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Abstract

Energy-efficient green solutions are not only beneficial for the environment but also help to reduce the energy
expenditure of the investors. Since base stations (BSs) of wireless cellular access networks are deployed to
accommodate the peak-time traffic, they are underutilized most of the time. In this work, we try to save energy by
both turning BSs on/off and adaptively adjusting their transmission power according to the current traffic conditions.
To achieve that goal, we formulate a novel nonlinear programming model for the green dynamic BS planning (GDBP)
problem to find the best possible topology which minimizes the energy consumption of the network while satisfying
a certain grade of service (GoS). We derive a greedy heuristic called FastWISE to solve the formulated problem and
compare our results with the results of a noncommercial optimization tool and numerous Monte Carlo experiments. It
is shown that our GDBP scheme adaptively adjusts the network topology to the current traffic load and saves
significant amount of energy without violating the GoS constraints, such as the probability of blocking and the
coverage ratio.

Keywords: Green; Power efficiency; Green networking; Dynamic base station planning; Cellular networks; Energy
awareness; FastWISE

1 Introduction
Along with recent increases in the energy prices, telecom-
munication operators started to become highly interested
in energy-efficient operation. By adopting energy-aware
green methods, service providers aim to decrease their
operational expenses while maintaining an acceptable
level of subscriber service quality. Another important
motivation of green solutions is environmental awareness.
Information and communication technology (ICT) indus-
try produces 2% of the overall CO2 emission throughout
the world by consuming 3% of the worldwide energy [1,2].
When we consider the exponential growth in data exchange
[3], it is clear that the ICT sector will become one of
the major CO2 emission sources within the next few
decades. High energy expenditures combined with its
adverse effects on environment reveal the need for novel
energy-saving methods more clearly.
Since wireless cellular access networks constitute a sig-

nificant portion of the ICT industry [4], it would not be
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wrong to think that measures to be taken in this field
can significantly contribute to make the overall com-
munication industry greener. Although wireless cellular
access networks consist of two parts, which are wired and
wireless, vast majority of the energy is consumed by the
wireless segment [5]. Therefore, it is considered that base
stations (BSs) which are the integral part of the wireless
segment are the right place to start saving energy.
Cellular access network service providers are obliged

to provide a certain level of service quality regardless of
time and space due to the increasing needs of subscribers.
Hence, the number of deployed BSs increases rapidly par-
allel to the ubiquitous coverage demand of users. Figure 1
shows the base station location data of a single operator
from Sydney Central Business District (CBD), Australia.
Depicted BS information on the map is extracted from a
website [6] which makes use of the Australian Communi-
cations and Media Authority’s [7] RadCom registry. The
area covered in the map is 1.5 × 1.5 km2 and has a total
of 139 BSs since Sydney CBD is one of the world’s most
crowded business centers and densely concentrated with
skyscrapers. The reason of high BS density is that cellular
network operators usually place BSs according to the peak
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Figure 1 Base station location data of a single operator from Sydney Central Business District, Australia.

traffic conditions. However, the peak traffic mostly occurs
in only a small portion of the time. A real traffic profile
collected from a central BS and four neighboring BSs dur-
ing 1 week can be seen in Figure 2 [8]. As expected, the
traffic load decreases dramatically during the late night
hours. Yet, low traffic can also be observed all day long
during weekends or holidays in particular places such as
business or trade centers. Therefore, infrastructures of the
cellular access networks are underutilized during the non-
peak traffic periods. Hence, adoption of a green dynamic
BS planning scheme can save significant amount of energy
by reducing redundancy and prevent significant amount
of CO2 emissions. Moreover, the reduction of active BSs
also helps to mitigate the electromagnetic pollution.
In this work, we focus on saving energy by adaptively

turning the BSs of wireless cellular access networks on
and off according to the current traffic conditions. More-
over, we also adopt dynamic transmission power adjust-
ment with the help of high-efficiency power amplifiers.
However, the challenge is to decrease the energy expendi-
ture while always guaranteeing a certain grade of service
(GoS) over the whole area. Therefore, we formulate a
novel nonlinear programming (NLP) model for the green
dynamic BS planning (GDBP) problem to find the best
possible BS topology which minimizes the energy con-
sumption while satisfying the communication demands
of the users. We then propose a heuristic to solve that

problem and compare our results with the results of
a non-commercial optimization software and numerous
Monte Carlo (MC) experiments. It is shown that our green
dynamic BS planning scheme saves significant amount of
energy. Although there are some studies in the literature
related to the dynamic BS switching, our method differs
in many aspects:

Figure 2 Normalized traffic profile of a central (top) and four
neighboring (bottom) BSs during 1 week [8].
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• Unlike most of the previous studies, we utilize the
dynamic power adjustment capability of the current
BSs technology by adjusting the output of the power
amplifier. Using different transmission power levels
(PLs), we have the opportunity to dynamically change
the coverage of the BSs according to the present
traffic conditions.

