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Abstract

through extensive computer simulations.

Path deviation

This paper presents a multihop range-free localization algorithm that tolerates network anisotropy with a small
number of anchors. A detoured path detection is proposed to detect if the shortest path between nodes is detoured
from their direct path by measuring the deviation in the hop count between the direct and shortest paths. A novel
distance estimation method is introduced to approximate the shortest path based on the path deviation and to
estimate their distance by taking into account the extent of the detour of the approximate shortest path. Compared
to other range-free algorithms, the proposed algorithm requires fewer anchors while achieving higher localization
accuracy in anisotropic networks. We demonstrated its superiority over existing range-free localization algorithms
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1 Introduction

In wireless sensor networks (WSNs), localization has
received a great deal of attention since it facilitates a vari-
ety of applications [1] such as environmental monitoring,
health care, target tracking, and military surveillance.
This technique is also considered to be a fundamen-
tal requirement for broadcasting and routing [2,3] in
WSNs. Many localization schemes have been developed
to autonomously pinpoint the locations of normal nodes
with the assistance of anchors which have perfect location
information. These localization schemes fall into range-
based schemes or range-free schemes.

The common feature of range-based localization
schemes is that each normal node calculates the dis-
tances or directions to the anchors or neighbors based
on the following signal measurements [4-8]: received sig-
nal strength, time of arrival, time difference of arrival,
and/or angle of arrival. The range-based schemes in gen-
eral provide more accurate location estimates than the
range-free schemes; however, the ranging operation leads
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to an increase in the installation cost and reduction in the
network lifetime due to the need of additional hardware of
procedure. For these problems that are critical to WSNs
with limited resources, the range-based schemes are con-
sidered improper solutions to the localization problem in
WSNEs.

To overcome the drawbacks of the range-based
schemes, range-free localization schemes solve the local-
ization problem with network topology information. Con-
ventional range-free approaches [9,10] are focused on
finding the most likely area that each node is present.
Since these approaches exploit knowledge received from
directly heard anchors, it is assumed that a large num-
ber of anchors are uniformly deployed or the anchors
have transmission radii that are several times larger than
those of normal nodes. However, such assumptions lead
to cost and scalability problems. In contrast, multihop
range-free approaches [11-13] exploit network connectiv-
ity information (i.e., the hop count of the shortest path
between nodes) to localize normal nodes with a lim-
ited number of anchors in large-scale networks. Although
these approaches effectively cope with the problems of the
one-hop type approaches [9,10], they are applicable only
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to isotropic networks where the hop count of the short-
est path between two nodes is assumed to be proportional
to the Euclidean distance between them. This assumption
implies that all the nodes are uniformly distributed in a
regular region and the shortest path between any pair of
nodes nearly corresponds to their direct path that forms a
straight line connecting the node pair.

Unfortunately, such an assumption no longer holds in
anisotropic networks which can be commonly found,
and this assumption can be invalidated by a variety of
factors: obstacles, resource limitation, sparse and non-
uniform node distribution, irregular radio propagation
pattern, and irregular regions [14]. These factors make
the shortest path between nodes detoured from their
direct path, and the hop count measured along the short-
est path becomes larger than the expected hop count
of the direct path. Moreover, the flip ambiguity prob-
lem [15], defined as the phenomenon where the estimated
graph of the network is locally translated, rotated, and/or
reflected, can arise. To enhance the localization accu-
racy and to resolve the flip ambiguity problem, recursive
refinement algorithms [16,17] were suggested based on
the mass spring method which is an optimization tool
minimizing the differences between the estimates and
local measurements (within few hops). However, the loca-
tion estimate can oscillate over time and converge to a
false minimum unless a sufficient number of anchors are
uniformly deployed and consistent link connectivity is
guaranteed.

