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Abstract

In this paper, we investigate the utility-based resource allocation problem at a base station in high-speed railway
(HSR) wireless networks, jointly taking into account the power allocation along the time and the packet allocation
among services. The problem to maximize the total utility under the average power constraint is formulated as a
mixed-integer non-linear programming (MINLP) problem. Through the integer constraint relaxation, the MINLP
problem can be simplified into a convex optimization problem. The detailed analysis reveals that the relaxed problem
can be equivalently decomposed into power allocation problem along the time and packet allocation problem
among services, which can reduce the problem size. When the optimality of the relaxed problem is achieved, the
power allocation along the time and the packet allocation along the time for each service are both proportionally fair.
Since the integer relaxation causes a non-integer solution not implementable in practice, a greedy algorithm is
proposed to obtain a near-optimal integer solution of the MINLP problem. Finally, the performance of the proposed
algorithm is analyzed by simulations under realistic conditions for HSR wireless networks.
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1 Introduction

In recent years, high-speed trains are being deployed
rapidly all over the world, serving as a fast, convenient and
green public transportation system. The passengers on the
train have an increasingly high demand on multimedia
services. Meanwhile, more and more data related with the
railway controlling information needs to be transmitted
between the train and the ground in order to guaran-
tee that the train is moving safely. However, the dom-
inant wireless communication system, GSM for railway
(GSM-R), is specifically designed for train control rather
than passenger communications and can only support a
maximum data rate of 200 kbps [1]. Therefore, it is crucial
to investigate the new network architectures and trans-
mission technologies to satisfy the needs of high-speed
railway (HSR) wireless communication.

On one hand, some broadband wireless communica-
tion systems for HSR have been developed, and a review
of network architectures has been presented in [2]. The
relay-assisted HSR network architecture proposed in [1]
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and [3] becomes a promising architecture for future HSR
wireless communication [4] and was considered to be a
better choice than direct transmission in case of large
penetration loss [5]. On the other hand, there have been
some recent works to improve the transmission perfor-
mance in HSR wireless networks. The radio-over-fiber
(ROF) technology for HSR wireless networks was pro-
posed in [6], which can reduce the number of handoffs and
increase throughput effectively. Multi-input multi-output
(MIMO) technology was introduced in order to improve
the throughput performance of the HSR wireless networks
[7]. However, further investigation is needed to improve
the system performance when considering the multimedia
service transmission in HSR wireless networks.

The broadband wireless communications for HSR
should have the function of transmitting multimedia
services and enable a variety of applications such as enter-
tainment and safety. There are many types of HSR ser-
vices with different rate requirements and priorities [8].
In particular, the HSR services are classified into four
main categories [9], i.e., pure passenger internet, passen-
ger comfort services, security-related applications, and
cost-saving applications. The provisioning of wireless data
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services in a moving train is a technologically demand-
ing challenge due to the fast-varying wireless channel and
heterogeneous service requirements. Since the network
resources are limited in HSR wireless networks, in order
to take full advantage of them, the resource allocation to
the heterogeneous services should be considered. In addi-
tion, the data transmission rate is highly determined by
the transmit power and the distance between the base sta-
tion and the train, which makes it feasible to implement
power allocation along the time in HSR wireless networks
[10]. Therefore, when transmitting multiple services from
the base station to the moving train, it is necessary to
consider not only the power allocation along the time
but also the resource allocation among the services. To
the best of our knowledge, the resource allocation prob-
lem in HSR wireless networks which can jointly consider
resource allocation among services and power allocation
along time is still an open problem.

In this paper, we investigate the utility-based resource
allocation problem at a base station in HSR wireless net-
works, jointly taking into account the power allocation
along time and the packet allocation among services.
This optimization problem is formulated as a mixed-
integer non-linear programming (MINLP) problem with
the objective to maximize the total utility at a base station
under the average power constraint. The MINLP problem
is in general non-deterministic polynomial-time (NP)-
hard [11], so the integer constraint relaxation is adopted
to obtain some engineering insights to solve it effectively.
Since the size of the relaxed problem is also large, to
further reduce the computational complexity, we develop
theoretical insights from the nature of optimal solutions
and carry out the problem transformation. It is shown that
the relaxed problem can be equivalently decomposed into
two subproblems, i.e., power allocation problem along
time and packet allocation problem among services. The
former can be solved by bisection search method with
low complexity and then the closed-form solution of the
latter can be computed by the obtained power allocation.
Moreover, the optimal solution of the relaxed problem can
achieve not only the proportional fair power allocation
along time but also the proportional fair packet allocation
along the time for each service. Since the integer relax-
ation causes a non-integer solution not implementable in
practice, a greedy algorithm is proposed to obtain a near-
optimal integer solution of the MINLP problem. Finally,
we present the analysis of the proposed algorithm perfor-
mance by simulations under realistic conditions for HSR
wireless networks.

The rest of the paper is organized as follows. In
Section 2, we review previous works in the literature
which are the most relevant to our work. Section 3
describes the system model. The problem formulation is
provided in Section 4. The problem transformation and
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a bisection search method are presented in Section 5. In
Section 6, a greedy algorithm is proposed to obtain the
integer solution. Some numerical results and discussions
are shown in Section 7. Finally, conclusions are drawn in
Section 8.

2 Related work

Resource allocation, as a critical part of radio resource
management, plays an important role in improving the
throughput and ensuring service fairness in HSR wireless
networks. Among the works related to resource alloca-
tion in HSR wireless networks, [12] proposed a schedul-
ing and resource allocation mechanism in HSR networks
with a cell array architecture, which can maximize the
service rate based on periodical signal quality changes.
Considering the intermittent network connectivity in a
cellular/infostation integrated HSR network, [13] and [14]
investigated the resource allocation problem for trans-
mitting multiple services from the ground to the train.
Different algorithms were proposed since they involved
different optimization objectives, while the transmit
power was assumed to be constant along time. In a
relay-assisted HSR network, [15] studied delay-aware fair
resource allocation problem with heterogeneous packet
arrivals and delay requirements for the HSR services.
However, the above works did not make full use of three
unique features of HSR wireless networks [16], i.e., the
deterministic moving direction, relatively steady moving
speed, and the accurate train location information.