• Majority of the studies in the literature assume that
BSs make turn on or off decisions locally by
comparing their current traffic loads with a
predefined threshold. In our work, we try to satisfy
certain GoS requirements collectively by making
system-wide decisions throughout the whole
network.

• The BS on/off transitions are taken into account in
order to minimize the additional overhead
introduced by frequent topology changes such as BS
initialization, user association, and handover.

• We justify our proposed methods by applying them
to real-life-scale scenarios rather than small-scale test
cases.

• A detailed integer NLP model is formulated for the
GDBP problem and solved by a non-commercial
optimization tool. By using the derived programming
model, optimum results can be obtained from the
optimization tools for the small instances of the
problem. In order to show the significance of the
results, a very large number of MC experiments are
also conducted.

• A fast and effective heuristic called FastWISE is
proposed for solving large instances of the GDBP
problem.

The rest of the paper is organized as follows: In
Section 2, existing green network planning methods in
the literature are surveyed. Section 3 elaborates the
proper application areas of the GDBP, assumptions, and
problem formulation. The proposed GDBP algorithm is
explained in Section 4. An example application scenario,
details of the system parameters, and comparative perfor-
mance analysis of the proposed methods are presented in
Section 5. Finally, Section 6 draws the conclusions and
provides possible directions for future research.

2 Related works
Optimal energy-saving expressions as a function of the
daily traffic profile are given in [9]. In order to apply the
derived expressions in real-life scenarios, Marsan et al.
propose a set of realistic regular cell topologies where each
of these configurations has a specific energy-saving ratio
by turning three out of four or eight out of nine BSs off.
They compared the proposed topology configurations in
terms of energy saving by using a realistic traffic pattern
collected from a wired broadband service provider.

In [10], Son et al. propose a theoretical framework
for two problems which are dynamic BS operation and
user association. Rather than solving those two problems
jointly, they decompose it into two subproblems and try
to handle them separately. For the user association prob-
lem, they offer a distributed algorithm composed of a
mobile terminal part and a base station part. For the
dynamic BS operation problem, they derive two greedy
BS turn on/off algorithms. They also provide three more
heuristics which consider the inter-BS distance and BS
utilization as decision metrics.
Zhou et al. [11] propose a centralized and a decentral-

ized BS energy-saving algorithms. In the centralized one,
it is assumed that a single entity has all channel and traf-
fic information required to decide turning BSs on or off.
In the decentralized algorithm, a BS association rule is
derived for users to concentrate the traffic load on some
particular BSs so that the remaining redundant ones can
be turned off easily. Another distributed BS switch on/off
algorithm was proposed in [8]. The analysis provided in
this work shows that the mean and variance of the traffic
profile along with the BS density are the dominant factors
that determine the amount of energy saving.
Recently, Oh et al. [12] propose an algorithm called

SWES along with three other versions of it for BS switch-
ing on/off. They introduce the notion of network-impact
which considers the effect of BS transitions on the neigh-
boring BSs in terms of traffic load and try to find solutions
which have minimum effect on the network. It is shown
that, according to the test case results conducted with
real-life topology and traffic data, their algorithms can
achieve energy savings up to 80%.
In [13], Saker et al. assume all BSs have a set of resources

which can be activated and deactivated according to the
traffic load where the term resource refers to available
transmitters for GSM and carriers for 3G. Their method is
based on use-as-required principle where communication
resources of the BSs are activated as the cell load increases
and deactivated as the load decreases. They bring two
practical implementation issues into attention which are
guard period and ping-pong effect along with their impact
on energy consumption of the network. Similarly, novel
network dimming methods are proposed in [14] rather
than completely turning the BS off. Three basic network
dimming methods are derived for coverage, frequency,
and service dimming. A joint optimization problem is for-
mulated for both frequency and service dimming, and
it is shown that reducing resource usage is a promising
technique for energy saving.
Since it is very common that more than one cellular

access network operator offers service over the same area,
cooperative management of the two separate networks
was proposed in [15] to save energy by switching off one
of the two during low traffic. Although this technique
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seems to be promising, cellular network operators should
closely cooperate with each other and act as a one from
the subscriber’s point of view.
In the literature, there are quite few examples which

