time slots available at the arrival time of the packet in the
buffer before it has to be scheduled irrespective of channel
conditions.

Without loss of generality, all packets are assumed to
have a unit size. Note that larger packets can be mod-
eled as being composed of multiple virtual packets of
unit size. The deadlines of the packets are assumed to be
finite and positive but arbitrary, otherwise. We model the
arrival process by the probabilities p; that give the prob-
ability that an arriving virtual packet has deadline 7; with
i € {1...N}. The maximum size of the user’s buffer N is
a system parameter and is given by the maximum of the
deadlines t;Vi of all the packets in the system.

For each packet in a queue, a decision is made whether
it is scheduled at the present time slot or not. There is no
limit on the maximum number of (virtual) packets in the
queue. The system considered in our settings is entirely
driven by the demands of the users. Each user’s demand
on rate and delay has to be met by the system. Packet
drops or outage are strictly prohibited. Since data rate and
energy can be freely exchanged against each other, the
users’ demands can always be met with sufficient use of
energy. Though, the higher the demands of the users, the
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more energy the system will consume. However, the sys-
tem has certain degrees of freedom to reduce the energy
consumption: It can decide when a certain packet is being
transmitted within the time left to its delay deadline.
The system can decide whether to split packets into sub-
packets. These sub-packets can then be either transmitted
simultaneously, transmitted at different times, or combi-
nations of the these two options can be used. Furthermore,
the system can decide which frequency bands to use for
which user’s packets at which time. It may seem infeasi-
ble to build a system that can find the optimum strategy
to schedule each packet at the right time. However, we
will make two idealized assumptions that allow us to char-
acterize the structure of the optimum scheduling policy
up to a few parameters that can be optimized numeri-
cally. First, we assume that there exists a coding strategy
that achieves the capacity region of the Gaussian multiple-
access channel. State-of-the-art coding strategies for the
Gaussian multiple-access channel are indeed very close to
the capacity region [18,19]. Second, we assume that the
number of users and the available radio spectrum grow
asymptotically large, with the ratio of the number of users
to radio spectrum being constant. This assumption is a
good approximation for a system, where the individual
user’s data rate is much lower than the total data rate of
the system [20].

3 Large-system considerations
Consider the average energy per symbol and the total rate
of all users in all bands

1 K
Es=—) E 3)
k=1
K
R=Y "Ry (4)
k=1

respectively, and denote the average energy per bit as
Ep, = Eg/R. (5)

Total rate and energy per bit are system parameters that
must be finite and positive irrespective of the system size.
Due to (3) and (4) and many-user considerations when
K — o0,

R = O(1/K) (6)

for all users. Note that due to (6), Eg, the energy per sym-
bol for user k in (2) is a linear function of R, the rate of
user k in the many-user limit. Remarkably, this simplicity
is inherent by the system (similar to multiuser diversity)
due to the presence of large number of users in the sys-
tem and we quantify in Section 8 that a few hundred users
are enough to achieve the asymptotic results. The linearity
of the energy per symbol greatly simplifies the scheduling
decisions. Based on this, we have
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Lemma 1. In the many-user limit, scheduling decisions
in the queue of a user k can be made on a packet-by-packet
basis without loss of optimality. Furthermore, the optimal
scheduling decision does not depend on the properties of
the other packets in the same queue.

The lemma implies that we cannot save energy by
scheduling only some of several packets of a user with the
same number of remaining time slots before deadline, as
the energy costs of the packets are additive due to (6) (and
not exponential as appears in (2)). Thus, independence of
scheduling decisions for every packet remains optimal.

Additionally, we can decouple scheduling decisions
among different users based on many-user assumptions
and our discussion in Section 1 [10,11,15].

Lemma 2. In the many-user limit, scheduling decisions
can be made on a user-by-user basis without loss of opti-
mality. Furthermore, the optimal scheduling decisions for
a queue of a user do not depend on the properties of the
queues of the other users.

By applying many-user assumptions, Lemma 2 breaks
the joint multiuser scheduling problem into an equiva-
lent single user scheduling problem [15] while Lemma 1
decomposes the problem further into individual packet
deadline-dependent scheduling.

