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proposed codes.

The paper presents a method for constructing space-time block codes for multiple-input multiple-output channels by
concatenating orthogonal designs with the so-called diversity transform. Relying on unitary transforms, the diversity
transform increases the channel alphabet without sacrificing information rate, bandwidth, or Euclidean distance. The
distribution of the resulting channel alphabet is shown to quickly become Gaussian-like. Specific code matrices are
constructed and optimized based on the cutoff rate. Both optimum and, reduced-complexity, suboptimum detection
algorithms are presented. Simulation results are provided for demonstrating the gains attainable when using the
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1 Introduction

Wireless channels often suffer from severe signal atten-
uation due to multipath propagation. Consequently, the
receiver faces greater difficulty in determining the trans-
mitted signal reliably unless some less attenuated replica
of the signal is somehow available. This serves as the basis
for an approach, generally known as diversity, which is
achievable via temporal, frequency, polarization, or spa-
tial resources. In some applications, practical means of
achieving diversity is by deploying multi-element antenna
arrays at the transmitter and/or receiver side.

Alamouti [1] presented an effective communication
scheme employing two transmit antennas jointly with a
simple detection procedure. Space-time (ST) block codes,
introduced by Tarokh et al. [2], generalize Alamouti’s
scheme for an arbitrary number of transmit antennas.
These codes exploit the theory of orthogonal designs and
achieve the full diversity attainable with any configuration
of transmit and receive antennas.

Providing time diversity via classical coding techniques
typically entails frequency expansion. There are various
solutions to this problem - most relevant to the current
work include high diversity lattices, see, e.g., [3,4] and
the references therein, and the so-called diversity trans-
form (DRT) [5,6]. The diversity transform increases the
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channel alphabet, and hence the diversity, by employing
appropriate unitary matrix multiplication.

The code construction presented herein is aimed at
combining the properties of the two aforementioned
approaches in a manner that facilitates computationally
efficient encoding and detection. The resulting codes may
be considered as multi-layered space-time codes, whereby
coding based on orthogonal designs is applied to each
layer, and where the different layers are linearly depen-
dent via some unitary transformation. This multi-layered
structure improves the diversity without sacrificing band-
width, while producing channel alphabet whose distri-
bution quickly becomes Gaussian-like (the distribution
appears as sampled Gaussian function with a number of
samples proportional to the dimension of the DRT and the
constellation used).

For notational brevity, we shall henceforth refer to the
obtained serially concatenated codes as diversified space-
time (DST) codes.

DST codes provide high degree of flexibility in adapt-
ing the code parameters to any antenna configuration and
channel coherence time, which, in turn, determines the
size of the diversity transform to be employed. A DST
code can be very short, as short as two code words of the
constituent ST code. Thus, it may introduce very small
detection delay, while still providing high performance
gain, compared to the constituent ST codes, with low
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encoding and detection complexity. In general, implemen-
tation complexity is only slightly higher than that of the
constituent ST code. This is compared to constructions
which have promising information theoretic properties
[7], but their detection is typically hard to realize.

A different interesting approach for serially concatenat-
ing ST codes with rate-1 codes was introduced before.
Therein, Lin and Blum [8] employed a rate 1 recursive
code, with feedback polynomial (1 + D). ST coding is
used as the outer code, and so the obtained alphabet con-
sists of the symbols of the constellation used, which is
typically quadrature amplitude modulation (QAM). This
concatenation approach along with the suggested iterative
detection scheme [8] is mentioned to be more suitable for
applications which can tolerate some delay.

While coding schemes that use rotation transforma-
tion within a codeword are known, see, e.g., the seminal
work of Boutros and Viterbo [9], herein, we attempt to
construct and optimize a transform that operates concur-
rently on a plurality of codewords of a known scheme with
minimum added detection complexity.

The rest of the paper is organized as follows. Back-
ground material and definitions are given in Section 2.
The proposed DST code construction is presented in
Section 3 along with analysis of the code’s alphabet dis-
tribution. DRT matrices are constructed and optimized
based on the cutoff rate in Section 4. The optimization
is carried out assuming that the average received SNR is
known to the transmitter while channel state information
(CSI) is required only at the receiver side. In Section 5, a
two-stage suboptimum detection algorithm is presented
based on linear estimation. Optimum detection is also
briefly mentioned. Section 6 provides simulation results
for a rich set of scenarios and DST codes of bandwidth
efficiencies 1, 2, and 3 bits/s/Hz. Finally, conclusions are
drawn in Section 7.