consider the dynamic cell size adjustment in order to
reduce energy consumption. Among them, Niu et al. [16]
introduce the cell zooming concept for energy saving to
adaptively adjust the size of the cells according to the cur-
rent traffic load. In their work, a cell zooming server which
is a virtual entity in the network controls the procedure of
cell zooming. The cell zooming server collects the infor-
mation such as the traffic load, channel conditions, and
user requirements and then analyzes whether there are
opportunities for cell zooming or not. They also proposed
centralized and distributed versions of user association
algorithms for cell zooming.
Another work considering variable cell sizes for energy

saving is [17]. In this work, Bhaumik et al. consider two
types of BSs which are subsidiary BSs with low transmit
power and umbrella BSs with high transmit power. They
propose a self-operating network by adaptively turning
subsidiary and umbrella BSs on and off according to the
current traffic demands. Similarly, Kokkinogenis et al. [18]
assume a cellular network consisting of micro and macro
BSs where micro BSs have the ability of being switched
on/off while macro BSs can iteratively adjust their trans-
mission power until the required QoS is achieved. They
propose a static centralized, a dynamic distributed, and
a hybrid topology management schemes to reduce the
overall energy consumption of the network while satis-
fying certain QoS requirements. Chiaraviglio et al. [19]
propose a novel approach to save energy in UMTS net-
works by reducing the number of active access devices
when they are underutilized. Authors derive two mod-
els for both circuit-switched and packet-switched services
separately for quantification of possible energy savings.
For further information, readers may refer to the green
cellular network survey in [20].
Although we are utilizing the dynamic cell size adjust-

ment strategy in our work, we assume a set of prede-
fined cell sizes unlike other related works. Hence, we are
able to formulate a mathematical model for the GDBP
problem and solve it with an optimization tool. We also
take the overhead of BS on/off transitions into account
and try to minimize the total number of transitions.
Moreover, we defined a fast and effective heuristic to
solve the larger realistic size problems and justified our
results with real-life-scale scenarios rather than small test
cases.

3 Systemmodel
Before going into detail, possible application areas of the
GDBP along with their advantages and disadvantages are
investigated from the green networking perspective.

3.1 Where should GDBP be applied?
As we mentioned before, the primary objective of GDBP
is to save energy while satisfying a certain level of service
quality. Hence, there must be excess energy consumption
in order to benefit from GDBP properly. If the energy is
already being used effectively, applying an energy-saving
method will be no more than unnecessarily increasing the
complexity. Crowded urban areas with high BS densities
are the most suitable places for GDBP rather than subur-
ban or rural areas. However, each urban area has its own
traffic pattern which directly determines the efficiency of
the GDBP. Therefore, we categorized urban areas into four
distinct regions and commented on those regions whether
GDBP should be applied or not.

• Town centers (business). Business, trade, or industrial
areas as well as commercial centers can be considered
in this class. The user density, hence the offered traffic
load, is quite high in these places during the daytime.
However, the user density and the traffic load drop
sharply during the nighttime since most of the
business and commercial areas are closed. Moreover,
low traffic profiles continue all day long during
weekends and holidays. Therefore, a significant
change in the traffic profile occurs throughout the
day and week which makes business town centers the
most suitable places for GDBP to be applied.

• Town centers (entertainment). This kind of places
include shopping and exhibition centers, tourist
attraction points, museums, and concert halls.
Although the traffic profile of entertainment and
business town centers follow a similar pattern, they
differ during weekends and holidays. Entertainment
town centers are also highly preferred during
weekends and holidays, even more than weekdays.
However, the temporal change throughout the day
does not happen to be as much as business town
centers. Therefore, entertainment town centers are
our secondary target for energy saving.

• Residential areas. These regions are mostly occupied
by houses, schools, hospitals, and small commercial
shops such as grocery stores. User density increases
here in the evening for sure. However, it would not
be true to say that there is no traffic at all during the
day time. Individuals such as pensioners,
housekeepers, or children spend most of their time
within the territory of their houses. Although the
traffic load changes in residential areas within the
day, it is not as explicit as in town centers.

• Seasonal tourism centers. In seasonal tourism
centers, there happens to be two colossal changes in
user density throughout the year. Sunny seasides are
filled up with tourists during summer, whereas snowy
ski centers are very crowded during winter. However,
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most of the wireless network operators simply deploy
mobile BSs to those areas in order to meet the high
season requirements. Since using mobile BSs is a kind
of dynamic planning itself, it can be considered as a
broader and more systematic approach to GDBP
including additional capabilities of BS installment and
replacement.