The data transmission rate is highly determined by the
transmit power and the distance between the base sta-
tion and the train; thus, the power allocation along the
time has a large influence on transmission performance
in HSR wireless networks. Four power allocation schemes
were presented in [10] for different design objectives.
Among these schemes, to achieve a tradeoff between the
power efficiency and the fairness along the time, a propor-
tional fair power allocation scheme was proposed and its
€-optimal solution was presented. However, the schemes
proposed in [10] do not consider cross-layer design. The
forecast channels in the HSR scenario were exploited in
[17] to minimize the total transmit power along the time
under the packet deadline constraint, while only one type
of service was considered. Under the average power con-
straint in HSR wireless network, [18] investigated a joint
admission control and resource allocation problem, which
aims at maximizing the system utility while stabilizing all
transmission queues.

An effective cross-layer resource allocation is necessary
to improve the performance of wireless communication
system. The cross-layer resource allocation problem was
formulated as a utility-based resource allocation problem
in [19], where the utility function is used to define the
relationship between resource allocated to application and
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the satisfaction brought by this application. With the help
of the utility function, we present a utility-based resource
allocation framework in HSR wireless networks, which
can jointly consider the power allocation along the time
and packet allocation among services.

3 System model

In this paper, a two-hop HSR wireless network architec-
ture is considered, as shown in Figure 1. The base station
(BS) deployed along the rail line is connected to the back-
bone network via a wireline link. The relay station (RS)
with powerful antennas installed on the top of the train
is used for communicating with the BS. The RS is fur-
ther connected to the access point (AP) which can be
accessed by the users inside the train. Thus, there is a
two-hop wireless link, consisting of the BS-RS link and
the AP-users link, which has several advantages. Firstly, it
is the RS not each user to implement the handover pro-
cedure, which can achieve better handover performance
and reduce the drop-off rate significantly [4]. Secondly,
with this two-hop wireless link, signals do not penetrate
into the carriage; thus, the large penetration loss can
be dramatically reduced [1]. Finally, since the users are
nearly stationary with respect to the AP, the AP-users
link can provide a stable and high-speed wireless data
transmission [13].

We consider the downlink data transmission in this two-
hop architecture. The AP-users link inside the carriage
can provide a large data transmission rate by using wire-
less local area network (WLAN) technologies, while the
BS-RS link suffers from the fast-varying wireless chan-
nel and may become the bottleneck in this architecture.
Therefore, the transmission in the BS-RS link will be
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mainly considered in this paper with the assumption
for the downlink data always being successfully received
when delivered to RS.

3.1 Time-distance mapping

We consider a train that travels at a constant speed v
through a single cell with radius R. The total time the
train spends is T,y = 2R/v, which is divided into slots
of equal duration T;. Then, the total number of slots is
given by T = Ty/Ts, where we assume that T, can be
exactly divided by T and T is even. Without loss of gener-
ality, we assume that the train goes into and out of the cell
coverage at slot 0 and slot T, respectively. The traveled dis-
tance until slot ¢ is given by s(¢) = v¢T;. A time-distance
mapping function d(¢) is defined as the distance between
the BS and RS at slot ¢ [20], i.e., d(¢) : [0, T] — [do, dmax],

\/ R2 + dg and d is the distance between

the BS and the rail line as shown in Figure 1. The mapping
function d(t) can be expressed by

where dmax =

d(t) = lst) R + 3, ¢ €[0,7], M

where we assume that the distance d(¢) does not change
within slot ¢ since T is very small. There are two inherent
properties about the mapping function d(¢): (i) the train
is closest to the BS at slot g, ie., d(g) = dp. (ii) For any
slot ¢ € [0, T, we have d(¢) = d(T — t) due to the distance
symmetry.

3.2 BS-RS link capacity
In HSR wireless networks, the channel condition in BS-
RS link is fast varying due to the large-scale fading and

BS

dmax

R >

Figure 1 System model.
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small-scale fading [21]. Confirmed by engineering mea-
surements [22,23], the line-of-sight path in the BS-RS link
is available at most time, and the effect of large-scale
fading is more obvious than that of small-scale fading.
Therefore, we ignore the small-scale fading and assume
that the channel condition variation results only from the
fast-varying distance between the BS and RS. As shown in
[10], power allocation along the travel time plays a key role
in improving the performance of HSR wireless networks.
We denote P(¢) as the transmit power of the BS at slot
t, which is limited by the average value P,y,. The assump-
tion of average power constraint is the same as that used
in [10]. Given P(¢) and d(t), the received signal-to-noise
ratio (SNR) by RS at slot ¢ can be expressed by

P(t) P(t) 9
T WNde(t)  N@)’ @
where N(¢) = WNyd*(t), W is the system bandwidth,
Np is the noise power spectral density, and « is the path

loss exponent. The instantaneous transmission rate in the
BS-RS link at slot ¢ is

SNR

R(t) = Wlog, (1 + ]I:[((?)) bits/s. (3)

For the communications in the BS-RS link, we consider
the frame structure proposed in [24] which is specifi-
cally designed for high-speed trains with a speed up to
360 km/h. Suppose that a packet is the fundamental unit
of transmission with equal size L bits and the overhead
of packetization can be ignored; hence, the link capacity
C(¢) at slot ¢ can be denoted as the maximum number of
packets [18], which can be expressed by

C(t) = C®)) = [RW)Ts/L], (4)
where C(¢) = R(t)Ts/L and |x| = max{n € Z|n < x}.