2 Background

2.1 The channel model

We consider a wireless communication system where the
transmitter is equipped with # antennas and the receiver
with 7 antennas. At each time slot ¢, complex symbols ¥,
i=1,2,...,n, are transmitted simultaneously from the #
transmit antennas. We denote by 4! ,; the path gain from
transmit antenna i to receive antenna j at time slot . The
different paths are assumed frequency-nonselective, and
their gains are modeled as samples of independent com-
plex Gaussian random variables with variance % per real
dimension. The channel is of block-fading type, meaning
that the path gains hf,j are constant over several time slots
to which we refer as a block. The path gains are assumed
statistically independent among different blocks. A single
DST codeword, or code array as it will be called in the
sequel, spans over several channel realizations.
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At time £, the value %, received at antenna j, is given by:

n
=t g
i=1

where the noise samples r]} are independent samples of a
zero-mean complex Gaussian random variable with vari-
ance 1/(2SNR) = o2/2 per real dimension. The average
energy of the symbols transmitted from each antenna
is normalized to be one, so that the average power of
the received signal at each receive antenna is # and the
signal-to-noise ratio is SNR.

2.2 Codes from orthogonal designs
2.2.1 Code construction
Space-time block codes constructed from orthogonal
designs were introduced by Tarokh et al. [2] as a general-
ization of the so-called Alamouti scheme [1]. A space-time
code is defined as a p x » transmission matrix G with
orthogonal columns. The entries of the matrix G are linear
combinations of the complex variables x1,x», ..., x; and
their conjugates; these variables are actually the source
(data) symbols to be transmitted. Since p time slots are
allocated for transmitting k symbols, the symbol rate of
the code is R = k/p.

For example, Gy is the Alamouti code for two transmit
antennas; ithasrate R=1(asp =k =n=2):

X1 X2
Gy = . 2
2 (_ e xT) 2)

Other codes that will be used in this work are the rate
half codes, G3 and Gy, and rate 3/4 codes H3 and Hy, given
in Appendix.

2.2.2 Conventional detection scheme

For completeness, we briefly review the detection pro-
cess used for the abovementioned ST codes. The symbols
X1,%2,...,% can be detected at the receiver via linear
processing. As an example, for the code Gy, the receiver
constructs the next two values:

m
&= U] +hoy(r))"),
j=1
m
Xo=Y (i} —h(r))"). (3)
j=1

Plugging Equation 1 into Equation 3, it is easy to derive:
X1 = h-x1+ 171;and Xy = k- xy + 1o, where h =
Zj’il(|h1,j|2 + |h2,/|2) and 73, 77 are independent, zero
mean, complex Gaussian random variables (given 4;; at
the receiver) with variance "72 -h per real dimension. This
implies that optimal reconstruction of x; and x; is possible
from X; and X;, respectively. Generalizing this:
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Proposition 1. For any space-time block code
constructed from orthogonal design with variables
X1,%2,...,%XK and assuming perfect knowledge of channel
path gains at the receiver, one can construct any 561,1§;§k
using linear processing:

Xp=h-x+n (4)

where h = o - Y eril \hij|% o is a constant (which
depends on the specific orthogonal code used), and 7,1 <j<x
are independent zero mean complex Gaussian random

. . . 2 7 . .
variables with variance % - h per real dimension.

Henceforth, without loss of generality, it is assumed that
a = 1, since one can divide both sides of Equation 4 by o
and obtain the same model (up to the noise variance).

3 Diversified space-time codes

Let Y € CN denote an N-dimensional vector whose
entries belong to a complex alphabet of cardinality M. The
diversity transform is a linear operation on Y represented
as

X =AY, (5)

where A is an N x N unitary matrix. This trans-
form increases diversity owing to increased alphabet
size [5,10]; it preserves the average energy and the
minimum Euclidean distance of the input set {Y}. In
Subsection 3.3, we show that the output set {X} quickly
becomes Gaussian-like (with the increase of N).

3.1 General coding description

The diversity transform and orthogonal designs,
described in Section 2.2, can be combined so as to pro-
vide a coding scheme of increased diversity. The proposed
scheme employs an N-dimensional diversity transform
combined with N space-time codewords, each of rate

— k
R_p.

Let x]l:, 1 <j < N,1 <i < k, denote the symbol x; to
be transmitted by the jth ST codeword. Correspondingly,
define k vectors of the form

X; =[xt NT, (6)

where each of these vectors is obtained by multiplying a
(source) N-dimensional vector Y; by the DRT matrix .4

(5). The second step is to encode the N k-dimensional vec-

tors [lesz .. .x’k], 1 <j < N, into N ST codewords, which

constitute a single DST code array.