In summary, the application site should have at least two
important features in order to fully benefit fromGDBP: (i)
unbalanced temporal distribution of the traffic load and
(ii) high BS density.

3.2 Assumptions
A BS can be up or down depending on the current traf-
fic conditions in our work. When it is turned on, the
total power consumption of the BS is the combination
of two components [21]: (i) core power and (ii) trans-
mission power. The BS core power consumption (such
as air conditioning, signal processing) is assumed to be
fixed regardless of the traffic load. However, the trans-
mission power is adaptively adjusted to the current traffic
conditions. A set of transmission power levels need to
be defined according to the application requirements and
the capabilities of the BS equipment in use. Each BS can
select a certain PL for transmission and cannot change it
during that particular time slot. Since it is not practical
to model a huge number of subscribers individually, we
assumed users are placed as chunks like group of work-
ers in a floor of a building or customers waiting in a bank
office.

3.3 Problem formulation
In order to solve the problem by classical optimization
tools, we need to first put the GDBP problem into a math-
ematical form. In this section, we formulated our problem
by using two different objective functions. The first one
minimizes the total energy consumption, while the second
one additionally minimizes the BS on/off transitions in
order to reduce the amount of topology changes. Hence,
the overhead caused by frequent topology changes, such
as BS initialization, user association, and handover, can be
minimized.

3.3.1 Plain GDBP
Our formulation consists of three parts. The first part
contains the constant parameters given by our sample
application scenario. The second part is the model vari-
ables which will be determined by the solver, and the last
part is the problem itself.

Parameters
NB : Number of BSs
NP : Number of PLs
NU : Number of user chunks (UCs)

B : Set of BSs whereB = {1, . . . ,NB}
P : Set of PLs whereP = {1, . . . ,NP}
U : Set of UCs whereU = {1, 2, 3 . . . ,NU}
T : Set of discrete time intervals within the day

whereT = {1, 2, 3 . . . ,NT }
PWcore : Core power consumed by the BS
PWtx(p) : Function of transmission power consumed by

the BS with respect to PL
αsw : Penalty of making a BS switch (on/off )
W cap

b : Data flow capacity of BS b
f flow(t) : Function of traffic load per UC with respect

to time
COVmin : Minimum acceptable user coverage ratio

Cbpu :
{
1, BSbcan cover useruwith powerp
0, otherwise

Model variables

Obt =
{
1, BS b is up at time t
0, otherwise

Abpt =
{
1, BS b transmits with power p at time t
0, otherwise

Mubt =
{
1, UC u selects BS b at time t
0, otherwise

Dummy variables

Subt =
{
1, UC u is served by BS b at time t
0, otherwise

=
∑
p∈P

ObtCbpuMubtAbpt ∀u ∈ U ,∀b ∈ B,∀t ∈ T

Nc
t = Number of covered UCs at time t

=
∑
u∈U

∑
b∈B

Subt ∀t ∈ T

N sw = Number of BS switches (on/off ) during 24h

=
∑
b∈B

∑
t∈T

(
Obt ⊕ Ob((t+1) mod NT )

)

The GDBP problem

min
∑
b∈B

∑
p∈P

∑
t∈T

Obt
(
PWcore + AbptPWtx(p)

)
(1)

s.t.∑
p∈P

Abpt = 1 ∀b ∈ B,∀t ∈ T (2)
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∑
b∈B

Mubt = 1 ∀u ∈ U ,∀t ∈ T (3)

∑
u∈U

Subtf flow(t) ≤ W cap
b ∀b ∈ B,∀t ∈ T (4)

Nc
t

NU ≤ COVmin ∀t ∈ T (5)

As we mentioned before, the ultimate goal of our first
objective function in (1) is to minimize the energy power
consumption of the network. The constraint in (2) makes
sure that a BS operates at a single transmission power level
at the same time, and (3) is responsible for a user being
served by a single BS at a particular instant. (4) and (5)
ensure that the resulting energy-efficient topology does
not violate the capacity constraint of the BSs and provides
the required coverage ratio over the area, respectively.
By not violating the capacity constraints of the BS, it is
also assured that subscribers receive an acceptable service
quality.