3.3 Utility-based resource allocation

Assume that there are K types of elastic services with infi-
nite packets to be transmitted from the BS to RS, and the
service set is denoted by K £ {1,...,K}. The elastic ser-
vices, e.g., file transfer, electronic mail, and web surfing,
can tolerate long delays. To allocate the network resources
based on the type of elastic services, utility-based resource
allocation can be employed [19]. Figure 2 gives an exam-
ple of the relationship between utility and data rate for
three different types of services. For any service, the util-
ity grows as the allocated data rate increases. On one
hand, equal data rate allocation does not provide equal
utility, which is interpreted as equal service satisfaction.
On the other hand, to achieve equal utility, the different
data rates should be allocated to the services accord-
ing to their types, which results in utilizing the network
resources more efficiently [25]. Thus, we consider utility-
based resource allocation instead of rate-based resource
allocation in this paper.
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Figure 2 The relationship between utility and data rate for three
different types of services.

Suppose, in general, that service K maintains an increas-
ing and concave function U (vg) as its utility function,
which indicates a service’s degree of satisfaction on the
allocated v; packets. Instead of maximizing network
throughput performance, our objective is to maximize
the overall network utility, which is the summation of all
services’ utility functions. From [26] and [27], the utility
function for service k can be defined as

v,l_“
Ur(vyp) = CUkl o’ o>0,a#1, (5a)
wrln(vg), a=1, (5b)

where « is a parameter dictating the shape of the utility
function, and wy represents the weight of service k. When
the weights of all services are the same, e.g, wx = 1,
the optimization objective can be specialized into the
following four cases according to different values of o

(i) throughput maximization, U (vg) = vk when o = 0;
(ii) proportional fairness, Uy (vr) = In(vg) when o = 1;

(iii) (1, @)- proportional fairness, Uy (vg) = 11"_0{ when
a € (0,1) U (1, 00);
1-«
(iv) max-min fairness, Ur(vr) = lim ‘;’: » When
o—> 00

o — OQ.

Similar to [28], we choose Uy (vr) = wg In(vg) to obtain
weighted proportionally fair resource allocation, where wy
is assumed to be an integer for k € K in this paper.

4 Problem formulation

In this section, we develop a mathematical formulation
of the optimal resource allocation problem in HSR wire-
less networks. Let v(£) = [v1(£), ..., vk ()] represent the
packet allocation vector at slot £, where v (¢) denotes the
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number of packets allocated to service k at slot t. The opti-
mization problem consists in maximizing the BS utility
to find the optimal power allocation along the time and
the optimal packet allocation among the services, and two
necessary constraints are added: (i) The BS has an aver-
age power constraint along the time. (ii) The total number
of allocated packets is no more than the link capacity
at any slot. Thus, the utility-based resource allocation
optimization problem is formulated as

T
(P1) maximize Y Y w In(ui(t)

(6a)

t=0 keK

1 Z

subject to T41 ;P(t) < Pay, (6b)
0< ) w® <Cw,veelo,T], (60)

ke

variables vi(¢) € N,P(¢t) > 0,Vk e K,t €[0,T].

(6d)

Problem P1 is a MINLP problem, including T + 1 con-
tinuous variables P(¢) and K (T +1) integer variables v (%),
which is in general NP-hard [11]. The main difficulty
of analyzing problem P1 comes from the integer nature
of vi(¢). To significantly improve the computational effi-
ciency and obtain some engineering insights for solving
the MINLP problem, we adopt integer constraint relax-
ation for problem P1, where ui(t) € Q% substitutes the
constraint v (¢) € N and C(¢) substitutes C(¢).

As a result, problem P1 is simplified into a relaxed
problem P2 as follows:

T
(P2) maximize Z Z o In(ug (t))

(7a)

t=0 ke

1 Z

subject to T41 ;P(t) < Py, (7b)
0< ) m(®) < C@), Ve elo,T], (70)

ke

variables ug(t) > 0,P(t) > 0,Vk € K, t €[0, T].

(7d)

Notice that the optimal solution of problem P2 provides
an upper bound to that of problem P1 since the con-
straints in problem P2 are looser than those in problem
P1. There are totally (K + 1)(T + 1) continuous variables
in problem P2, where T is typically of the order of 10*
to 10°. Standard convex optimization tools such as CVX
[29] can be employed to solve P2; however, the compu-
tational complexity is very high due to the large size of
the problem [30]. In order to obtain a low-complexity and
effective algorithm for problem P2, we carry out the prob-
lem transformation in Section 5. Before we present the
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solution for problem P2, we consider the problem decom-
position to determine some characteristics which will
be useful in understanding the structure of problem P2
better.

By decoupling of the optimization variables in con-
straint (7c), problem P2 can be decomposed into two sub-
problems: (i) power allocation along the time (PAT): how
to implement power allocation along the time under the
average power constraint at the BS. (ii) Packet allocation
among services (PAS): how to allocate resources to mul-
tiple services at each slot by the given power allocation.
Next, we will discuss these two subproblems separately.

4.1 PAT Problem

In this subsection, we investigate the power allocation
problem along the time under the average power con-
straint at the BS. Since the channel state in BS-RS link
is time-varying, to achieve different optimization objec-
tives, four power allocation schemes have been proposed
in [10].

4.1.1 Constant power allocation

The most straightforward scheme is the constant power
allocation, where BS maintains a constant transmit power
at all times, i.e., P(t) = P,y. Thus,

Ct) = TSLW log, (1 + AI;"(‘:)) vt e[0,T]. 8)
4.1.2 Channel inversion power allocation

It tries to maintain a constant link capacity C(t) at the
BS all the time. Therefore, based on (3) and (4), the ratio
of P(t) to N(t) is a constant for all slots. Without loss of
generality, we suppose that P(£) = koN(¢). And then by

] T _ _ (TH+1)Pyy
solving » ,_o P(t) = (T + 1)Pay, we have ko = D)
and

- N4

Cwy =" logy (1 +ko), Ve €[0, 1. ©)

4.1.3 Water-filling power allocation
To maximize the total link capacity at the BS, we formulate
the following optimization problem:

T
maximize Zé(t) (10a)
=0
1 Z
subject to Il ;P(t) < P, (10b)
variables P(¢) > 0,t €[0,T], (10c)

whose solution can be obtained by a water-filling
scheme [10].
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4.1.4 Proportional fair power allocation

To achieve a tradeoff between the total link capacity and
the fairness along the time, a proportional fair power
allocation optimization problem is formulated as

T
maximize Zln C(t) (11a)
t=0
1 T
subject to T41 ;P(t) < Py, (11b)
variables P(t) > 0,t €[0,T], (11¢)

whose e-optimal solution can be obtained by the proposed
algorithm in [10].