The proposed coding scheme is best explained by means
of an example using N = 2. In this case, we use DRT
of order 2 and two transmit antennas. Denote by Y; =
1 217, Yo = [y} y3]T a set of symbols from a given
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constellation. First, use the diversity transform matrix .4
to obtain two so-called diversified vectors

X — x] 4 " B anyy + ayt )
A 2 2| = 1 2|’
1 n a21y1 + a2y
X — x| A 72| [ any; +any
S S 2| = 1 2|
2 ¥2 a2y, + ay;
Next, two ST codewords are generated:

first ST codeword

1 1 1 2

X X aiy +anyy

1* 1* ] 1 2
—X; X — (any; + anyy)*

and a second ST codeword

ﬂn)’% + 6112)/% )
)’

(a1t + a1yt

XX B anyi +any;  anys+any;
— x%* x%* — (@21 + anyd)*  (any] +anyd)*

The two ST component codewords, which constitute a
single DST code array, are transmitted one following the
other.

Stated more generally, any orthogonal design code can
be represented as a p x n matrix, # being the number of
transmit antennas:

G(x1,...,%K)
g11(x1, .., x0) g12(X1, - XK) - . L G1n(X1, X))
£1(®1, .., x%) g2(X1, - %K) - - Gan(X1, .5 X)
1 (X1, - Xk) Gp2 (X155 Xk) o Gon(K1, .., XE)
7)
where g;;(x1, . .., %) is a (complex) function of k variables.

Now, we take a group of k vectors Y;, 1 < i < k, each vec-
tor Y; consists of N symbols, which represent the source
information. Using these vectors, we create a group of k
vectors X; (each of length N), created using the diversity
transform:

X; = AY;, (8)

The elements of each vector X; are denoted by X; =

[xllxlz .. .xﬁv]T.

A DST code array can thus be simply described as a
sequence of N ST component codewords in the form:

G(x, %3, . ..,x,l()
G, 43, ..., x7)
G,y a))
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Symbols from consecutive ST component codewords are
interrelated via the diversity matrix A. Note that in prac-
tice, these ST component codewords do not have to be
transmitted consecutively in time. Rather, some form of
interleaving can be applied in order to maximize the diver-
sity of the DST code array for the price of somewhat
increased decoding latency. A DST code array conveys a
total of k - N source symbols using p - N channel uses,
while the component ST orthogonal design code conveys
k source symbols using p channel uses, i.e, coding rate of
k/p symbols per channel use is preserved.

3.2 Receiver-side description

At the receiver side, the ST codewords are decoded first
by employing linear processing in accordance with Propo-
sition 1. Thus, kK N-dimensional vectors R;, 1 < i < k, are
obtained each of which is related to X; and Y; by?

R; = HX; +T; = HAY; + T}, ©)

where H is an N x N diagonal matrix given by:

h,0,0,...,0]
0,#%,0,...,0

H = 0,....h,...,0 , (10)
| 0,0,...,0,AY ]

with 7t = Y7, Y |hi,;’|2’ hi; being the path gain

from transmit antenna i to receive antenna j for ST code-
word ¢, and where I'; is an N dimensional vector of
independent complex Gaussian random variables, I'; =

=1 ~2 SN1T (i Ty 2 ; ;
;07,0 1*, with E{I",T"} } = 0°-H. Detailed descrip-
tion of the detection process is deferred to Section 5.

3.3 DST codes - alphabet distribution

The DST code construction presented in this section, and
particularly the use of high-diversity transforms, results
with code alphabet of increased cardinality and non-
uniform distribution which tends to approach (discrete)
Gaussian even for small transform dimensions.

Figure 1 demonstrates the last assertion. The statistical
distribution of the elements of X is plotted: Y is cho-
sen from BPSK constellation, and normalized Hadamard
matrices of increasing order are used as representing the
transform matrix .A. The convergence to Gaussian distri-
bution is evident as the transform order, N, is increased.

Taking N to be asymptotically large, the following prop-
erty of the DST construction is simple to prove.

Proposition 2. The DST code output X approaches a
Gaussian vector as N — oQ.
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Proof. This proposition follows simply from the central
limit theorem. O

Proposition 3. If A is an orthonormal matrix and the
components of Y are uniformly, symmetrically distributed
around 0 and obeying the power constraint E( ylz) = P,
then in the limit N — oo, the components of X are statis-
tically independent, Gaussian distributed with zero mean
and variance P.