3.3.2 GDBPwith BS transition overhead
In this section, we are taking the BS transitions into
account in order to minimize the additional overhead
introduced by frequent topology changes such as BS ini-
tialization, user association, and handover [22]. Among
them, handling the handovers is themost crucial one since
it directly affects the service quality of the subscribers.
Except well-known problems inherited from conventional
handover procedures, another challenging issue is to han-
dover a group of subscribers at the same time when a
serving BS is turned off. There has been some research
effort on group handover techniques [23,24], and most
of them target the passengers traveling on public trans-
portation vehicles such as buses and trains. Majority of
the group handover schemes require to predict the han-
dover andmake necessary preparations before starting the
handover procedure itself. In our case, the central con-
trol entity, which decides and implements the network
topology changes, may do the necessary control signal-
ing and inform the neighboring BSs about the possible
group handover before shutting a BSs down. Also, a pos-
sible BS transition and handover procedure is discussed
in [12].
In order to minimize the side effects of topology

changes, we used a second objective function in (6) which
minimizes the BS on/off switches in addition to the overall
power consumption. The BS switch penalty αsw con-
trols the power consumption vs. BS transition overhead
trade-off. Thus, network operators have the chance to
fine tune the objective function according to their priori-
ties. The effect of this parameter is further investigated in
Section 5.3.

min
∑
b∈B

∑
p∈P

∑
t∈T

Obt
(
PWcore + AbptPWtx(p)

) + αswN sw

(6)

Although we put the GDBP problem into a mathemat-
ical form, it is still a challenging task to solve it with the
optimization tools since we use real-life-scale test scenar-
ios for performance evaluation. Furthermore, nonlinearity
of the problem also increases its complexity and yields
to longer run times. Therefore, we propose a fast heuris-
tic to solve large-scale instances within acceptable time
durations.

4 Green dynamic BS planning algorithm
In this section, we derive a heuristic called FastWISE for
the GDBP problem which consists of three phases.

Additional variables used in FastWISE
OCAcur : Overlapping coverage area of the current BS
OCAmax: Maximum allowed overlapping coverage area

in order to turn a BS on during initialization
phase

Boff : Set of currently turned off BSs
W cur : Traffic load of the current BS
Bhigh : Set of turned on BSs havingW cur ≥ W cap

(users served by those BSs most likely to
suffer high blocking probabilities)

CUE : Covereda user per energy ratio of the current
BS when it is turned on

COVcur : Current user coverage ratio of the network

Algorithm 1 FastWISE algorithm
Initialization phase

1: for all B do
2: calculate properb PL
3: calculate OCAcur

4: ifOCAcur ≤ OCAmax then
5: turn current BS on
6: end if
7: end for

Iteration phase
8: repeat
9: for all Boff do

10: calculate CUE for each power level
11: end for
12: turn on BS with maximum CUE
13: until COVcur ≥ COVmin

Validation phase
14: for all Bhigh do
15: repeat
16: turn on the closest BS
17: untilW cur ≤ W cap

18: end for
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FastWISE starts with the initialization phase. In this
phase, FastWISE visits all BSs and activates the ones
which have smaller overlapping coverage than a prede-
fined threshold with the maximum possible transmission
power level. By doing this, FastWISE tries to use BSs with
higher transmission power levels without violating the
capacity constraints in order to give energy-saving oppor-
tunities to neighboring BSs. Therefore, a preliminary cov-
erage is provided at the end of this phase. FastWISE
continues with the iteration phase. The aim of this phase
is to make incremental improvements at each step on top
of the preliminary coverage produced by the initialization
phase until a target coverage ratio throughout the network
is achieved. Initially, a covered user per energy (CUE) ratio
is calculated for each inactive BS for each power level.
This ratio implies the number of additional covered users
per unit energy if that particular BS is turned on. As long
as the desired coverage ratio is not achieved, the BS hav-
ing the highest CUE ratio is simply turned on. Unlike the
initialization, the iteration phase tries to maximize the
energy utilization without making any capacity constraint
checks. However, this may yield to overloaded BSs which
in turn cause higher call blocking probabilities. There-
fore, the third and the last step are required to validate
that the traffic capacity constraints are met for all serving
BSs, which is the validation phase. In this last part of the
heuristic, all serving BSs are visited and a list of neighbor-
ing BSs is created for all overloaded ones. In order to share
the load of the overloaded BSs, starting from the closest
one, neighboring BSs in the list are simply activated with
the minimum transmission power level until the offered
traffic load drops below its capacity. At the end of this
phase, FastWISE ensures that all serving BSs are operating
well below their capacities.