4.2 PAS problem
In this subsection, the packet allocation problem among
the services is studied under the link capacity constraint
by fixing the power allocation at all slots, which can be
obtained according to the power allocation schemes in
the above subsection. This setup is less complicated com-
pared to our more general model, and its solution can
provide us with some insights for solving problem P2.
Given the fixed power allocation P(t) at any slot ¢, the
link capacity C(£) can be computed by (4). Problem P2 can
be divided into T + 1 packet allocation problems, and the
problem at any slot ¢ € [0, T'] can be given by

maximize Zwk In(ug () (12a)
kel
subject to 0 < Z wr(®) < C@), (12b)
kek
variables i (t) > 0,Vk € IC, (12¢)

which is a convex optimization problem. By applying the
Karush-Kuhn-Tucker (KKT) conditions, we obtain the
closed-form optimal solution of (12) and an important
structural characteristic in the following lemma.

Lemma 1. For the optimal solution vector p*(t) =
(i), w3, ..., ,u]*<(t)]T at any slot t € [0, T), there must
be the case that

uie  w@

, Vi,je K, (13)
wj a)]
and the closed-form optimal solution of (12) is
C(t
Wi = = ® vk ek (14)

2ok o’

Proof. The proof of Lemma 1 is provided in Appendix 1.
I

Based on (13) in Lemma 1, there is an inherent rela-
tionship among the optimal solutions at any slot. More
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resources are allocated to the service with a larger weight.
In particular, for any service k, the allocated resource
uz(t) at slot ¢ is proportional to its weight wy. Notice that
the service weights are assumed to be integer so as to sim-
plify the analysis in the sequel, since the optimal solutions
depend on the relative size rather than on the absolute size
of the weights. If the service weights are non-integer, the
corresponding integer weights can be obtained after being
multiplied by the same factor. For simplicity of expression
in the sequel, we introduce a virtual variable at any slot
t € [0, T, which is given by

C(t)
Sk

x(t) = (15)

From (15), we can see that x(t) is only determined by the
power allocation P(¢) at any slot ¢. By plugging (15) into
(14), the optimal solution of (12) can be rewritten by

up(t) = wrx(t),Vk € C,t € [0, T]. (16)

Thus, if the optimal power allocation solution in prob-
lem P2 can be obtained, then the optimal x*(¢) and the
optimal packet allocation solution in problem P2 can be
calculated by (15) and (16), respectively.

5 Problem transformation

In this section, to reduce the computational complexity,
we consider the problem transformation for problem P2,
where the number of the optimization variables dramati-
cally decreases from (K + 1)(T + 1) to g + 1. Based on
the bisection search method, a greedy algorithm with low
complexity is proposed for solving problem P2.

Firstly, since Lemma 1 provides the necessary condition
for the optimal solutions of (12) and problem P2, based on
(16), the resource allocation variables u (¢) at slot £ can be
substituted by one single variable x(¢). Then, the objective
function of problem P2 can be simplified into

T T
D> orIn(ui®) =YY (o (n(wy) + In(x(£))))

t=0 kek t=0 kek

T
=a+y ) InGx@),

t=0

(17)

where @« = (T + 1) ) (wr(n(ewg))) and y = D i
are both constant. Similarly, for the constraint (7c),
> i 1k (t) = yx(®). Thus, problem P2 can be transformed
into
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T
(P3) maximize Z In(x(2))
=0

(18a)

T
1
bject t P(t) < Py, 18b
subjec 0T+1g()_ av (18b)

LW | (1+P(t)>
L 8 N@©) )

vVt €0, T], (18c)

variables x(¢) > 0,P(t) > 0,Vk € K, t €[0,T].
(18d)

yat) < C(t) =

Lemma 2. Suppose that the optimal solution of problem
P3 exists, the optimal solution provides proportionally fair
resource allocation along the time for each service.

Proof. The proof of Lemma 2 is provided in Appendix 2.
I

After the problem transformation, the total number of
variables decreases from (K + 1)(T + 1) to 2(T + 1),
and hence, the computational complexity is dramatically
reduced when K is large. Based on the investigation on
problem P3, the total number of variables can be further
reduced to T + 1 as shown below.

It is easy to show that at the optimality of problem P3,
the constraints (18b) and (18c) are both tight; otherwise,
one can increase the value of x(¢) and P(¢), such that the
objective function can be further maximized. Thus, we
have

1 Z
- ;P(t) = Py, (19)
and
. W P(t)
yx(t) = C(t) = L2 In (1 + N(t)) , Vte[0,T].
(20)

Based on (20), there exits a one-to-one correspondence
established between x(¢) and P(t), which is expressed by

x(t) = nln (1 4 PO ) ,

N(@®) @D

T,W
yLln2*
Thus, plugging (19) and (21) into problem P3 yields

where n =

d P(t)
(P4) maximize g In (7] In (1 + N )) (22a)
T
subjectto Y P(t) = (T + 1)Pay, (22b)
t=0
variables P(t) > 0,Vt €[0,T]. (22¢)
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Lemma 3. The optimal solution of problem P4 is the same
as that of the proportional fair power allocation (PFPA)
problem.