3.1 State space model

In the following, we develop a Markov decision pro-
cess (MDP)-based model for the scheduling of deadline-
dependent packets. We define the state of the MDP as
the number of time slots remaining before a packet (vir-
tual user) has to be scheduled irrespective of the fading
conditions. The definition of the state appears to be very
similar to the definition of the deadline in Section 2.3.
However, the deadline is a system parameter associ-
ated with a packet at the time of arrival and is fixed.
The state of a packet varies over the period of time
it spends in the buffer. At the start of the MDP pro-
cess, the state equals the deadline. In each subsequent
time slot, if the packet is not scheduled, it decreases
by one until it reaches one. The system parameter N
defined in Section 2.3 determines the size of the Markov
chain.

With a modest amount of foresight, let us decompose
all the packets queued with each user into N virtual users:
one virtual user for each state. Note that all packets in the
buffer of a virtual user have the same state and there is
no limit on the size of the buffer for a virtual user. Every
newly arriving packet with deadline 7; is put into the buffer
of the ith virtual user. The schematic diagram for a two-
dimensional buffer for a user’s buffer has been shown in
Figure 1.
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Figure 1 Schematic diagram for the buffer of a user which
consists of N virtual buffers (users) of infinite size.

When being scheduled, the virtual buffer is emptied
at once. The scheduling decision of the virtual buffer is
explained in the next section. The rate of a virtual user
correlates with its fading. The better a user’s channel, the
higher the probability that the rate is non-zero. Let us now
introduce decision variables dy ; for all virtual users (k, i)
that indicate whether the packets of the virtual user (k, i)
are scheduled. Then, conditioned on dy ;, k=1..K,i=1..N,
the rates of the virtual users are independent of their fad-
ing. Due to this conditional independence, we have in the
many-user limit (K — oo) [1]

o0

Eb 2R Pg\d:l (%)

N log(2) / — dPgy—1 (%) (7)
0

where Pg4—1(x) denotes the distribution of the fading of
the scheduled virtual users. Remarkably, the rates of the
users affect (7) only via its total sum R.

4 Threshold based scheduling scheme

Scheduling is a decision process. We adopt a fading
threshold-based policy which quantizes the fading vector
into a finite number of intervals. These intervals depend
on the state of the packet and the fading distribution. We
introduce (quantized fading states) thresholds to deter-
mine whether a packet (virtual buffer) with a state i is
scheduled or not. These thresholds may depend on all sys-
tem variables in general. However, in the many-user limit,
they will depend only on each user’s own parameters, i.e.
fading and state.

Definition 1 (Transmission threshold). A transmission
threshold «; is defined as the minimum short-term fading
value allowing for scheduling a packet (virtual user) with
state i.

Note that scheduling decisions only depend on the
short-term fading. This is easily proven by contradiction.

Page 5of 16

Imagine scheduling decisions would depend on the path
loss. This would not lead to unstable queues due to
the hard deadline constraint. However, it would cause a
greater average delay of users with worse path loss com-
pared to users with better path loss. In fact, the path
loss would be reflected as a bias in the average queuing
time of packets and such a bias reduces the dynam-
ics of the scheduling process. This is clearly an adverse
effect.

Next, we state a few fundamental properties of these
transmission thresholds.

Property 1. There is no minimum fading value required
to schedule a packet that has reached its deadline, i.e.

ko = 0. (8)

This ensures that the hard deadline is kept regardless of
the channel quality®.

Property 2. The closer the packets are to the deadline,
the more likely they are to be scheduled, i.e.

Ki+1 > Ki Vi. (9)

This is evident from the construction of the prob-
lem that the probability of scheduling of a packet must
be increased as it comes close to the deadline which is
achieved by reducing the channel-dependent threshold
with decreasing state i.

In order to ease notation, we introduce an additional
state N + 1. We model the packet being in that state when
it is not in the queue, i.e. before it has arrived and after it
has been scheduled.

