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Abstract

We develop a novel cell coverage estimation method based on radio fingerprints collected from practical wireless
service systems. A large size radio fingerprint map that shows cell identifiers and signal strength measurements
on grid segmentation is built for effective estimation of cell coverage. An essential part of cell coverage estimation
is radio fingerprint data cleansing and compensation. Based on this proposed iterative fingerprint data analysis
method, we detect the proper cell borderline for each cell site. By the proposed method, we can efficiently
estimate the cell coverage of each cell site without difficult manual field measurements. Moreover, mobile
service providers can economically plan network configuration and manage subscribers using these advances in cell
coverage estimation.
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1 Introduction
Accurate estimate of cell coverage is essential for cellular
network design and deployment. Cell coverage is usually
defined as the maximum distance, from a mobile user to
a serving cell site, while maintaining sufficient service
quality. It is well known that cell coverage is related to
signal attenuation or path loss. The maximum path loss
determines the maximum cell coverage. The Okumura-
Hata [1] or COST-231 [2] models are generally utilized
as path loss models. The various link budget parameters
shown in [3] are applied as input factors to the path loss
models, then useful information can be extracted for
network deployment, such as the location of cell sites re-
quired to cover the target area. Some of these parame-
ters are within the control of the designer, such as
transmit (Tx) power levels, antenna orientation, or tilt
[4]. By manipulating these parameters, network opera-
tors try to optimize wireless cell coverage. The literature
[5-7] describes several methods for optimizing wireless
cell coverage. An optimization method focuses on cover-
age and antenna configuration by using a simulated an-
nealing/tabu search [5]. A multi-objective algorithm is
used to determine a series of solutions for locating the
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access points of wireless local area networks (WLANs)
to maximize coverage and QoS [6]. A multi-criteria gen-
etic algorithm has also been presented that selects cell
sites from candidate sets with the goal of maximizing in-
frastructure, cost efficiency, and coverage while constrain-
ing pairwise cell overlap [7]. Another focus of research on
cell coverage is the inverse relationship of coverage to traf-
fic load in a cell. An increase in the volume of active traffic
in the cell causes the interference at the cell site, and ef-
fective cell coverage is consequently decreased [8]. The
coverage estimation based on traffic load estimation in a
cellular network was thoroughly analyzed in [9]. They cal-
culated the outage rate caused by interference and then
restricted the effective cell coverage within an outage rate
threshold.
The exact estimation of cell coverage is applicable to

cellular network management. Combined with demo-
graphics and foot traffic of a particular area, decisions of
cell split, addition, or re-configuration are performed. In
this article, we propose a novel cell coverage estimation
method using radio fingerprint data. A radio fingerprint
map is built based on the measured radio fingerprint
data. A grid segmentation of the fingerprint map pro-
vides an efficient frame in which to store a large amount
of fingerprint data. Each grid contains a reference cell
identifier in the form of a reference Pilot Number (refer-
ence PN for 3G WCDMA) or Physical Cell ID (PCI for
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roperly credited.

mailto:wyyeo@sejong.ac.kr
http://creativecommons.org/licenses/by/2.0


Kim and Yeo EURASIP Journal on Wireless Communications and Networking 2014, 2014:72 Page 2 of 13
http://jwcn.eurasipjournals.com/content/2014/1/72
4G LTE) and its signal strength measurement value. A
customized data analysis method that consists of cleans-
ing and compensation is applied to the fingerprint map.
From understanding the cell shapes, outlier fingerprint
data are eliminated by the iterative data cleansing method.
In addition, the data compensation method can keep fin-
gerprint data integrity and confirm the proper cell border-
line for effective cell coverage estimation. This effective
coverage estimation creates powerful advantages for net-
work planning and operation. For instance, economic
planning for subscriber penetration is a good example.
The scheduled subscriber penetration plan has a critical
impact on radio resource planning for commercial service
providers.