5 Application scenario and performance
evaluation

5.1 Application scenario and parameters
In order to model the unbalanced temporal distribution
of the load created by mobile users, we are assuming a
sinusoidal pattern throughout the day resembling the real-
life traffic pattern given in Figure 2 and the many other
measurement studies presented in [8,14,25]. However, the
traffic profile does not strictly have to follow the shape
of a sine wave. For the GDBP, reasonable amount of tem-
poral traffic fluctuations through out the day will create
a margin for energy saving. Although we have a certain
traffic profile assumption, it is still possible to engineer
the shape of that profile up to some extent. For exam-
ple, the nighttime traffic load may not be as low as we
expect or the peak-time traffic may not even get close to
100% utilization in some particular places. Therefore, we
introduce a lower and a higher bound for the traffic load
rather than assuming a regular sinusoidal wave ranging

between 0% and 100% utilization. In fact, when we intro-
duce those lower/higher bounds, we practically define the
height and offset of the sinusoidal wave itself. Hence, they
together define how the traffic load changes throughout
the day. The final and vital parameter to construct the traf-
fic profile is the time slice in which the traffic load reaches
its peak. With this parameter, we can shift the sinusoidal
wave in time domain until it fits the traffic profile of a
region of interest. The traffic function is defined as

wheight = ρmax−ρmin
2

woffset = ρmax+ρmin
2

ρ(t) = wheight cos(2π
t−tp
NT

) + woffset (7)

where ρmin and ρmax are the minimum and the maxi-
mum traffic loads throughout the day, wheight and woffset
are the height and offset of the sinusoidal traffic wave, and
tp is the time slice in which the traffic load has its peak.
An example traffic profile created by (7) can be seen in
Figure 3.
We adopt three distinct transmission PLs for BSs which

we believe is not irrational when the current state of the
BS manufacturing technology is considered. If a BS is up,
then it is transmitting with one of PLn where n ∈ {1, 2, 3}.
When we change the transmit power of a BS, we subse-
quently change its coverage range. Since all of our test area
exhibits the same terrain feature (urban), a single propa-
gationmodel is used throughout the whole area. However,
in case of need, the test area may be partitioned into dif-
ferent terrain features and other propagation models can
be incorporated for those specific portions of the coverage
area. We assumed perfect free-space path loss for cal-
culating the omnidirectional coverage ranges. When we
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Figure 3 An example sinusoidal traffic load for 24 h with
ρmin = 0.1, ρmax = 0.9, and tp = 14 h.
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Figure 4 Sample deployment configuration with 10,000 UCs (one million users) and 200 BSs in a 5 x 5 km2 area.

fixed the signal frequency, free-space path loss becomes
proportional to the square of the distance between the
transmitter and receiver. However, all propagation mod-
els can be used with our problem formulation accord-
ing to the wireless channel conditions in the coverage
area.
Although our model can accommodate BSs with differ-

ent traffic flow capacities, we assume all BSs are identical
and have the same capacity. Both user chunks and BS
locations followGaussian distributions where BSs are cen-
tered in the middle of the area and user chunks are
centered around the BSs. However, two BSs cannot be
closer than the minimum inter-BS distance (MIBD) to
each other.
In order to make proper assessments of the proposed

methods, it is required to create a test environment as
close to real-life conditions as possible. Therefore, we
envisioned a densely populated (one million subscribers)
business center as advised in Section 3.1 which is cover-
ing an area of 5 × 5 km2. We assume that the traffic load
follows the same pattern in Figure 2 and there are 200 BSs
deployed to accommodate the peak-time traffic. A sample
deployment configuration used for performance evalua-
tion is given in Figure 4. As GoS metrics, the network
should provide the maximum of 10−2 blocking probabil-
ity [26] and cover at least 99% of the area at all times.
Important parameters used in the sample application sce-
nario are summarized in Table 1. For the sake of variance
control, 10 different test cases are generated and average
of the results is presented.

5.2 Experiment methodology
Performance of FastWISE is evaluated by using real-
life-scale test cases and compared with the results of a
NLP tool [27]. Also, MC experiments are used by gen-
erating a large set of random solutions to investigate

Table 1 Scenario parameters

Parameter Value

Coverage area 5 × 5 km2

Number of BSs 200

Number of UCs 10,000

Chunk size 100 users

BS location std. dev. 1,000 m

User location std. dev. 100 m

MIBD 150 m

BS core power 150 W

Number of PLs 3

BS transmission PLs 30, 90, and 270 W

BS coverage distances 300, 520, and 900 m

BS capacity 66 Erlang

Max. prob. of blocking 10−2

Average call duration 30 s

Average call arrival rate 10 calls/day/user

Number of time slots within a day 24

Min. acceptable coverage ratio 99%

Penalty of a BS switch 0, 75, 300, and 1,500
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Table 2 Comparison of average run times