The probabilities of the state transitions Tni1—, Vi
model the statistics of the random arrival process

any1-i =Pr(Tnt1-) =pi  VY1I<i<N (10)

where p; denotes the probability that an arriving packet
has deadline t;, cf. Section 2.3. A packet with deadline
7, < 7ty is inserted directly into state i and treated as
a packet that arrived in the buffer with deadline 7y but
has not been scheduled for N — i time slots. This reduces
degrees of freedom available for the packet and results in
high energy cost.

The probabilities of the state transitions T;_, y+1, Vi are
determined by the transmission thresholds as follows

VI<i<N,
(11)

isN+1 = Pr(Tisny1) = Pr(f > «;)

where f denotes the short-term fading as explained in
Section 2.1. We remove subscript k as all the users have
identical fading distribution.
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o N+1 are the probabilities of being scheduled, while

i1 =Pr(Tisi—1) =Pr(f < «;) 12)
=1-DPr(Tions1) VYl<i<N
are the probabilities of being not scheduled. All other state
transitions are impossible. A state transition diagram is
depicted in Figure 2.

5 Distribution of packet deadlines

Our modeling of the problem ensures that the schedul-
ing decisions and the thresholds are independent of the
deadline distribution of the packets. However, the average
system energy expenditure depends on the deadline distri-
bution. In the limiting case K — 00, the empirical average
of the arrival rate converges uniformly to its expectation
A = R/K. However, the buffer occupancy of the scheduled
states is not uniform and depends on the deadline and
fading distributions. A variable buffer occupancy model
helps us in understanding the energy behavior of the sys-
tem as a function of deadline distribution of the arriving
packets and the fading distribution. For example, a large
value of p; means more degree of freedom in schedul-
ing and small energy expenditure while large value of
pn implies strict latency requirements and large energy
expenditure.

Let us consider the buffer occupancies for the different
states in the limiting case K — 00: The average number of
packets getting into state i must equal the average number
of packets getting out of that state. Thus, we have for i <
N

Pir + aip15ilip1 = L; (13)
with
LN = pN)\. (14')
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where L; is the average number of virtual packets in state
i. The steady-state probability that a packet in the queue is
in state i is thus given by

L.
= fl (15)
i\
= l% + Qi1 (16)
A N n
= Z an 1_[ Um—m—1 (17)
n=i m=i+1
where we define n+; = 0 and
N
L=Y"IL (18)
i=1

for notational convenienced. With these steady-state
probabilities, the distribution of the fading of the sched-
uled users can be calculated. Furthermore, we note that

L

. (19)

is the ratio of packets in the queue to the number of
packets arriving. This is the average delay of the system.

6 Threshold optimization

Next, we would like to optimize the transmission thresh-
olds. Our objective is to minimize the average transmitted
energy per symbol given in (7) for the constraint that
every packet is scheduled before reaching the deadline.
Energy per symbol depends solely on the channel distri-
bution Py, (.) of the scheduled virtual users (SVUs). The
channel distribution of SVUs is a function of transmis-
sion thresholds or transition probabilities (interchange-
ably) and computed in the following based on the MDP
model developed in the previous section.

Pna

ﬂ N
o

N-1-N+l1

Figure 2 State diagram of proposed scheduling scheme where every state i # N+ 1 represents distance of buffered packet from deadline.




Butt et al. EURASIP Journal on Wireless Communications and Networking 2014, 2014:65

http://jwcn.eurasipjournals.com/content/2014/1/65

Equivalently, we formulate the optimization problem as,

. Ep
min —

20
ae Ny (20)

C1:0<ajsn41<1 1<i<N

N+1
subject to : 1Cs : Z .
=

IA

aij=1 1<i<N,1<j<N+1

C3:a1nt1 =1
(21)

where @ =[an_nN+1- - o01-n+1] and © defines the pos-
sible vector space for @ with @ containing all the transition
probabilities representing scheduling of a packet (decision
variables). C; and C, follow the properties of homoge-
nous Markov chain while C3 results from Property 1 of
transmission thresholds. For the optimized o?*, the corre-
sponding transmission threshold vector «k* = (kR ... k7]
can be computed using (11) and vice versa.