Proof. E(y;) = 0 due to the symmetrical distribution of
Y around 0; therefore:

E(x;) = E(aiay + aipy2 + ... +ainyn) =0,
and
E(xixj) = E[(ai1y1 + aipy2 + ... + ainyn) (@191 + aj292
+ oo+ ainyN)] = ainaj E0R) + aipajpE(3) + ..
+ainaiNEGR) = P - 8 )),

where §(i,j) = 1 for i = j and 0 otherwise, and where we
used the independence of the components of Y and the
orthonormality of matrix A. According to proposition 2,
X approaches a Gaussian vector as N — oo; its autocor-
relation matrix is diagonal with elements P; therefore the
components of X are statistically independent, Gaussian
distributed with zero mean and variance P. O

The benefit of Gaussian-distributed source alphabet for
various communication channels is a well-studied infor-
mation theoretic topic.

4 Diversity transform construction and
optimization

Diversity transform matrices for DST codes can be opti-
mized based on maximizing the mutual information
I(R,Y) between R and Y. Maximization of I(R,Y), how-
ever, turns out to be a complex task [11]. Alternatively, we
shall employ the cutoff rate as a measure with respect to
which the diversity transform is optimized. The channel
cutoff rate Ry is a lower bound on the Shannon channel
capacity C. Its usage in place of capacity often leads to
tractable results. In this context, the detection is assumed
to be maximum likelihood.

4.1 Cutoff rate analysis

Viewing an N-dimensional vector Y as a ‘super’ symbol of
an infinite-length (random) code in which all super sym-
bols are statistically independent, the cutoff rate Ry () for
single channel use is given by [12]:

2
2R _ p, /[N}NZ fR(R/Y,H)] dr},
R Y

(11)
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Figure 1 Alphabet distribution for increasing order transform: H, Hs, Hg and Hq¢.

where Ep denotes expectation over H.

When the path gains are known at the receiver side, the
probability density function of R conditioned on Y and H
can be written as

fR(RIY, H) = exp{—(R — HAY)"

aN . det(c? - H)
(c*H)" . (R — HAY)).
(12)

The cutoff rate Ry for a single channel usage of each of
the N symbols constituting Y is Ro(N)/N, thus combining
Equations 11 and 12 one obtains

9 NR _ . / 1 :
r | MNaN/2(g2)N/2, /det(H)

2
1 -
Zexp{—z(R—HAY)' N Cad: (R—HAY)” dR
Y
(13)
For notational brevity, we introduce Z as a dummy

variable (of the same nature as Y in Equation 13) and
define Ry = R— HAY and Rz = R — HAZ; thus, we have

1
—NRy __
270 =En {/R M2N7N (62N det(H)
x ZZexp [—;(RY)T (o*H)™! ~Ry}
Y Z

-exp [—;(RZ)T (02H)! ~RZ} dR}

1
= Ei ) g 222114
Y z

j=1
(14)

where J; is defined as

1
=
ol
7i NN 7i NN
ep | VTP Em Vil Iy =W i @izl |,
202h g

Rearranging the algebraic terms in the last expression,
o2k

we get
} drj .
13N ai(Yi=Z) }

40212f
} = exp {—’Z,?"},(m

I3 YN @itz

1
J :fr,vmzz/exp{

exp {—

_WPITY, 4=z
402l

:exp{
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where

XN @iy — Z))?

G; 1

(16)

According to the channel model used, /7 are statistically
independent among different blocks; Equation 14 then
becomes

. 1
2= R 22
Y Z

15 {51 17

j=1

The following proposition will be useful for the calcula-
tion of the expectation in Equation 17:

Proposition 4. // is chi-square distributed with 2mn
degrees of freedom, where n and m are the number of
transmit and receive antennas, respectively.

Proof.
5 n m n m
W= ) =)0 ) R+ 3
i=1 j=1 i=1 j=1

which is the sum of the squares of 2mn independent,
N(0,0.5)-distributed, random variables. The distribution
of it is therefore

AGE (e LG,

(mn —1)
with U(.) being the unit step function. O
Combining Proposition 4 with Equation 15 gives

1 ~
( )mn—l

Ez;f{fj}=f0 ¥

~. G; -
- exp |:—h’ <1 + Ué)] dn'

1
S\ mn ¢
(+5)

From Equations 17 and 18, it follows that

(18)

where G; is defined in Equation 16. Note that the actual
cutoff rate of a scheme which uses an orthogonal design
with parameters p, k is multiplied by a factor of k/p, since
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p time slots are used to transmit k symbols; the actual
cutoff rate is therefore

Ro(p, k)
k 1 1 1
=—11 ——1 — -
» og, M N 08, MNXY:;E <1+ %)mn

(20)

It is evident from Equation 20 that in order to maximize
Ry, one has to minimize the term
N 1
F(A) = ZZ]‘[ - (21)
Y Zz j=1 (1 + ;ﬁ)

This, in turn, is achieved by identifying ‘good” unitary
matrices A using the relation (16), between G; and A, such
that Equation 21 is minimized. This is the subject of the
next subsections.