FastWISE NLP

Phase Run time Time slot Run time

Initialization 4 min 3 s

1 and 6 and 24 296 min

2 and 5 268 min

3 and 4 253 min

7 and 23 312 min

Iteration 65 min 46 s

8 and 22 423 min

9 and 21 456 min

10 and 20 501 min

11 and 19 517 min

Validation 12 s

12 and 18 538 min

13 and 17 542 min

14 and 16 535 min

15 548 min

Total 70 min 1 s Total 5,189 min

the statistical quality of the FastWISE results. However,
the initial results of fully random MC experiments were
mostly unfeasible and too poor to be compared with
other results. In order to obtain more challenging results,
we changed the random solution generation method by
assigning different probabilities of drawing to each case
and call it MC∗. By this way, we created 100,000 biased
samples which contain much more feasible results than
the fully random MC method. The idea behind MC∗ is to
generate more suitable topology instances by taking the
current traffic load into account. For example, MC∗ turns
more BSs on if the traffic load is high and less BSs if the
traffic load is low. Similarly, MC∗ favors higher power lev-
els for the activated BSs during low traffic conditions to
create a margin for neighboring BSs to save energy. Thus,
MC∗ creates more feasible solutions than the plain MC
and gives us the chance to make better assessment of the
proposed techniques.
We modeled the problem with AMPL (A Modeling

Language for Mathematical Programming) [28] and used
a non-commercial nonlinear optimization tool called
BONMIN (Basic Open-Source Nonlinear Mixed Integer
Programming) [27]. However, although we used a very
powerful computer, it was not possible to solve the prob-
lem as a whole due to high space and computational
complexity. Therefore, we decompose the problem into
smaller parts. For Plain GDBP, we solve each time slot
separately and add them up to find the objective function
given in (1). We approach the second problem similarly,

but this time, we feed the results of the previous slot as
an input to the next one in order to compute the objective
function given in (6).

5.3 Performance evaluation
Before proceeding to the comparative performance evalu-
ation, we find it useful to start with examining run times.
Average run times of FastWISE and NLP which are col-
lected from a powerful computer with 4 hexa-core Xeon
x5650 2.67 GHz processors and 24 GB of memory are
given in Table 2. For FastWISE, the iteration is observed
to be the most time-consuming phase as expected since
small improvements are done until a target coverage ratio
is achieved, though the overall execution time of the Fast-
WISE can be easily considered as acceptable. On the other
hand, NLP takes longer time to find feasible solutions than
FastWISE, and this time increases parallel to the offered
traffic load. In Table 2, 24 time slots are reduced to 12
since some of them have the same amount of traffic load
due to the sinusoidal traffic profile. It takes close to an
average of 4 days for the NLP tool to find a solution for
one instance.
The comparative power consumptions throughout a day

are given in Figure 5. If none of the green techniques
is applied to the network, the power consumption does
not change throughout the day regardless of the varying
traffic load.c Although some amount of power can be pre-
served with MC∗, it is clear that both FastWISE and NLP
perform better in terms of the power consumption. NLP
outperforms FastWISE in light traffic conditions, while
the opposite is valid under heavily loaded conditions. Due
to large scale of the test scenario and high computa-
tional complexity of the proposed NLP, we set a maximum
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Figure 5 Comparative power consumption throughout a day.
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Table 3 Comparative energy cost saving

Daily ($) Monthly ($) Annual ($)

FastWISE 168 5,043 60,521

NLP 143 4,317 51,809

MC∗ 55 1,654 19,857

iteration limit on the optimization software in order to
bound the run times. It returns the best possible solu-
tion found within the given number of branch-and-bound
iterations.
In Table 3, daily, monthly, and annual energy cost sav-

ings are given. The electricity prices for peak (2 pm to
8 pm), shoulder (7 am to 2 pm, and 8 pm to 10 pm)
and off-peak (all other times) times are 44.11, 18.7, and
10.34 cents/kWh, respectively, in compliance with the
EnergyAustralia [29], one of Australia’s largest electric-
ity retailers. When the given figures in Table 3 are scaled
for the whole country, it is clear that GDBP can dra-
matically decrease the energy expenditures of the service
providers, possibly a few millions of dollars per year,
which constitutes the largest portion of the operational
expenses.
In Figure 6, the probability distribution of feasible MC

experiments is given with a fitted Gaussian distribution.
When averaged results of FastWISE and NLP are given
in the same figure compared with the results of the MC
experiments, it is quite certain that they are statistically
significantly better. In other words, it is nearly impossible

to generate results with MC experiments as power effi-
cient as the ones with FastWISE and NLP.
Figures 7 and 8 evaluate the GDBP with BS transition