To compute the solution of the optimization problem,
we need to express the probability distribution of the
fading of SVUs Pg|4—1 (-) in (7) in terms of .

Using Bayes’ law, the probability density function (pdf)
of the short-term fading of the SVUs is given by

Prd=1|f =y)
Prla=10) = pr () Thd=1 (22)
N
> mil(y = ki) pr(y)
== (23)
[ Y- 71y = 1) dPy(y)
i=1
N
> iy = «i) pr(y)
== (24)

N
11— 7 Prxy)
i-1

where the denominator results from integration by parts
and 1(-) is 1 if the argument is true and 0 if the argument
is false. Using integration by parts once more, we find the
CDF as

N
> mil(y = ki) [Pr(») — Pr(k)]
Pfia1 () = = <
1— > 7 Prks)

i=1

(25)

Using standard methods for calculating the distribution
of the product of two independent random variables,
Pgia=1(y) is calculated in the Appendix from (24) and the
CDF of the path loss.

The energy in (7) is not a convex function of the
transmission thresholds. In the following, we discuss two
heuristic optimization techniques to compute transmis-
sion thresholds.
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6.1 Optimization by simulated annealing
We choose to use the simulated annealing (SA) algo-
rithm to optimize the energy function for the trans-
mission thresholds that result in the minimum energy
for a given deadline delay parameter. The simulated
annealing algorithm was proposed in [21] and [22] sep-
arately. It uses ideas from statistical mechanics to solve
combinational problems. It is believed to provide near-
optimal solutions (even optimal) in many combinatorial
problems.

The main components of the simulated annealing algo-
rithm are described briefly here.

1. Objective function
In this work, the objective function is the system
energy as given in (7).

2. Description of the configuration of the system
It is essential to provide a clear description of the
configuration of the system. In our case, the vector &
is the parameter which represents the configuration
of the system at a particular instant. The transmission
thresholds are related to the transition probabilities
for a given deadline and short-term fading.

3. A random generator for the new configuration
At the start of the algorithm, any configuration can
be provided. In the next step, there must be a suitable
method to provide a random change in the
configuration. In this work, transition probability
vector & is varied in each step to provide a new
configuration to evaluate (7).

4. A cooling temperature schedule
The system is ‘heated’ at high temperature T at the
start of the algorithm. Afterwards, the temperature is
decreased slowly up to the point where the system
‘freezes’. The term heating and cooling originate in
statistical thermodynamics where freezing of the
system represents a situation where the system
reaches a near-optimal solution and no further state®
transitions occur for further decrease of the
temperature parameter. The cooling schedule
depends on the specific problem and can be
developed after certain experiments. In our
simulations, we tested both Boltzmann annealing
(BA) and fast annealing (FA) temperature cooling
schedules which have been proven to provide global
minimum solutions for a wide range of problems
[23,24]. In FA, it is sufficient to decrease the
temperature linearly in each step q such that,

Ty

T, =
7 g+1

(26)

where T is a suitable starting temperature. Similarly
in BA, global minima can be found sufficiently (in
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many problems) if temperature decreases
logarithmically such that,

To
Ty=—
In(g + 1)

5. Acceptance probability
Any new configuration in SA is accepted if it results
in a lower system energy with probability 1. A change
in energy in each step is denoted by AE. Any new
state is accepted with probability AE/T if it results in
a higher energy state and it is referred to as muting.

27)
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Muting occurs frequently at the start of the
algorithm and vanishes to happen as the temperature
T approaches zero.

Using the SA algorithm, an optimal vector a* s
obtained for a given N. The muting step makes it
likely that local minima are avoided in the optimiza-
tion process by moving into higher energy solutions
with some temperature-dependent probability. Flow chart
for SA algorithm for computation of thresholds has
been shown in Figure 3. Numerical results for the

START
Atinitial temperature with
random a.vector and energy E
and setthema*and E*

’> Generate randomized o
vector and evaluate energy E

No

Decrease

temperature '
- according to the N

schedule

Figure 3 Flow chart for implementation of SA for optimization of thresholds.

eached maximu
number for randomized o
vector generations for
urrent temerature?