Proof. The proof of Lemma 3 is provided in Appendix 3.
I

Based on Lemma 3, the optimal solution of problem
P4 provides proportionally fair power allocation along
the time. Furthermore, we can observe that problem P2
can be equivalently decomposed into two subproblems:
problem P4 and PAS problem, which are corresponding
to power allocation problem along the time and packet
allocation problem among the services, respectively. The
explanation of the equivalence problem is given as fol-
lows. On the one hand, problem P2 can be decomposed
into T + 1 PAS problems for the given power allocation
along the time. Based on the Lemma 1, if the optimal
power allocation P*(¢) is given, the optimal packet allo-
cation u;(¢) of problem P2 can be obtained by solving
the PAS problems. On the other hand, based on (15) and
(16), the virtual variable x(¢) builds a bridge between 114 (£)
and P(¢). By variable substitution, problem P2 can be
equivalently transformed into problem P3, which is fur-
ther simplified into problem P4 based on the necessary
optimality conditions. These equivalent transforms can
guarantee that the optimal power allocation P*(¢) of prob-
lem P4 is the same as that of problem P2 at any slot ¢.
Based on the above two points, we can conclude that
problem P2 can be equivalently decomposed into problem
P4 and PAS problem. Thus, in order to obtain the opti-
mal solutions of problem P2, we can solve problem P4 at
first, and then by using the power allocation results, the
packet allocation solution can be obtained by using (16)
and (21).

To solve problem P4 effectively, the following lemma
allows us to further reduce the computational complexity
based on the distance symmetry at the base station, which
has been mentioned in Section 3.1.

Lemma 4. In the optimal solution vector P* =

[P*(0), ..., P*(T)], there exists a symmetry on the optimal
solution, i.e., P*(t) = P*(T —t),Vt €0, T].

Proof. The proof of Lemma 4 is provided in Appendix 4.
I

As a consequence of Lemma 4, problem P4 can be sim-
plified into the power allocation problem from slot 0 to
slot g, which is labeled as P5.

T/2

(P5) maximize Y _ g(P(t))
t=0

(23a)
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T/2

T
subjectto ) P(t) = ( )+ 1) Py, (23b)
=0
variables P(¢) > 0,Vt €[0,T/2], (23¢)

where g(P(¢)) = In (n In (1 + 11\)[((?)» and the total num-
ber of variables decrease nearly half from 7 + 1 to
;L

Problem P5 is a convex optimization problem, which
can be solved by CVX [29]. In addition, since problem
P5 has a similar structure to the PFPA problem, the pro-
posed algorithm in [10] can be used to find the e-optimal
solution of problem P5. However, the Lambert W func-
tion was introduced in the proposed algorithm, resulting
in the high computing time. In this paper, the bisection
search method is employed to reduce the computing time
of searching the optimal solution.

Specifically, using the standard optimization technique,
the corresponding Lagrangian function is obtained as

T/2 T/2 T
L{P@®}hr) = Zg(P(t)) -2 ZP(L‘) - (2 +1) Pyy
t=0 =0
T/2
_ P()
= g |:ln (n In (1+N(t) )) —AP(t)+APaV:| .
(24)
Based on the KKT conditions, we have
OL{P®)}, ) _ 1 n o=
aP(t) 7ln (1 + f;(g) P(t)+ N()
(25)
which can be rewritten by
P@) 1
In (1 + N(t)) (P(t) + N(t)) = K (26)

Let f(P®) = In(1+ [ ) (P@®) +N(@), which is a
monotonically increasing function of P(t) at any slot ¢. Let
B = )IL, then (26) is equal to f(P(¢)) = B. Due to the
monotonicity of f(P(£)), the bisection search method can
be used to find P(¢), satisfying f (P(¢)) = B for a given § at
each slot ¢. In addition, for any slot ¢, P(t) = f~1(B) is also
a monotonically increasing function of 8. Thus, to satisfy
the average power constraint (23b), the bisection search
method can also be used to find the optimal 8*.

The specific steps of the bisection search method is pro-
vided in Algorithm 1. The search regions of P(¢t) and 8
should be initialized based on their maximums and mini-
mums. At first, it is easy to verify that the maximum and
minimum of P(¢) at each slot £ can be set as Ppax =

(g + 1) P,y and Ppin = O, respectively. And then the
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maximum and minimum of 8 can be obtained by the
following lemma:

Lemma 5. Based on the equality f(P(t)) = B, the max-
imum of B can be obtained when P(t) = Pmax and t =
0 in function f(P(t)), i.e, Bmax = JfPmax)|t=0 and the
minimum of B can be set as Pmin = 0.

Proof. The proof of Lemma 5 is provided in Appendix 5.
]

The Algorithm 1 consists of two loops to find the opti-
mal power allocation. The outer loop is used for the
bisection search of 8, and the inner loop is used to solve
f(P(¢)) = B for a given B. In addition, the convergence of
Algorithm 1 is ensured by the bisection search, where eap
and sapg are small constants to control the convergence
accuracy.

Algorithm 1 Bisection search method
1: Initialize Bmin, Bmax> Pmins» Pmax- EAB = 10_6;
EAP = 107°.
2: while (Bmax — Bmin) = eapg do

3: :3 = (lgmax + IBmin)/Z;

4 fort:Otogdo

5: while Prax — Prmin > eap do
6: P(t) <~ (Pmax + Pmin)/2;
7: Calculate f(P(¢));

8: if f(P(t)) > B then

9: Prax < P(t);
10: else
11: Ppin < P(2);
12: end if
13: end while

14: end fTor
15 Y2 P(t) > (g + 1) P, then

16: ﬂmax <~ ﬂ;
17:  else

18: ﬂmin <~ ,B;
19:  end if

20: end while

6 The greedy algorithm

In the above section, we obtain the power allocation
results using Algorithm 1, and then the solution of vir-
tual variable x*(¢) for any slot £ can be computed by using
(21). Since the solution x™*(¢) is continuous, based on (16),
it can not ensure that the packet allocation solution wJ (¢)
is an integer for any service k and slot z. As a result, the
solution 7 (¢) is not valid for practical purposes since the
number of allocated packets must take integer value. As
an alternative, an integer solution v} (¢) in problem P1 can
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be obtained if the non-integer solution u;(¢) is rounded
to the nearest integer, but there is no guarantee about
satisfying the problem constraints in problem P1.