2 Coverage estimation by radio fingerprint maps
The traditional method of estimating cell coverage is
tracking the radio signal over the actual fields. Figure 1
shows typical ways to track radio signals. The diagnostic
machine (DM) attached to a mobile station (MS) collects
the radio signal while travelling a test route in Figure 1a.
Figure 1b shows an example of a test route. The selected
test route is usually located at the intersection of two
adjacent cell sites.
Radio signal tracking is one of the most intricate pro-

cesses in wireless network planning. It needs a special-
ized diagnostic machine and analysis procedure. The radio
signal should be scanned during a specific time band and
analyzed by a custom-designed tool. Furthermore, the en-
tire procedure of tracking and analysis is performed manu-
ally. This complexity restricts the wide adoption of manual
tracking, despite its relatively higher estimation precision.
In [10], researchers suggest a variation of manual tracking
Figure 1 Radio signal diagnosis for cell coverage measurement. (a) Co
for measurement.
to estimate cell coverage. A cell site could receive and de-
termine the signal quality measurements of forward and
reverse links at a particular location of a MS. The distribu-
tion of measured signal quality information could deter-
mine cell coverage.
As an alternative to manual tracking, we adopt beam lobe

estimation (see Figure 2). The beam lobe estimation is based
on radio propagation. The propagation shape of a radio
beam can be estimated by path loss models [11]. Then, the
shape of the beam lobe is calibrated considering geograph-
ical objects (e.g., buildings and roads) to estimate the actual
cell coverage. However, radio propagation models contain
various errors and uncertainties, such as noise level fluctu-
ation, traffic loads, moving objects, and so on. The beam
lobe model needs both of geographical map and manual
measurement of cell configuration (i.e., center direction and
antenna beamwidth of radiation). The 3D geographical map
data may be obtained from an external map building com-
pany. However, the purchasing or operational cost of exter-
nal maps is the problem of mobile service providers. The
purchasing cost of the entire 3D digital map of South Korea
is approximately one million USD and the periodic
maintenance of geographical map is additionally charged.
In addition, the manual measurement of cell configuration
is laborious for mobile service providers. Considering the
large number of base stations and cells, the manual
process can contain several erroneous measurements.
In the ongoing operational phase in particular, there
can be many operational mistakes in measurements,
which can adversely affect practical system performance.
The proposed cell coverage estimation uses the radio fin-

gerprint map to overcome the limitations of beam lobe es-
timation and manual signal tracking. The radio fingerprint
verage measuring according to cell edge. (b) Route selection



Figure 2 Beam lobe model application for cell coverage estimation.
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data contains cell identifiers and signal strength indexes.
The cell identifier is the reference pilot number for 3G
WCDMA or physical cell ID for 4G LTE. The signal
strength index denotes the Received Signal Strength Index
(RSSI). In general, radio fingerprint data are collected by
wardriving that is suitable for collecting fingerprint data
over a wide range [12]. Data acquisition methods are based
on a variety of modes of transport such as walking, bicy-
cles, motorcycles, and cars. In small urban environments,
walking or travelling by bicycle can be sufficient for data
collection. However, for large-scale fingerprint data collec-
tion, fingerprint data should be collected using a fully
equipped vehicle. The entire process of vehicle-based war-
driving is fully automated and the radio fingerprint map is
automatically generated. Figure 3 shows an example of a
radio fingerprint map in a cellular system. Figure 3a shows
a simplified diagram for fingerprint collection by a scan-
ning vehicle. A scanning vehicle runs through the metro-
politan area to make an entire radio fingerprint map. For
efficient fingerprint collection, a fingerprint collector seg-
ments an entire area into multiple fractions and builds effi-
cient scanning routes for each fraction. The most popular
method of building scanning routes is Chinese Postman
Figure 3 Example of radio fingerprint map. (a) Scanning of fingerprint.
Routing. Chinese Postman Routing is a very well-known
postman tour or route inspection method of finding the
shortest closed path or circuit that visits every edge of a
graph. This method can be used to obtain the optimal
Eulerian circuit (a closed walk that covers every edge once).
The complexity to solve the Chinese Postman Routing is
known as O(V3 + E). V denotes the intersection of roads
and E denotes the sectioned roads.
The radio fingerprint map in Figure 3b is composed of