Yes

Lowertemperature
bound reached?

STOP

Return optimized
vector o and energy E*

Yesmsl

Yes!
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optimization process using SA algorithm are discussed in
Section 8.

6.2 Optimization by recursion

This approach stems from the dynamic programming
area where recursive optimization is used to compute
the thresholds for problems belonging to optimal stop-
ping theory. The optimized transmission threshold vector
is found using a recursive procedure explained in the
following:

1. Start the optimization procedure for N = 2 such that
the optimization is a scalar problem and we only
need to find the threshold kx since k1 = 0.

2. Given the optimized threshold vectorf for N; i.e.
K*(N) = [i5(N), k5 (N), ... ., k3 (N), 0], we find
the threshold vector for the deadline N + 1 by the
heuristic postulate k*(N + 1) = [k;(N + 1), ic* (N)]
and optimize over k(N + 1). Again, this is a scalar
optimization problem.

The postulate k*(N + 1) =[x (N + 1), c*(N)] helps
to reduce complexity for computation of thresholds sig-
nificantly. In SA, computation complexity for computing
thresholds is O(N) while recursive method requires just
one additional threshold as N — 1 thresholds are known.
We show in Section 8 that the results produced by both of
the heuristic algorithms are indistinguishable.

7 Implementation considerations

The proposed scheme solves the optimization problem
offline as a function of the channel statistics and state for
each buffered packet. The offline optimization task can
be performed locally by the users and needs no central-
ized control since it only involves the fading statistics, but
not the fading realizations. However, a centralized opti-
mization would save complexity, since the outcome of
the optimization is identical for all users. Similarly, the
scheduling decisions can fully be taken by each user indi-
vidually. However, the powers required by the users to
transmit their packets depend on the ordering of the suc-
cessive decoding. For a finite user system, it is not possible
for the users to get the exact knowledge of the required
transmit power to provide the rate. Therefore, the users
need to transmit with a power margin. The average excess
power of the users should vanish in the many-user limit
such that the system obeys (7). This does not happen if
successive decoding is used. However, joint decoding does
not suffer from this problem as all the users are decoded at
the same time (without a specific order). Thus, for succes-
sive decoding, there is a need for a centralized assignment
of the transmit powers. If the number of scheduled users,
however, is very large and joint decoding is employed,
the users can calculate their transmit powers individu-
ally by closely approximating the empirical fading and
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rate distributions of the other scheduled users by their
statistical averages following the ideas of [10]. With the
application of joint decoding, the proposed scheme has
the potential to be implemented in a distributed manner.

The simplicity in making the scheduling decisions based
on comparing the offline computed thresholds with chan-
nel conditions is well-suited to delay sensitive applications
and power-limited devices. By using the parameter t;
and the deadline distribution, we can control the energy-
delay trade-off. A large value of 7; (and corresponding
large p;) implies that the application data is more delay
tolerant and the energy consumption will be closer to
the energy consumption of the schemes without deadline
delay guarantees.

8 Numerical results

We consider a multiple-access channel with M bands and
assume that the short-term fading of the channels is sta-
tistically independent. Every user senses M channels and
selects its best channel as the candidate for transmission.
Therefore, a specific user is scheduled if its best chan-
nel is greater than the transmission threshold. This is
the optimal multi-band allocation for the hard fairness
asymptotic case [1]. Spectral efficiency is normalized by
M to get spectral efficiency per channel C. We consider a
system where users are placed uniformly at random in a
cell except for a forbidden region around the access point
of radius § = 0.01. The path loss is monomial with expo-
nent 2. All users experience fast fading with exponential
power distribution with unit mean on each of the M chan-
nels. The details of the path loss model can be found in the
Appendix.

For all numerical results, the SA algorithm used 50
random configurations per temperature iteration. For a
single-channel scheduler and a target spectral efficiency
of C = 0.5 bits/s/Hz, the thresholds optimized with SA
are shown in Table 1. The corresponding recursively com-
puted threshold values are shown in Table 2. We find
insignificant energy differences in the results computed
by the two heuristic algorithms. This is easily understood
due to the minor (and no) differences in the threshold
assignments resulting from the two methods. Clearly, the
recursive algorithm is preferable due to its significantly
lower complexity.