4.2 Using gradient descent algorithm

Unfortunately, matrices that minimize Equation 21, and
hence optimize the cutoff rate, do not admit a closed
form solution. In this subsection, we propose a gradient
descent-based algorithm for finding a matrix, A, that min-
imizes Equation 21. A is typically required to obey the
following constraint

n
2
Z la;j|® = n,

ij=1

(22)

so that the total average transmitted power remains con-
stant. First, denote the complex derivative of the real
function F(A) with respect to ay; (the term in row k and
column [ of A) as
AF(A)  OF(A) ; dF(A)
Aag — M(aw)  I(ak)
A single iteration of gradient descent for minimizing
Equation 21 is given by
AF(A)
Aayy

(23)

(W) _ 0 _ g

ay' = ay (24)

A=A®D
i.e., each iteration attempts to update .4 in a direction that
makes F(A) smaller. § is a positive constant which deter-
mines the step size in each iteration. The derivative (23)
can be calculated from Equation 21 as:

AF(A) N 1 o
Aﬂkl _ZZI—[(I &)mn ( Wll’l)

Y Zz j=1

o2

(25)

. N
—_— (Y- Z)F- iYi—2Zp) |,
22 (1+ %) [ o ;ak }
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where each iteration of Equation 24 is followed by nor-
malization of the matrix A according to Equation 22;
this normalization is less acute for convergence of the
algorithm when the step size § gets smaller.

4.3 Construction of DRT matrices using elementary
unitary matrices

An alternative approach for constructing DRT matrices is

briefly described herein.

A unitary matrix with determinant equal to one can be
constructed as the product of elementary unitary matri-
ces with determinant equal to one [13]. An elementary
unitary matrix is of the form

1 0 0 .. .. 0 ]
0 1 0 . 0
0 ... €% cos(¢y) —e% sin(¢y) 0
T =
0 e 7% sin(¢y) ... 7% cos(¢y) ... 0
0 ... 0 10
L 0 ... 0 0 1 |
(26)

The elementary unitary matrix Tj; has 3 degrees of
freedom, and differs from the unit matrix in only four ele-
ments, located at the intersection of exactly two rows i
and j with two columns i and j where i < j. We con-
struct unitary matrices with determinant one as a product
of %N (N —1) elementary N-dimensional unitary matrices

N N
A=[TT] 7

i=1 j=i+1

(27)

4.4 Transform optimization - results

The diversity transform can be optimized with respect
to the cutoff rate using either one of the aforementioned
methods. It follows from Equation 20 that the optimum
diversity matrix, denoted Aasn (1, 1), is SNR dependent,
with # and m being the number of transmit and receive
antennas, respectively, and where M = 2, 4, 8, and 16
correspond to BPSK, QPSK, 8-PSK, and 16-QAM constel-
lations, respectively. Good matrices have been obtained
by employing numerical optimization based on either the
gradient descent algorithm in the form of Equation 25,
or by manipulating the three degrees of freedom of each
constituent matrix T;; of Equation 27. The main advan-
tage of the former approach over the latter is its simplicity,
particularly for large transform orders N. The main dis-
advantage of the former approach lies in its dependency
on initial value for the matrix 4 and step size §. When
implemented correctly, both methods provide very similar
results in terms of maximizing the cutoff rate. The cutoff
rates thus obtained are plotted in Figure 2 as a function
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of SNR, for some M, N, m, and #n values. For all the cases
shown, we assumed one receive antenna (i.e., m=1), and
the maximum achievable rate is 1 bit/sec/Hz, where for
n = 2, we used the orthogonal code G, and BPSK modu-
lation, and for n = 3, we used the orthogonal code G3 with
QPSK modulation since the rate of Gj is one half. Nice
improvement in cutoff rate is observed with a transforma-
tion order of N = 3 compared to the uncoded scheme
(corresponding to N = 1). An example of an optimal
matrix A is given below, calculated using gradient descent
algorithm as described in Subsection 4.2. It was derived
for a scenario with # = 3 transmit antennas, transforma-
tion order of N = 3, rate 1 bit/sec/Hz and SNR of 4 dB.
The parameters of the gradient descent algorithm were
chosen as follows : initial step size, used in Equation 22,
is 8 = 0.03 ; the step size is decreased by a factor of 0.97
with each iteration. The initial value for the matrix A is
a matrix of equal entries (normalized by a scalar to sat-
isfy the condition (22)). After 100 iterations, the following
matrix was derived:

A4-,3 (1: 3)
0.4943 4 0.2753i 0.1235 — 0.5696i 0.5631 + 0.1511

= [ 0.0976 — 0.5724¢ 0.3038 + 0.4693i 0.5218 + 0.2797i
0.4785 4 0.3373i 0.3685 + 0.4604i —0.0484 — 0.5543i

Employing this matrix in deriving {Gj}f’=1 via
Equation 16 followed by substitution into Equation 20, a
cutoff rate of 0.965 bit/sec/Hz is achieved, compared to
an uncoded scheme (where A is taken to be the identity
matrix of size 3) whose cutoff rate is 0.92 bit/sec/Hz.

5 Detection of DST codes

We first describe an optimum detection algorithm for
DST codes. Since optimum detection can be quite com-
putationally complex, we also derive a linear detector
for these codes. For linear detection, we shall introduce
and justify the use of DRT matrices different from those
obtained in the previous section.

5.1 Optimum detection

Optimum detection of DST codes, in the sense of mini-
mizing the bit error probability, can be carried out in two
steps:

1. Decode the orthogonal ST code by employing
Proposition 1.

2. Reconstruct the source bits using maximum a
posteriori (MAP) criterion according to the specific
diversity matrix .4 applied.

Section 6 provides simulation results using this detec-
tion approach. Performing maximum a posteriori detec-
tion, as described above, is quite computationally involved
even when using low order diversity transforms. Hence, a
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Figure 2 Optimal cuttoff rates, RO, for different transform orders and antenna array sizes.

simpler, suboptimum detection method is proposed in the
form of linear detection.

5.2 Linear detection - the MMSE receiver
The detection rule is of the form

Y =BR+h,

where R is given by Equation 9. The matrix B and the vec-
tor /1 are chosen to minimize the mean square error (MSE)
of the receiver:

MSE = E{ee" )} = E{(Y - Y) - (Y = Y)T}.

Assuming, as before, that H (defined in Equation 10) is
known to the receiver, the components of Y are indepen-
dent and identically distributed (i.i.d) with zero mean and
energy E;, the MMSE (minimum MSE) receiver is given by

Y =E;- (HA)'[E; - (HA) - (HA)' + 0% - H] "R,

Owing to the orthonormality of A, the MMSE receiver

can be formulated simply as:

Y = ATAR, (28)

where A is a diagonal matrix whose non-zero elements are
as follows:

B E - bt
Eg- (h)? + 02 hi’

Aii
Substituting Equation 9 into Equation 28, we get

Y =ATANHAY+T)=ATAHAY + ATAT = APAY+ ATAT,

where P = AH is a diagonal matrix with elements given
by

E - (W)
Eg-(h)? + 02 ki’
the jth element of Y’ is given by

N N N N
¥ = Z |aj*pii + Z Zpiia;‘kjaik}’k + Zgz'iﬂ}k,-%
i=1 k=1k4j i=1 i=1

bii =

(29)

From Equation 29, it follows that the MMSE receiver is
biased. This bias can degrade BER performance for large
signal constellations. In order to eliminate this biasing,
each element y/ is divided by Zﬁi 1 |al7|2pi,'.

It can be shown [5] that in order to minimize the vari-
ance of the MSE (when represented as a function of the
channel fadings) the non-zero elements of the matrix A
should satisfy

1
@yl = —=;
ij \/N
we shall employ the normalized Hadamard matrix, which
satisfies this property.

5.3 Suboptimum detection
In view of the previous subsection, suboptimum detection
can be summarized as follows:

1. Decode the orthogonal ST code by employing
Proposition 1.
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; 1 bit/sec/Hz, 2 transmit, 1 receive antennas
10_ T T T T
+ - noDRT
+ —+— DRT 2, optimal estimation
N\ 4 — + — DRT 3, optimal estimation
1072EN - * - DRT 8, linear estimation |-
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10° E
o
i}
m
107 : 3
*
+
107° : E
*
+
10°7° : : '
5 10 15 20 25 30
SNR (dB)
Figure 3 Bit error rate versus SNR for codes at 1 bit/s/Hz; two transmit, one receive antenna.