a large number of grids. The grids have a fixed size (for
example, 50 × 50 m) in a given geographical region, and
each grid is indexed. Figure 4 shows the numeric cell
identifier that is specified by the radio propagation from
cell sites. In 3G WCDMA, the pilot number has a nu-
meric range from 1 to 512 and the Physical Cell ID value
is taken from the address space of 504 IDs for 4G LTE.
The MS gets the PN or PCI from the parameters used
for the downlink reference signals via a cell broadcasting
channel. Given the distribution of radio fingerprints on
grids, we can effectively estimate the cell coverage, as
shown in Figure 4. The grid borderline of a specific cell
identifier shows the specific cell coverage itself. Figure 4a
represents the cell coverage over the radio fingerprint
(b) Structure of fingerprint map.



Figure 4 Coverage estimation by radio fingerprint. (a) Coverage illustration on map. (b) Coverage comparison.
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map and Figure 4b shows the difference between this
method and other coverage estimation methods: beam
lobe estimation and manual tracking.
Note that in practical cellular systems, there are many

interference factors. A single grid is influenced by mul-
tiple cell sites and radio relay stations. Thus, a single
grid can have multiple cell identifiers with different sig-
nal strength indexes. We should determine a single cell
identifier per grid as a reference cell identifier (ref. Cell-
ID) for fingerprint-based cell coverage estimation. The
grid borderline of a ref. Cell-ID shows the coverage of
cell with the ref. Cell-ID. Generally, the cell identifier
with the highest RSSI becomes the ref. Cell-ID. How-
ever, the complexity of radio interference leads to errors
for RSSI measurement. If the selection of cell identifiers
from the highest RSSI is only a way to set the ref. Cell-
ID in all cases, we find many irregularities in the distri-
bution pattern of a ref. Cell-ID. In addition to a typical
three-sector cell formation (e.g., Figure 5a), we can find
various atypical patterns (e.g., Figure 5b,c) in empirical
Figure 5 Various cell formations. (a) Typical three-sector cell. (b) Two-se
studies. These irregularities need careful pre-processing
of the radio fingerprint data for effective cell coverage
estimation. Proper fingerprint data analytics such as
cleansing and compensation for grid borderline detec-
tion are essential to fingerprint-based estimation of cell
coverage.

3 Radio fingerprint data analytics for grid
borderline detection
Figure 6 shows an example of cell borderline detection.
Using proper fingerprint data cleansing and coherent
compensation, we find the definite cell borderline. The
cell borderline defines cell coverage clearly.
In Figure 6, we can find the white ref. Cell-ID num-

bers that are newly compensated ref. Cell-IDs. The grids
with the ‘X’ marker are grids eliminated by the cleansing
procedure. The yellow line shows the final borderline of
the target cell coverage. As shown in the example of cell
borderline detection, the cleansing and compensation
are essential analytical tools to identify the cell coverage.
ctor cell. (c) Omni cell.



Figure 6 Example of cell borderline detection. (a) Original fingerprint. (b) Compensated fingerprint and borderline detection.
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A logical solution for many problems is to clean the data
to enhance the solution quality: exploring the data set
for possible problems and endeavoring to clean the er-
rors. Of course, for any real world data set, doing this
data cleansing and/or relational data integrity analysis
‘by hand’ is completely out of the question, given the
amount of person-hours required [13]. While a data
cleansing method can uncover a number of possible er-
rors in a data set, it does not address other, more complex
errors. Errors or irregularities that involve relationships
among multiple fields are often very difficult to uncover.
These types of errors require serious inspection and ana-
lysis to be cleaned: statistical [14], clustering [15], pattern-
based [16], and association [17] techniques are used to
identify patterns that can uncover the data error or irregu-
larities. In addition, informative patterns [17] and ‘garbage
patterns’ of meaningless or mislabeled patterns [18] are
used to perform data cleansing. Machine learning tech-
niques are also used to cleanse data in the written charac-
ter classification problem. However, none of the mentioned
researches can present an effective tool for general data
cleansing. A data cleansing activity has a very domain-
specific applicability [19]. General purpose data cleansing
methods, such as the Kalman filter [20], do not have the
specific knowledge needed to effectively eliminate the
outliers to detect the borderline of a cell. Thus, we de-
veloped a customized data cleansing method for effect-
ive fingerprint-based cell coverage estimation.
The majority of errors originate at the boundaries of