According to the above analysis, if x*(¢) is an integer,
then the integer solution of problem P1 can be obtained
by (16). Based on this idea, we propose a greedy algorithm
to find the integer solution of the virtual variable x(¢) for
any slot £, which is denoted as y*(¢), and y(¢) is an inte-
ger variable corresponding to x(¢). Since x*(¢) and y*(t)
largely coincide, the non-integer solution x*(t) can be
used to obtain the integer solution y*(¢). Then, substitut-
ing y(¢) for x(¢) in (21), the power allocation solution can
be computed by

P(t) = (exp (y f:)) - 1) N@©).

Since (27) establishes a one-to-one mapping between
y(t) and P(¢), the average power constraint should be
considered when finding the integer solution y*(¢). In
particular, the proposed greedy algorithm

(27)

(i) provides a valid integer solution y* (), derived from
the non-integer solution x*(¢) at any slot ;
(ii) fulfills the average power constraint;
(iii) achieves an objective value as close as possible to the
maximum objective value in problem P5; and
(iv) has low complexity.

Notice that simply rounding x*(¢) does not ensure to
always satisfy (ii) and (iii).

The pseudocode of the greedy algorithm is provided in
Algorithm 2 and its main steps are sketched as follows.
In step 2, each non-integer solution x*(¢) is rounded to
its floor integer y(¢) by the floor integer function |-], and
then the corresponding power allocation P(¢) is calculated
based on (27) in step 3. This may cause that the total
power is underutilized and the maximum objective value
is not achieved. Thus, the remaining power will be allo-
cated along the time to increase the objective function
value in the following steps. In step 4, y(¢) is assumed to
be added one for any slot ¢, and then the increased power
AP(t) and increased objective function value Ag(t) are
calculated in step 5 and step 6, respectively. The allocation
process from step 8 to step 16 is repeated to add one to the
selected y(t) at each process until the set T4 is empty. T4
in step 9 represents the set of active slots at which y(¢) can
possibly be added one under the average power constraint,
given by

T & T
Ta={deelo, ) 1,ap+ Y pw < (5 +1) 2

t=0
(28)
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In step 10, the slot # in set T4 which can achieve
the maximal ratio of Ag(¢) to AP(¢) is selected, which
implies that the increase of objective function value per
power is maximal at slot . Then, only y(¢') can be added
one and the corresponding power consumption P(¢') can
be assigned in step 11 and step 12, respectively. Next,
AP(t") and Ag(¢') can be updated from step 13 to step 15.
Finally, the integer solution y*(¢) and the power allocation
solution P*(¢) can be obtained in step 18.

According to Algorithm 2, y*(¢) and P*(¢) at slot ¢ €
[0, g] have been obtained. Based on Lemma 4 and (27),
y*(t) and P*(¢) at slot ¢ €[0, T] can be calculated. And
then substituting y*(¢) for x*(¢) in (16), we can obtain the
packet allocation solution for any service k € K at slot
t €[0, T]. Furthermore, the greedy algorithm with low
complexity leads to a near optimal rather than an optimal
solution of problem P5, which implies that the obtained
integer packet allocation solution and power allocation
solution of problem P1 are both near optimal.

Algorithm 2 The greedy algorithm

Require: x*(¢) for slot ¢ € [0, g] ;
1: fort =0to g do

2 ) < X))
3. Calculate P(¢) using y(¢) by (27);
4  Calculate P(¢) using y(t) = y(¢t) + 1 by (27);
5. AP(t) = P(¢) — P(¢);
6 Mg = gP1) — gPW));
7: end for
8: repeat
9: T4 calculation;
’ Ag(®) .
10: t =arg ?elgli( (AP(t))’

1 () < y(t);

122 P(t) < P(t);

13:  Calculate P(¢') using 5(t') = y(') + 1 by (27);
14:  AP() = P(¢') — P(¢);

15 Ag(t) = gBW)) — g(P(H);

16: until 74 = ¢

17: fort =0 to g do

18 () < y(t), P*(t) < P(t);

19: end for

Ensure: y*(¢) and P*(¢) for slot ¢ € [0, g]

7 Numerical results and discussions

In this section, we implement the proposed algorithm
using MATLAB (The MathWorks, Inc., Natick, MA, USA)
and present simulation results to illustrate its perfor-
mance. In order to emphasize different service weights,
without loss of generality, we set the integer weight value
wg = k for any k € K. In addition, we summarize the
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simulation parameters in Table 1. A single simulation runs
the algorithm when the train moves from the edge to the
center of the BS coverage (25,000 slots).

The power allocation and link capacity along the time
for the four power allocation schemes are presented in
Figures 3 and 4, respectively. The advantage and disad-
vantage of these schemes can be observed from these two
figures. For the sake of convenience in the engineering
implementation, a constant power is allocated along the
time in constant power allocation (CPA) scheme while it
ignores the variation of channel gain and results in the
great unfairness in term of link capacity. In order to pro-
vide a stable link capacity and achieve the best fairness
along the time, the channel inversion power allocation
(CIPA) scheme spends much power to compensate those
bad channel states when the train is far from the BS. Simi-
lar to the traditional water-filling method, the water-filling
power allocation (WFPA) scheme can maximum the total
link capacity at the BS, whereas all the services will gen-
erally suffer from starvation when the train is near the
edge of the BS coverage. In addition, the PFPA scheme
can achieve a trade-off between the total link capacity
and the link capacity fairness along the time. Finally, from
Figure 3, we can observe that the power allocation solu-
tions of PFPA problem and problem P4 are the same,
which verifies Lemma 3 by simulations.