Figures 4 and 5 show the statistics for the SA algorithm
with the FA temperature cooling schedule. As explained in

Table 1 Thresholds computed via SA

N K4 K3 5] K (Ep/No)sys
2 - - 0.24 0 —142dB
3 - 0.54 0.23 0 —3.06dB
4 0.76 0.59 0.22 0 —4.07 dB
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Table 2 Recursively computed thresholds

N K4 K3 ) K1 (Ep/No)sys
2 - - 0.24 0 —142dB
3 - 0.52 0.24 0 —3.05dB
4 0.75 0.52 0.24 0 —4.08 dB

Section 6.1, mutations occur with 100% probability at the
start and then their frequency decreases with every iter-
ation. Similarly, energy updates are more frequent at the
start. Once the system finds the minimum energy solu-
tion, no more updates occur in spite of the occurrence
of muting. It should be noted that statistics can differ a
bit for different cooling schedules (like BA) and differ-
ent configuration schedules, but the final results remain
unaffected.

Figure 6 demonstrates the average system energy for
a delay limited system. As the deadline of transmis-
sion for the packets increases, the average system energy
decreases. Obviously, a trade-off between delay tolerance
and energy consumption occurs which is more noticeable
at smaller spectral efficiencies. Moreover, savings in sys-
tem energy are more pronounced when N varies from 1
to 2 as compared to the case when N varies from 4 to 5.
This effect is similar to time diversity where performance
improvement is more pronounced at the addition of a few
initial degrees of diversity.

Figure 7 demonstrates the effect of frequency diversity
on the proposed scheduler for N =2. A unique set of thres-
holds need to be optimized for a specific number of chan-
nels as optimal thresholds change with the number of
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channels. As explained in the system model, a user selects
his best channel as a candidate for transmission and makes
scheduling decisions by comparing the best channel with
the thresholds. If there are more channels available for
selection, the best channel (maximum value) improves
with the number of the channels which in turn helps to
reduce energy expenditure for the user. Thus, the number
of channels provides an additional degree of freedom to
further improve the energy consumption of the system.
Figure 8 shows the effect of finite number of users on the
scheduler for a system with M = 10 for both constant and
random arrivals. The results are obtained by varying the
number of users in (2) which is a finite user approxima-
tion of the asymptotic expression in (7). For the numerical
results, 250 simulations with different fading values have
been performed for a single path loss. For a fixed num-
ber of users and iterations, we compute and compare
the variance of the system energy for the cases of con-
stant and random arrivals. We used a Bernoulli random
arrival process in this example. The variance of the system
energy for both constant and random arrivals decreases
fastly as the number of users increases. For the same num-
ber of users, the variance for the constant arrival process
and the Bernoulli process with arrival probability Parys =
0.7 is much smaller as compared to the variance for the
Bernoulli process with arrival probability P,y = 0.1. As
the arrival probability decreases, the variance of the sys-
tem energy with random arrivals decreases slowly with the
number of users. This is due to the fact that the system
energy converges to its mean value when approximately
the same amount of data is scheduled in every time slot.

100

90

Muting %

0 20 40
Temperature Iterations

Figure 4 Muting update statistics for BA cooling schedule.

| I Muting % in SA

60 80 100
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Obviously, a decrease in arrival probability results in a
decrease in the amount of scheduled data and requires a
larger number of users to compensate for this effect.
Figure 9 demonstrates the delay-energy trade-off for
a single channel system when the arriving packets have
non-identical deadlines. We evaluate the system perfor-
mance at different spectral efficiencies. As the proportion
of the packets with tight deadline constraints increases,

the average system energy increases correspondingly as
explained in Section 5. This effect is more pronounced at
small spectral efficiencies.