overhead introduced in Section 3.3.2. Figure 7 depicts the
effect of αsw on the objective function given in (6). When
we set αsw = 0, the objective function reduces to plain
GDBP given in (1). For its maximum value, we set αsw =
1, 500. In this case, BS transition penalty in the objective
function dominates the transmission power consump-
tion, and the network tends to keep its current topology
rather than adapt to the changing traffic conditions. As
the BS switch penalty increases, the objective function
value also increases. When we set the switch penalty to
higher values, the optimization tool does not turn off the
redundant BSs as long as the resulting energy saving is
smaller than the introduced transition overhead. There-
fore, the topology is adjusted by turning a large number of
BSs on or off for higher transition penalties. As a result,
the objection function graph takes a more zigzag-like
shape for higher penalties, while it is smoother for lower
values of αsw.
When a switching penalty is introduced in the objec-

tive function, the number of BS transitions dramatically
decreases as seen in Figure 8. This figure depicts the
cumulative sum of BS transitions for different αsw val-
ues. The total number of BS transitions throughout the
day is reduced by 52%, 89%, and 93% for αsw = 75, 300,
and 1,500, respectively. Hence, the additional overhead
introduced by frequent topology changes is significantly
reduced. However, as the BS switch penalty gets higher,
the flexibility of the GDBP decreases which yields to less
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energy-efficient solutions. Therefore, the network opera-
tors should delicately choose this parameter according to
their requirements.
Figures 9 and 10 depict the coverage of FastWISE after

each phase during light and heavy traffic conditions. In the
initialization phase, FastWISE tries to fill the gaps without

violating the capacity constraints as seen in Figures 9a and
10a. Then, in the iteration phase, it turns on the BSs with
appropriate power levels in order to satisfy the coverage
constraints as seen in Figures 9b and 10b. Finally, in the
validation phase, FastWISE checks the offered loads for
each BS and validates that they are not overloaded. If a BS
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Figure 9 Resulting coverage of FastWISE under light traffic load. (a) After initialization phase (COVcur = 83.06%, pblck = 1.7 × 10−3). (b) After
iteration phase (COVcur = 99.02%, pblck ≈ 0). (c) After validation phase (COVcur = 99.02%, pblck ≈ 0).

is overloaded, FastWISE turns the neighboring cell sites to
alleviate its load until that particular BS can accommodate
the offered traffic without violating the GoS constraints.
The resulting coverage after the validation phase is given
in Figures 9c and 10c.

6 Conclusions
In this work, we focus on saving energy by both turn-
ing BSs on/off and adaptively adjusting their transmission
power according to the current traffic conditions. To
achieve that goal, we formulated a novel nonlinear pro-
gramming model for the GDBP problem to find the best
possible BS topology which minimizes the energy con-
sumption of the network while satisfying a certain level of
GoS. Optimization tools can produce optimum results for
the small instances of the problem. We derived a greedy
heuristic called FastWISE to solve the large realistic size
instances of the formulated problem and compared our

results with the results of a non-commercial optimization
tool and numerous MC experiments. It is shown that our
green dynamic BS planning scheme adaptively adjusts to
the current traffic load and saves significant amount of
energy without violating the GoS constraints such as the
probability of blocking and the coverage ratio.
As a future work, we are planning to improve our work

to be applied in data-oriented cellular networks. There-
fore, the effects of transmission power adjustment on the
neighboring cell sites are required to be explored in detail.
Another aspect that needs to be taken into consideration
is the handoff overhead stemming from frequent topol-
ogy changes. It would be very useful to implement user
association rules integrated with our GDBP solution in
order to reduce the handoff rates. Another interesting
issue as a future work can be the installation of addi-
tional BSs to achieve greener topologies. By this way, a
small amount of investment can save significant amount

Figure 10 Resulting coverage of FastWISE under heavy traffic load. (a) After initialization phase (COVcur = 49.12%, pblck = 16 × 10−3).
(b) After iteration phase (COVcur = 99.1%, pblck = 892 × 10−3). (c) After validation phase (COVcur = 99.12%, pblck = 9 × 10−3).
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of energy and become very profitable in the long term.
Lastly, we are planning to improve our GDBP scheme to
be applied in heterogeneous access networks having dif-
ferent types of BSs in terms of coverage, capacity, and
power consumption.

Endnotes
aIncremental users covered by that particular BS when

it is turned on.
bProper PL is the highest possible PL that a BS can

operate without violating the capacity constraint.
cRecall that the BS core power consumption is assumed

to be fixed in Section 3.2.
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