2. Use the linear MMSE receiver described in this
section to get an estimate of Y. Recover the
corresponding source bits.

The performance of the proposed DST codes and detec-
tion algorithms are quantified in the next section by
computer simulations.

6 Simulation results

This section provides bit error rate performance obtained
via simulations for various cases®. Figures 3, 4, and 5
present bit error rate performance for transmission of
1 bit/s/Hz using two to four transmit antennas, one
receive antenna, DRT order N of 1 to 3 when employing
MAP decoding (note that N = 1 amounts to employing

; 1 bit/sec/Hz, 3 transmit, 1 receive antennas
10_ T T T T
S + - noDRT
+ 4 —+— DRT 2, optimal estimation
. * - DRT 8, linear estimation
1072+ N — % — DRT 32, linear estimation |4
N .
W\ &
3 A -
- AR 7 |
10 * :
o X *,
i . :
m \ .
\ -
10 N1 + 1
v :
X, o
-5 \ .
10 N i 3
o +
\ :
. \
10’ 1 1 1 1
0 5 10 15 20
SNR (dB)
Figure 4 Bit error rate versus SNR for codes at 1 bit/s/Hz; three transmit, one receive antenna.
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. 1 bit/sec/Hz, 4 transmit, 1 receive antennas
107 T T T
: + - no DRT
—+—— DRT 2, optimal estimation
* - DRT 8, linear estimation
1072k — * — DRT 32, linear estimation |4
10°k 1
o
w
m
107 E
+
10° 1
;F B
10_6 Il Il Il
0 5 10 15 20
SNR (dB)
Figure 5 Bit error rate versus SNR for codes at 1 bit/s/Hz; four transmit, one receive antenna.

standard ST coding with no DRT). For high DRT orders of
N = 8and N = 32, also shown in the figures, we employ
a suboptimal, yet reduced complexity, linear detection.
For the two-transmit antenna case, BPSK has been used
with the code G,. For three and four transmit antennas,
we used QPSK with codes Gs, and Gy, respectively. It can
be seen, for bit error rate 109, that order-2 DRT provides
about 10, 6, and 5 dB coding gain for two, three, and four

transmit antennas, respectively, as compared to regular
(non-diversified) ST code. The corresponding gains for
orders 8 and 32 are 11, 8, and 6 dB and 15, 9.5, and 7 dB,
respectively.

Note that the gain decreases as the number of transmit
antennas increases. This can be attributed to the fact that
a large number of antennas already exploit much of the
attainable diversity gain. For the same reason, when the

; 1 bit/sec/Hz, 2 transmit, 2 receive antennas
107 T T T T T T T
+ - no DRT
S —+— DRT 2, optimal estimation
— + — DRT 3, optimal estimation
1072k : * - DRT 8, linear estimation |-
SR + —*— DRT 32, linear estimation
10°F 3
o
w
m
10 E
+
107 ‘ 3
“+
10°° : : ‘
0 2 12 14 16
SNR (dB)
Figure 6 Bit error rate versus SNR for codes at 1 bit/s/Hz; two transmit, two receive antenna.




Salomon and Amrani EURASIP Journal on Wireless Communications and Networking 2014, 2014:8

http://jwen.eurasipjournals.com/content/2014/1/8

Page 11 of 13

2 bits/sec/Hz, 2 transmit, 1 receive antennas

BER

-6 i

T

+ - no DRT
—*— DRT 32, linear estimation

5 10

15 20

SNR (dB)

Figure 7 Bit error rate versus SNR for codes at 2 bits/s/Hz; two transmit, one receive antenna.

number of receive antennas is increased to two (Figure 6),
the obtained gains are 4, 2, and 1.5 dB for two, three,
and four transmit antennas (N = 2), respectively; 5.5,
3.5, and 2.5 dB (N = 8 with linear detection); and 6.5, 4,
and 2.7 dB (N = 32 with linear detection), respectively.
Clearly, in all scenarios where linear detection is involved,
larger gains are obtained (with reduced complexity) due

to employing increased DRT order; this is achieved for the
price of somewhat increased latency at the receiver.
Figures 7 and 8 show bit error probability results for
transmission of 2 bits/s/Hz with two to three transmit
antennas, one receive antenna, and diversity order 1
and 32. The transmission using two antennas employs
QPSK constellation with the code Gj. For three transmit

; 2 bit/sec/Hz, 3 transmit, 1 receive antennas
10 e . :
' + - no DRT
—*— DRT 32, linear estimation
- -+
107 3
Es
10°F " 3
o
W 1
m
107 3
107} 3
107 : :
5 10 15 20
SNR (dB)
Figure 8 Bit error rate versus SNR for codes at 2 bits/s/Hz; three transmit, one receive antenna.
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antennas, 16-QAM constellation is used with the code
Gs.