Figure 5 presents a comparison of the optimal packet
solution p} (t) of problem P2 with the solution obtained by
the other schemes. It can be observed that the trend of the
curves in Figure 5 is similar to that in Figure 4. This can be
explained by (14), which shows that the packet allocation
solution pj(¢) is linear with respect to the link capac-
ity C(t). Moreover, we can see that the optimal packet
solution w(¢) of problem P2 is the same as the solution
obtained by the PFPA+PAS scheme, which implies that
problem P2 can be equivalently decomposed into PFPA
problem and PAS problem. Service 4 is just an example

Table 1 Parameters in simulation

Parameter Description Value
Pav Average power constraint 30W
K Number of services 6
System bandwidth 10 MHz
% Constant moving speed 100 m/s
L Packet size 240 bits
R Cell radius 2.5km
Ts Slot duration 1ms
do Distance between BS and rail 100 m
o Pathloss exponent 4
No Noise power spectral density —157 dBm/Hz
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for illustrating the characteristics of problem P2, and the
same results can be obtained for the other services.

Figure 6 compares the power allocation solutions of
three different methods solving problem P5 and their
computational complexities, where the complexity is rep-
resented by the computing time in an Intel Core 3.30-GHz
computer (Santa Clara, CA, USA). In this figure, the
power allocation solutions are plotted in a single simula-
tion and the computing times are obtained by averaging
100 simulations. It can be observed that the power allo-
cation solutions of these methods are almost the same,
which implies that the optimal power allocation solution
of problem P5 can be obtained by the bisection search
method when exp and eag are arbitrarily small. In addi-
tion, it is worth noting that the computing time of the
bisection search method is much lower than those of the
other two methods, which illustrates the high effective-
ness of Algorithm 1.

Figure 7 compares different power allocation solutions
under the situations, where the solution of virtual vari-
able x(t) is non-integer or integer. We can observe that
the curve of the power allocation solution in problem P5
is smooth, which corresponds to the non-integer solution
of x(¢). For obtaining the integer solution of x(t), the non-
integer solution x*(¢) is rounded to its floor integer, while
the power allocation P(t) can be calculated in step 3 of
Algorithm 2, which results in the underutilization of the
total power as shown in this figure. As for the power allo-
cation solution obtained by Algorithm 2, we can see that
more power is allocated to some slots for better utilization
of the total power. This causes that the curve of the power
allocation solution obtained by Algorithm 2 is just around
that of the power allocation solution in problem P5.

The packet allocation solutions of service 2 and ser-
vice 4 are described in Figure 8, including the non-integer

&
“an =—©— optima Isolution by CVX, 20.01s
Fom
50 h\\i\\n: =H— bisection method in Algorithm 1,0.02s
o
45} Li“in e-optimal solution in [15],7.43s
= 40} N A
= LN
§< 351 n\ b
E LN
g 301 \‘l\\ ]
:c:t‘, nt\\
. 251 | 4
£ b
5 20t h B
= b\\u
151 \\Ds 4
o
10t -G
po
5 ‘ ‘ ‘ ‘ ;)
0 0.5 1 1.5 2 25
slot x 10
Figure 6 Power allocation solution of different methods for
problem P5.
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Figure 7 Comparison of power allocation solutions.

packet allocation solution of problem P2 and the integer
packet allocation solution obtained by Algorithm 2. From
this figure, we can see that more and more packets are
allocated to each service when the train moves from the
edge to the center of the BS coverage. Similar to the phe-
nomenon presented in Figure 7, the curve of the integer
solution is just around that of the non-integer solution for
both two services. Similar results can be obtained for the
other services. In addition, the number of packets allo-
cated to service 4 equals twice the number of packets
allocated to service 2, which can be explained by Lemma 1.

8 Conclusion

In this paper, we investigated the utility-based resource
allocation problem at a base station in HSR wireless net-
works, jointly taking into account the power allocation
along time and the packet allocation among services. To

120

100 1

80

601 y ]

packet allocation

a0t s /]

20+t ’,"' T ]

0 ‘ ‘ ‘ ‘
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Figure 8 Packet allocation solutions of service 2 and service 4.
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maximize the total utility at a base station under the aver-
age power constraint, the resource allocation optimization
problem was formulated as an MINLP problem. With the
help of integer constraint relaxation, the MINLP problem
was simplified into a convex optimization problem. How-
ever, the size of the relaxed problem is very large, which
motivates us to carry out the problem transformation and
find some structural characteristics of the problem. The
detailed analysis has been performed, which revealed that
the relaxed problem can be equivalently decomposed into
power allocation problem along time and packet alloca-
tion problem among the services. When the optimality
of the relaxed problem is achieved, the power allocation
along the time and the packet allocation along the time
for each service are both proportionally fair. In addition,
the integer relaxation provides a non-integer solution not
implementable in practice, which motivates us to propose
a greedy algorithm to obtain a near-optimal integer solu-
tion of the MINLP problem. Finally, the simulation results
coincide with the structural characteristics we have shown
in this paper.

Notice that only single-cell resource allocation problem
is considered in this paper. The single-cell resource allo-
cation can be regarded as a special case of the resource
allocation in the entire trip. The single-cell resource allo-
cation method can be extended to the multi-cell resource
allocation problem in HSR wireless networks.

Appendices
Appendix 1

Proof of Lemma 1. Introduce a dual variable A > 0
for the constraint (12b). The Lagrangian function of the
optimization problem (12) is

L({puh, 1) =) exIn(ug) — & (Z i = C)

ke kekC
=Y (oxIn(ux) — Aug) + 1C. (29)
kek
The dual function g(A) can now be stated as
_ ) max L(ug, A)
gt = { sit. ug > 0,Vk € K. (30)

From the solution of (30), the resource allocation vector
it can be determined by solving K decomposed problems
with an explicit solution px = “f. The dual problem of
(12) can be expressed as

mingG) = 3 (oxIn () = ox) +C,

ke

(31)

whose optimal solution is A* = 2k Since the problem

(12) is convex and satisfies Slater’s condition, strong dual-
ity holds between (12) and its dual problem (31). Based on
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[30], the solution of (12) can be obtained by the solution
of (31) and is given by

. Ok wké
= = ,Vk € K. 32
M e Zk o (32)
In addition, we can obtain that
N A |
Fi % _ % vijek. (33)
w; wj A*

This completes the proof of Lemma 1. [

Appendix 2

Proof of Lemma 2. Based on Definition 3 in [10], an opti-
mal solution vector x* = [x*(1), ...,x*(T)]7 is said to be
proportionally fair along the time if and only if, for any
feasible solution vector X' = [x'(1), ..., (T)]T, we have

XT: KO =50 _ G
=0

x*(¢)

Firstly, we will prove that the solution of problem P3
satisfies (34) for any feasible vector x'. For the ease of
exposition, let U (x) denote the objective function (18a) in
problem P3. Since the strictly concave increasing property
of U(x), the following condition holds at x = x* [31]

(¥ @) — x*(®) =Z () =¥ <0.