cell coverage. The typical cell of a circular sector form
has two types of boundaries: arc section and line section
(see Figures 7 and 8). Errors in the arc section can be
easily detected and fixed. The majority of errors in these
sections have been found to be a form of ‘island grid’
identified as the red circles in Figure 7. A simple inspec-
tion of the ref. Cell-IDs of neighbor grids is sufficient to
detect grids with erroneous fingerprints. The coher-
ent compensation is then applied to these grids. The
compensation process is described in the latter part
of section 3. However, errors in line sections are hard
to detect and fix. The black circles in Figure 7 show
examples of grids in line sections. Because of the prox-
imity to the cell center, multiple Cell-IDs with strong
RSSI measurements are usually detected for each grid.
Thus, it is hard to determine which grid belongs to a
specific cell. To determine and fix the errors in line sec-
tions, an iterative fingerprint cleansing is proposed. This
iterative cleansing method uses the phenomena of
directional radio radiation that make a cell form into a
circular sector. Figure 8 shows a typical three-sector cell
model: a single base station supports α, β, and γ cells.
Each cell has a circular sector form. A circular sector
has two determinants that characterize its shape: center
direction and antenna beamwidth. The antenna beam-
width can be determined by the leftmost and rightmost
directions of the circular sector.
The irregular fingerprints in the line sections are de-

tected by finding the leftmost and rightmost directions
of a circular sector cell form. Given the leftmost and
rightmost directions, we can detect the grids that are lo-
cated outside of the target cell. When the function direc-
tion (i) returns the angular direction of grid i, the grids
that satisfy the following condition (1) are determined to
be outliers.

direction ið Þ < dright or direction ið Þ > dleft; if dleft > dright

direction ið Þ < dright direction ið Þ > dleft; if dleft < dright

�

ð1Þ

where dleft is the leftmost direction of a circular sector
cell form and dright is the rightmost one. The following
pseudocode details the process of finding erroneous

&



Figure 7 Errors in arc/line section.

Kim and Yeo EURASIP Journal on Wireless Communications and Networking 2014, 2014:72 Page 6 of 13
http://jwcn.eurasipjournals.com/content/2014/1/72
fingerprint data given the leftmost and rightmost direc-
tions. Note that the following code also includes errone-
ous fingerprint detection in the arc section by a simple
inspection of the ref. Cell-IDs of neighbor grids.

The S means a set of grids which have the same ref.
Cell-ID. The values of dleft and dright of the target cell
are updated during the iterative calculation of antenna
beamwidth and center direction of the target cell. After
the fingerprint data cleansing is performed by the above
code using the current dleft and dright, we obtain newly
updated proper fingerprint data (i.e., the updated ref.
Cell-ID data for each grid). Using the updated proper
ref. Cell-ID data, we calculate the updated antenna beam-
width for each cell. The antenna beamwidth of a target
cell can be calculated by counting the number of grids (gc)
that have the target cell's ref. Cell-ID within the current
dleft and dright. The counting procedure is described in the
following pseudocode.

The antenna beamwidth of the nth iteration wn
c

� �
can

now be given as

wn
c ¼ 360� gc=gBS

� � ð2Þ

where gBS is the total number of grids in the analysis
area. A series of circular areas from the center of the cell
can be selected as the analysis area. For example, circles
with a 100-, 200-, or 500-m radius can be the target ana-
lysis area. The analysis area does not have any relation
to cell coverage itself. But, we obtain the antenna beam-
width by grid counting and the ratio of gc over gBS. Thus,
we should set a standard circular area to obtain proper
ratio of gc over gBS. The larger area contains a larger
number of grids for counting and gives sufficient ref.
Cell-ID data to estimate the borderlines. However, a