Extensive simulations were carried out also for higher
spectral efficiencies. Consider transmission of 3 bits/s/Hz
using two to four transmit antennas and one receive
antenna. For two transmit antennas, 8-PSK and the code
G, have been used. For three and four transmit anten-
nas, we used 16-QAM along with the codes H3 and Hy,
respectively. For bit error rate of 107, diversity transform
of order 2 provides about 9, 5.2, and 3 dB gain for two,
three, and four transmit antennas, respectively. Diversity
transforms of order 8 and 32 provide gains of 6, 5, and 4.2
dB and 12.5, 8, and 5.2 dB, respectively, when using linear
detection.

Finally, it is demonstrated, for the block-fading chan-
nel, that when a communication scheme is limited by the
number of antennas, the diversity transform can effec-
tively compensate for the loss in spatial diversity. An
upper bound on the error probability of codes using an
orthogonal design is given by [14]

Perror = SNR™™1=1), (30)

where r is the spatial multiplexing gain and = denotes
exponential equality.

Assume given a coding scheme employing # transmit
antennas, m receive antennas and diversity transform of
order N as proposed herein. It is interesting to compare
this scheme with a scheme having # transmit and N - m
receive antennas.

In view of the error exponent (30), the latter scheme can
be used to lower bound the performance of the proposed
scheme. The latter scheme can achieve spatial diversity
gain of N - mn, while that of the first scheme depends
on the temporal diversity gain provided by the diversity
transform. Comparing Figures 3, 4, and 5 (for N = 2)
with Figure 6 and the results for three to four transmit,
two receive antennas (with no DRT) reveal that the lat-
ter curves are about 2 to 3 dB better than the former
set of curves. This is due to the fact that a short trans-
form cannot achieve the full diversity provided by a large
antenna array. However, when a communication scheme
is limited by the number of antennas, the diversity trans-
form can effectively compensate for this loss in spatial
diversity.

7 Conclusions

Space-time block codes of increased diversity are con-
structed for MIMO Rayleigh fading channels. This con-
struction combines orthogonal designs with diversity
transforms, thus providing ST block coding scheme of
high diversity gain that can be easily tailored for any
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antenna array and signal constellation. Two detection
algorithms are described: optimum detection and sub-
optimum detection employing linear estimation at the
receiver. Specific construction of codes with bandwidth
efficiencies of 1, 2, and 3 (bits/s/Hz) are detailed. Among
the properties of DST codes, we can mention its high
diversity, low implementation complexity, high trans-
mission rates, and the fact that the distribution of the
obtained code alphabet is close to Gaussian. Finally, we
note that quasi-orthogonal codes [15,16] can be used in
the framework of DST codes in order to achieve even
higher data rates.

Endnotes

*In the sequel, we shall omit the subscript i as the
analysis is the same for any value i.

PHereinafter, whenever the detector is linear, we
employed the Hadamard transform of appropriate
dimensions as the DRT matrix. Otherwise, we employed
the optimal matrices obtained in Section 4.

Appendix
ST codes used in this work
Rate % ST orthogonal codes are given by:

X1 Xy X3 X1 X2 X3 X4
—X2 X1 —X4 —X2 X1 —X4 X3
—X3 X4 X1 —X3 X4 X1 —X2
Gs = ;:4 ;:3 zi Gy = ;:4 ;:3 zi ;i ;
1 2 3 1 2 3 4
—X; X] =¥ —Xy X} —Xp X3
—x5 Xy X —x5 Xy x5 —xb
—xy —X3 % —Xy —X3 Xy X

(31)

and rate % ST orthogonal codes given by:

X3
X1 X2 7
2
_xt xr X3
2 M )
Hs=| & #f (—;i—aj+w—a))
V2 2 2
ﬁ _ﬁ (%o +x5 421 —x7)
V22 2
X3 X3
X X —)= —)=
1 2 \/5 \/5
ok % X3 _ X3
x2 xl ﬁ 5
Hy = Xy a3 (mi—aftao—al)  (—xp—al+wr—x])
NG 2 2
ﬁ ﬁ (%2 +x54x1—x7) _(x1+x’1‘+x2—xj)
V2 V2 2 2
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