XT: AL(x)
prs dx(t) x*(t)

T
x()=x*(£) t=0

(35)

This is can be explained by the fact that movement along
any direction (x — x*) at the optimal vector x* can not
improve the objective function. Thus, the optimal solution
vector x* is proportionally fair.

Secondly, due to i (t) = wix(¢) in (16), for any service
k, we have

XT: Wy (&) — () _ XT: X' (t) — wpx™(t)
= ui(t) = wrx*(t)

T *

t=0 x* (t)

where 1) (¢) is the feasible solution corresponding to x'(¢)
and 7 (¢) is the optimal solution corresponding to x*(¢).
Thus, the optimal solution of problem P3 provides pro-
portionally fair resource allocation along the time for each
service. I
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Appendix 3 5
Proof of Lemma 3. First, substituting C(t) into PFPA
problem yields

d P(t
maximize ; In (s In (1 + N((t)) )) (37a)
T
subject to . ;P(t) < Py, (37b)
variables P(t) > 0,7 €[0, T], (37¢)

where & = LT fr‘l)g For the constraint (37b), when the opti-

mal solution is achieved, the equality holds. In this sense,
the constraint in problem P4 and PFPA problem is same.
To compare these two problems, the only difference is that
n is in problem P4 and £ is in the PFPA problem. Thus, if
we can prove that the optimal solutions of these two prob-
lems are independent of n and &, respectively, then the
optimal solution of problem P4 is equivalent to that of the
PFPA problem.
Consider the Lagrangian function of PFPA problem

d P@)
L{P®)LAM) =) In (n In (1+ ))
; N()
T
—A (Z P(t) - (T+ l)Pav> (38)

t=0
T
= Z [m (n In (1+§((?) )) —AP(t)HPaV] )
t=0
(39)

Since the PFPA problem is convex, by applying the KKT
conditions, we have

OLUP®}A) _ 1 o
oP(2) In (1+ 50 P® +N®)
(40)
and
T
A (Z P@t) — (T + 1)Pav) =0. (41)
t=0

Thus, the optimal solution of PFPA problem can be
obtained by solving (40) and (41), which is independent
of 1. Similarly, we can show that the optimal solution of
problem P4 is independent of &. Therefore, the optimal
solution of problem P4 is the same as that of the PFPA
problem, which completes the proof. I

Appendix 4
Proof of Lemma 4. We prove this lemma by contradic-
tion. Without loss of generality, we assume that P*(¢;) #
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P*(T — t1) for certain £; € [0, T]. Construct another solu-
tion vector P’ by replacing the elements P*(¢1), P*(T — t;)
in P* with P'(¢1), P'(T —t1) and keeping all other elements
unchanged, where P'(t;) = P'(T — #;) = P*(“Hg*(T*tl).
Notice that the following equality holds

P'(t1) + P(T — t1) = P*(t1) + P*(T — 1), (42)

which implies the solution vector P’ satisfies the con-
straint (22b) and P’ is a feasible solution vector.

For any ¢ €[0, T], since d(¢t) = d(T — t) and N(¢t) =
WNd“(t), we have N(t) = N(T — t). Since In(In(+)) is
a concave function, based on Jensen’s inequality, we can

obtain
P (1) PHT — 1)
fn (”ln (1 T N )) in (”ln (1 TN - ) ))
~ PH1) PH(T — 1)
=In (" 1“( Nt )) (" fn (l N ))
() P(T - 1)
=In (”ln( N(n))) n("ln (1+ N(t) ))
o E) o )
N(t1) N(T — t1)
43)

which illustrates the solution vector P* is not optimal,
which contradicts with the assumption. Therefore, for any
t €0, T], there must be the case P*(¢) = P*(T — t) in the
optimal solution vector P*. Il

nln

Appendix 5

Proof of Lemma 5. According to the equality f(P(¢)) =
B, we can find the maximum and minimum of function
f(P(¢)) among all slots instead of finding the maximum
and minimum of 8 directly. Firstly, considering a certain
slot £, N(t) is fixed and P(¢) € [Pmin, Pmax] is variable.
Since f(P(t)) is a monotonically increasing function of
P(t), the maximum and the minimum of function f(P(¢))
can be achieved when P(t) = Ppax and P(t) = Puin,
respectively.

Secondly, to find the maximum and minimum of func-
tion f(P(t)) among all slots, it is necessary to consider
different values of N(¢) along the time. The derivative of
f(P(¥)) with respect to N () is given by

_ n(1+ P(t))_ P(t) -
N@® ) N@©

Af (P(1))

IN() (44

where the inequality holds based on In(1 + z) > z for
z > 0. Thus, given a constant P(¢) along the time, for
any t1, £ € [0, g] and #; > Iy, since N(¢1) < N(&), we
have f(P(t))|;=t, < f(P(t))|t=t,» which implies that the
maximum and the minimum of function f(P(¢)) can be
achieved whent =0and ¢ = g, respectively.



Xu et al. EURASIP Journal on Wireless Communications and Networking 2014, 2014:68

http://jwcn.eurasipjournals.com/content/2014/1/68

From the above analysis, we conclude that the maxi-
mum of 8 can be set as Bfmax = f(Pmax)|s=0, and the
minimum of # can be set as fimin = f (Pmin)l,_7 =0. ||
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