Figure 8 Diagram of a typical three-sector cell model.
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larger area contains many erroneous ref. Cell-IDs which
would be invalid for borderline detection.
The center direction of the target cell is simply esti-

mated using the current dleft and dright. We can obtain
the center direction of the nth iteration dn

center

� �
by

simply aligning the center of the boundary grids as
follows (3).

dn
center ¼ dright þ 1

2
dleft−dright
� �

; for dleft > dright

dn
center ¼ dright þ 1

2
360−dright

�þ dleft
� �

; for dleft < dright
�

8><
>:

ð3Þ

After fixing the antenna beamwidth and center direc-
tion of the target cell for the nth iteration, we recalculate
the leftmost and rightmost directions of the target cell
as follows (4):

dleft ¼ dn
center þ

1
2
wn
c ; dright ¼ dn

center−
1
2
wn
c ð4Þ

Then, the cleansing procedure runs again with the newly
updated dleft and dright. The new cleansing procedure deter-
mines the center direction and antenna beamwidth of n +
1th stage. This iterative approach continuously enhances
the accuracy of the cell borderline detection in the line
section. The iteration finishes when the difference between
the nth and n − 1th stage values is within a certain bound
(i.e., wn

c−w
n−1
c

�� ��≤δ). The following pseudocode presents the
entire iterative structure for cleansing fingerprint data.

The computational complexity of the aforementioned
iterative method depends completely on the δ and the
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gBS. A single iteration contains counting operations by
gBS times. When the difference bound (δ) is given, the
number of iterations is limited to 360/δ times. There-
fore, the overall complexity of cleansing for a single cell
is bounded as O(360/δ × gBS). In the case of the differ-
ence bound (δ) as the smallest integer value (i.e., δ = 1),
where all angular directions are measured by an integer
value, the number of iterations is limited to 360 times.
Therefore, the overall complexity of cleansing for a sin-
gle cell is practically bounded as O(360gBS).
Next, we perform a coherent compensation process to

assign the proper ref. Cell-IDs to erroneous grids in the
arc section. We can calibrate the imperfectly measured
RSSI values in the radio fingerprint by using the compen-
sated ones. The imperfection of measurement is observed
as the temporal fluctuation of RSSI measurement. The
temporal fluctuation of RSSI measurements are widely ob-
served in collecting and building a radio fingerprint map.
Figure 9 shows the concept of compensation. If an island-
type erroneous grid is detected by the inspection of the
neighbor grids' ref. Cell-IDs, we select the vertical and
horizontal neighbor grids and apply a smoothing tech-
nique. By curve fitting with neighboring RSSI values, the
two newly compensated RSSI values are obtained accord-
ing to both the vertical and horizontal axes. The final
compensated RSSI value is calculated by averaging the
two vertical and horizontal compensated RSSI values.
When the compensation for RSSI is completed, we select
the cell identifier with the highest RSSI as the new ref.
Cell-ID. Note that, the temporal fluctuation of RSSI used
in the proposed compensation method is the possible key
to discrimination between deep-faded grids and erroneous
grids. The deep-faded grids are not influenced by the
Figure 9 Coherent compensation.
compensation. The compensation method is only applic-
able to the temporal fluctuation of RSSI.

4 Numerical results
To test the proposed method, we developed a cell cover-
age estimation program which has a map of an urban
(Gangnam) area in South Korea. The test area has a total
of 47,439 grids and we collected complete ref. Cell-ID
and RSSI (i.e., fingerprint) data by actual wardriving.
The cell coverage estimation program includes all the
collected fingerprint data of the grids and the position
data of cell sites. The positions of cell sites were ob-
tained using an information database from a commercial
WCDMA system. In addition, the cell coverage estima-
tion program contains the position information of the
relay stations. All the information for grids, cell sites,
and relay stations are shown in a map and information
window of the cell coverage estimation program. The
area shown in the map window can be moved by sim-
ple mouse drag operations. The function of map pan-
ning in/out is implemented by simple menu directions.
To determine the coverage of the cell site, we first