We compare our scheduling scheme with the propor-
tional fairness scheduler (PFS) proposed in [2]. PFS does
not provide any deadline guarantees. In PFS, the multiuser
diversity gain scales with the number of users per chan-
nel K/M present in the system while there is no deadline

14

C =0.01 bits/s/Hz |
—#— C =1 bits/s/Hz
—6— C = 6 bits/s/Hz
—<— C =10 bits/s/Hz

Figure 6 The delay-energy behavior for the proposed scheduling scheme for a single channel system.
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Figure 7 Impact of increase in number of channels on energy efficiency for the scheduling scheme.

delay constraint for the buffered packets. In our scheme,
the multiuser diversity gain scales with the number of time
slots available before reaching the deadline N while the
number of users is asymptotically large. We refer to the
parameters K/M and N as the degrees of freedom for
the respective schemes. For a somehow fair comparison,
we compare the two schemes for equal average delay in
Figure 10. We use a Poisson arrival process for the eval-
uation of the delay behavior for both schemes. Figure 10

illustrates the average delay behavior of both schemes.
The average delay of both PFS and our scheme scales
linearly with increasing K/M and N, respectively. How-
ever, the average delay grows at a faster rate for PFS as
compared to our scheme. Figure 11 compares the spec-
tral efficiency of the two schemes. In general, PFS shows
better results as compared to our scheme at small spec-
tral efficiencies for the same degrees of freedom. However,
our scheme outperforms PFS at large spectral efficiencies.

Var(Eb/ N 0)[d B]

—<— Constant Arrivals
- -P an™ 0.7
— % - P an™ 0.1 5

500

1000
Number of users

2,000 5,000

Figure 8 Effect of increase in number of users for the scheduling scheme with M = 10.
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Figure 9 The arriving packets have deadline distances of 1 and 2 where p; = 1 — p;. The results demonstrate the effect when probability of
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For example, it beats PFS at C = 2.3 bits/s/Hz when the
respective number of degrees of freedom equals 5. Fur-
thermore, a comparison of the two schemes at the same
average delay reveals further drawbacks of PFS. For exam-
ple, we compare the two schemes for M = 10 and average
delay of 2.5 time slots. PFS achieves this average delay at
K/M = 2 (K = 20) while our scheme requires a deadline
of N = 5 time slots as shown in Figure 10. A comparison

of PFS with K/M = 2 to our scheme with N = 5 in
Figure 11 shows that our scheme is able to beat PFS at
even lower spectral efficiencies (1.5 bits/s/Hz as compared
to 2.3 bits/s/Hz for equal degrees of freedom). At low
spectral efficiency, PFS achieves better multiuser diversity
gain as compared to delay-limited schemes and the cost of
imposing delay constraint is high [1]. Thus, our scheme is
more energy efficient than PFS at high spectral efficiencies

Deadline
61 2 3 4 5 6,
——PFS,M=10
5.5F - - -PFS,M=1 | ;¢
> .
5r 7 7 415
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7
i 7 14.5
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2f st I 42
P R
157 1 15
’ - - ~ | —— Deadline based scheduler, M = 10|
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Figure 10 Comparison of PFS and our deadline-dependent scheduler in terms of average delay. Spectral efficiency C equals 0.5 bits/s/Hz.
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Figure 11 Comparison of PFS and our deadline dependent scheduler in terms of average system energy.
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while it also provides better average delay performance at
the same degrees of freedom.

9 Conclusion

We have proposed an energy efficient opportunistic mul-
tiuser scheduling scheme in the presence of a hard
deadline delay constraint for the individual packets. The
proposed scheme schedules the data depending on the
instantaneous short-term fading and transmission dead-
line of the packets and exploits good channel conditions to
make the system energy efficient. The many-user analysis
and MDP modeling of the proposed scheme is the major
contribution of this work. The many-user model helps to
compute solution for the case of convex rate-power curve.
Our system modeling ensures that the multiuser schedul-
ing can be broken into a packet-based scheduling problem
in the many-user limit. Though threshold optimization
for the packet transmission is not a convex optimization
problem, it can be solved within small margins of opti-
mality with quite low complexity. We show that random
arrivals can be modeled as constant arrivals with random
size in the many-user limit and the scheduling decisions
are independent of the deadline distribution of the arriv-
ing packets. The numerical results demonstrate that the
many-user considerations are applicable for a reasonable
network size of a few hundred users. The hard deadline
can be used as a tuning parameter by the system designer
to control the trade-off between the energy efficiency of
the system and the maximum latency tolerated by the
application.