simply select a cell site in the map window. After the se-
lection, we set the analysis area for the coverage. Five
different radii for the analysis area can be selected: 100,
200, 300, 400, and 500 m.
The results of the estimation are given by the iterative

approach. The ‘iteration’ command can be activated by
one button press in the coverage estimation program, giv-
ing the result of a single iteration. Each iteration is given
the information of the cell areas: leftmost/rightmost direc-
tions, denoted as ‘min/max degree,’ center direction of a
cell, denoted as ‘center,’ and antenna beamwidth, denoted
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as ‘width.’ After performing consequent iterations, we can
observe the convergence of the results. The actual conver-
gence of center direction or antenna beamwidth are ac-
complished within small number of iteration, such as
5 ~ 8 iterations for almost all cases. Figure 10 shows a
screenshot of the developed estimation program.
To show the performance of the proposed coverage

estimation, we define two performance criteria: con-
formity ratio and inclusion ratio.
In Figure 11, the areas enveloped by the solid line rep-

resent the manually measured coverage of the cell site.
The area enveloped by dotted lines show the estimated
coverage by the empirical models, such as beam lobe es-
timation or fingerprint-based estimations. From the geo-
graphical relationships among them, we classify three
regions as following:

� Region A: included in both the Measured and
Estimated Coverage

� Region B: included in the Estimated Coverage, but
not in the Measured Coverage

� Region C: included in the Measured Coverage, but
not in the Estimated Coverage

The primary criterion is Inclusion Ratio, defined as
A/(A + C). A good estimation should contain a large
amount of measured coverage within the estimated cover-
age. However, even a simple overestimation of the cell
Figure 10 Screenshot of the estimation program.
coverage can achieve a high inclusion ratio (i.e., small
region C) but may include significant redundant space
(i.e., large region B). The Conformity Ratio, defined as
A/(A + B), avoids this weakness. A higher conformity
ratio guarantees a tight estimation on the measured
coverage (i.e., small region B). Therefore, we can evalu-
ate the quality of the estimation using these two nu-
merical performance criteria.
Figure 12 shows 15 different cases for the WCDMA

cell sites. For each cell site, we calculated the inclusion
and conformity ratios for fingerprint-based cell coverage
estimation. The cell coverage measurements from man-
ual signal tracking are the given as a ground truth for
the inclusion and conformity ratio calculations. For
comparison, the results of the beam lobe model esti-
mation are also presented, based on the approach of a
spatial moving least squares (MLS) method [21]. The
improvement of the inclusion ratio is observed for all
of the experiments. The average value of the beam lobe
model is 85.9%, and the fingerprint-based estimation is
91.4%, giving an improvement of 5.5%. In addition, the
proposed fingerprint-based estimation also improved
the conformity ratio. The average value of the beam
lobe model is 85.1% and the fingerprint-based estimation
90.3%, giving an improvement of 5.2%. Note that, we add
the fingerprint-based estimation without data cleansing
and compensation. There is no significant enhancement
without data analytics: slightly lower performance is



Figure 11 Performance measurement frame.

Figure 12 Performance evaluation for sample cell sites. (a) Inclusion ra
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observed (−0.6% for inclusion ratio, −0.8% for con-
formity ratio).
The practical processing time of proposed cell border-

line detection method is very fast. All operations of
method are elementary integer arithmetic and numbers
of iterations are bounded to practically less than 10
times. For the tested 15 cells, total practical processing
time is less than 1 second using a plain PC server. Com-
pared to beam lobe model estimation, which needs the
logarithm calculation of path loss model, the processing
time of proposed method has competitive advantage.
Apparently, fingerprint collection by wardriving is a time-
consuming procedure. However, the beam lobe model also
requires geographical map data for estimation.
We next extended our cell coverage estimation method

to a large area. We selected districts in Gangnam, Seoul as
our targets. A total of ten test districts were selected for
the extended test (see Figure 13). All fingerprint data of
tio. (b) Conformity ratio.



Figure 13 Test districts in Gangnam, Seoul.