Appendix

In this work, the channel model of [1] is used. Signal prop-
agation is characterized by a distance-dependent path loss
factor and a frequency-selective short-term fading that
depend on the scattering environment around the user
terminal. As described in Section 2, these two effects are
taken into account by letting g;" = sif;”", where s; denotes
the path loss of user k and f;" is the short-term fading of
user k in channel m.

Asin [1], we assume that users are uniformly distributed
in a geographical area but for a forbidden circular region
of radius § centered around the base station where 0 <
8 < 1is a fixed system constant. Using this model, the cdf
of path loss is given by

0 x <1
Py() = § 12050 l<x<d8®. (28
1 x>8¢

where the path loss at the cell border is normalized to one.

Frequency-selective short-term block fading is modeled
by M parallel channel which are i.i.d. For a Rayleigh chan-
nel, the distribution of f = max{f?,...,fM} is given by

Pr(y) =1 —e M (29)

Pg(x) is defined as the cdf of the random variable g =
max{g',..., g1} = smax{fl,...,fM}. As path loss and
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Rayleigh fading are statistically independent, the CDF of
the channel gain is given by

Py (x) = f Py(x/y) dPfa—1 (). (30)

Using the path loss distribution in (28), (30) is computed
as follows:

x8% x
Pyla=1(x) = / Prla=1(dy + / Ps(x/y) dPrlu—1(») (31)

0 x8%

X
/x)Z/a _ 82
= Pf|d=1(x5a)+/ (1 - ()/1_752 dPfia=1(»)
x8%
(32)
X
/x)Z/oc _ 52
= Prlg=1(x) — / ()11—782 dPriu=1(»).  (33)
x8%
Changing variables and integrating by parts yields,
xZ/ot
—2/a _ 52
_ o yx /2—1
Pga=1(*%) = Pig=1(x) — ) / W}’a
y2/as?
Pria=1 (¥*/%) dy (34)
x_2/a x2/u
= m / Pf|d=1 (yot/Z) dy (35)
x2/e 52

For o = 2, (35) can be written in closed form. Using (25)
and the Rayleigh fading model (29), (35) becomes

(1 Ly 1- e—Kf)M>1

i=0
x(1 — 62)

max{x,k;}

Pgld:l (x) =

N
—_n\M
X Zm (1 —e y)
=0 max{x82,k;}

+(1- e_"")M dy.

Following ([1], App. A), the closed form expression is
given by

<1 £S5 (1- e_"")M>_1

Pga=1(x) = ; Ox(l 5%
N
X Z T |:(max{x, Ki} — max{sz,K,'}) (1 - e_"")M
i=0
M 1 m m
+ Z - (1 _ e—max{x,/q}) _ (1 _ e—max{xzsz,/ci}> i| )
m:lm
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Endnotes

2The dropping probability is defined as the probability
that a packet cannot meet the deadline and dropped
eventually after buffering for the time slots equal to
deadline.

>The problem of error propagation in successive
decoding can easily be overcome by means of iterative
(soft) multiuser decoding [20].

¢It should be noted that it may not be feasible to
achieve deadline guarantee for every packet, e.g. due to
shadowing or power limitation. The scheme can easily be
extended to packet dropping scenario with non-zero
dropping probability [25], but avoided here to focus on
the main topic.

4t should be noted that computation of steady-state
probabilities in a MDP requires solution of state
equations with the condition ), 7; = 1. Thanks to the
tree structure of state diagram, we are able to compute
the limiting probabilities in closed form via (17).

“The state in SA refers to the configuration of the
system, i.e. the current transmission thresholds. It has no
relation with the state of the Markov process given by the
buffering time of the packet.

fPlease note that optimization can also be performed
for optimal & as in Section 6.1 and computing optimal
thresholds from a*.
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