Figure 14 Performance evaluation for sample cell sites. (a) Inclusion ra
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selected areas are collected by actual wardriving. Note
that, the area of the Gangnam district is 39.55 km2. The
cell coverage estimation method was applied at 30 cell
sites for each district. The total number of tested cells in
Gangnam is 300, which is a sufficient sample size to show
the effects of the proposed method in the entire area.
For statistical analysis, a sample size of 300 to 400 cells
is suitable. See the Appendix for details of the statis-
tical conjecture.
Figure 14 shows the estimation results which prove the

effectiveness of the proposed method in the diverse envi-
ronments of an urban area. An improvement of the inclu-
sion ratio is observed for all test districts. The average
value of the beam lobe model is 82.2%, and the fingerprint-
based estimation is 89.9%, giving an improvement of 7.7%.
tio. (b) Conformity ratio.
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In addition, the proposed fingerprint-based estimation also
improved the conformity ratio. The average value of the
beam lobe model is 83.0%, and the fingerprint-based esti-
mation is 90.4%, giving an improvement of 7.4%. Note
that, we add the fingerprint-based estimation without
data cleansing and compensation. There is no signifi-
cant enhancement without data analytics: slightly lower
performance is observed (−0.7% for inclusion ratio, −1.1%
for conformity ration).

5 Conclusions
In this paper, we dealt with cell coverage estimation. The
problem is to find precise cell coverage information for
proper network design and operation. By gathering complete
radio fingerprint data in the test area, we make a grid map
with reference cell identifiers and signal strengths. Based on
this fingerprint map, we can estimate the cell coverage. The
fingerprint data cleansing and compensation for borderline
detection is an essential part of cell coverage estimation.
Given our understanding of circular sector cell configura-
tions, we developed an iterative data cleansing and compen-
sation method. As a result of an appropriate cleansing and
compensation method, we can detect a tight cell borderline.
We presented the entire estimation procedure and a cover-
age estimation program that consists of a large amount of
radio fingerprint data and a proposed procedure. The useful-
ness of the developed algorithmic procedure and coverage
estimation program is proven by actual fingerprint data col-
lected from a commercial wireless service provided by SK
Telecom, Korea. A field engineer can now estimate cell
coverage without manual operations using this simple cover-
age estimation program. Note that, the fine grid granularity
guarantee higher performance. But it also generates higher
cost for fingerprint data collection. Thus, we select single-
sized grids in building a radio fingerprint map (e.g. 50 × 50).
To enhance the accuracy on estimation, we can adopt vari-
able granularity: fine granularity for cell border area and
coarse granularity for cell inner area.

Appendix
The sample proportion ( p̂ ) is a good candidate for a
statistical estimator. The sample proportion represents
the population proportion (p). The size of sample ref-
erence points (n) is determined by the error tolerance
limit (ε). To restrict the estimation error (i.e., p̂−p )
within ± ε, the size of the sample reference points is
given as Equation 5.

n ¼ p 1−pð ÞZ2
a=2

ε2
ð5Þ

where Za/2 is the standard score (or Z value) obtained from
the probability table of standard normal distribution. When
we set 1− a as the existing probability of estimation error
within the error tolerance limit (i.e., P −ε < p̂−p < þεð Þ ¼ 1−a),

P −ε < p̂−p < þεð Þ can be transformed into P −εffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1−pð Þ=n

p <

�
p̂−pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1−pð Þ=n
p < þεffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1−pð Þ=n
p

�
. The random variable, p̂−pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1−pð Þ=n
p , tends

to follow a standard normal distribution. Then,
εffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1−pð Þ=n
p ¼ Za=2 . However, the population proportion (p)

is generally unknown. Thus, we set p to 0.5 for conservative
error estimation (ε is maximized when p is 0.5). Finally, we
derive the size of the sample reference points as follows:

n ¼ 0:25Z2
a=2=ε

2 ð6Þ

To restrict the estimation error (i.e., p̂−p ) within ±0.05
(i.e., the error tolerance limit is 5%) under the 95%
probability (i.e., P −0:05 < p̂−p < þ0:05ð Þ ¼ 0:95), we se-
lect approximately 384 samples to represent the total
population.
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