Recently, there have been efforts [14,18-21] to relieve
the effects of network anisotropy. Localization using
expected hop progress (LAEP) algorithm [18] was sug-
gested to tolerate the anisotropy from nonuniform node
distribution. Although the LAEP algorithm provides
improved distance estimates for node pairs having slightly
detoured paths, its performance significantly deterio-
rates in irregular-shaped regions where most of the
node pairs’ shortest paths are heavily detoured. Rendered
path [19] was proposed to solve the problem in irregu-
lar regions by using a hole detection method [22], which
detects nodes at the boundaries of holes. This approach
can achieve relatively high localization accuracy with a
small number of anchors; however, a large amount of
communication overhead is involved in the hole detec-
tion, and it is still vulnerable to sparse and nonuni-
form node deployments and radio irregularity. Reliable
anchor selection-based approaches [14,20,21] were pro-
posed to restrict the use of information of anchors that
are suspected of having detoured shortest paths. The
pattern-driven algorithm [14] uses anchors within 8 hops
from a normal node. The reliable anchor-based local-
ization algorithm [20] selects those anchors whose aver-
age hop progresses are larger than the minimum hop
progresses for the hop counts. The supervised anchor-
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based algorithm [21] chooses the subset of anchors that
minimizes the sum of squared distance estimation errors.
These approaches can prevent sources causing consider-
ably large errors from heavily detoured paths. However,
the performance of the reliable anchor selection-based
algorithms deteriorates dramatically unless a sufficient
number of anchors are uniformly deployed. In [23,24],
fingerprinting-type approaches were developed, but they
also require a number of uniformly deployed anchors
for the implementation. On this wise, most of the pre-
vious work presumes a large number of anchors to
enhance the localization accuracy in anisotropic net-
works. However, it is costly and inefficient to deploy
numerous anchors to solve the localization problem in
WSNs because anchors are equipped with global naviga-
tion satellite system receivers, which are expensive and
relatively high-power-consuming devices, to acquire their
locations.

This paper presents a distributed multihop range-free
localization algorithm to mitigate the effects of network
anisotropy with a small number of anchors. A detoured
path detection method is presented to detect whether or
not the shortest path between nodes is detoured by mea-
suring the path deviation between the direct and shortest
paths of a node pair. A distance estimation is proposed to
estimate the distance between nodes with their approx-
imate shortest path based on the path deviation. With
the approximate shortest path, the proposed algorithm
enables each normal node to measure how much the
shortest path to an anchor is detoured from the direct path
and to estimate the distance more accurately.

The remainder of the paper is organized as follows.
Section 2 describes the network model and terminologies
used in this paper. Section 3 introduces a novel multihop
range-free localization algorithm. Section 4 presents the
experimental results of the proposed algorithm in com-
parison with other existing algorithms. We conclude the
paper in Section 5.

2 Network model

Consider a WSN in the two-dimensional space in which
any regulations in spacing or pattern of the nodes are
undefined. All the nodes including normal nodes and
anchors are unable to measure the distances or directions
to other nodes, and they are randomly deployed. Once
these nodes are deployed, they periodically emit hello
packets with identifications to advertise their existence to
adjacent nodes. Each anchor broadcasts a beacon message
containing its location and hop count set to zero. When
a node receives the beacon message, it increments the
hop count value in the message by one and the updated
message is forwarded to its neighbors. With this pro-
cess (generally called flooding or broadcasting [2]), all the
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nodes in the network obtain the locations of the anchors
and the hop counts measured along the shortest paths to
them.

Suppose that a WSN consists of N normal nodes and A
anchors (A <« N). The sets of normal nodes and anchors
are, respectively, denoted by Qy and 4. The nodes are
assumed to be homogeneous, stationary, and equipped
with omnidirectional antennas with a maximum trans-
mission radius dmax. The transmission radius is unstable
due to the radio irregularity, also known as the degree
of irregularity (DOI). The quasi unit disk graph (QUDG)
communication model [25] is assumed, such that two
nodes build a perfect link if d € [0, dpax/DOI] or a link
with probability p = DOI(dmax — d)/dmax(DOI — 1) if
d € (dmax/DOI, dimax] where d is the Euclidean distance
between the nodes and DOI > 1. Let p; = [x;,9:]7 be
the x — y coordinates of node i. The distance between
nodes i and j is d;j = |lp; — pjll, where || - || is the 2D
Euclidean norm. Let /; be the hop count measured along
the shortest path between nodes i and ;.

3 Multihop range-free localization with
approximate shortest path

3.1 Overview

This section presents a multihop range-free localization

algorithm that estimates the distance between an anchor

and a normal node by taking into account how much

their shortest path is detoured from their direct path.

Before introducing the proposed algorithm, we address

the detoured path detection problem.

According to [20], the shortest path from any node to
an anchor, having a small average hop progress, is judged
to be detoured. However, the judgement may be wrong
since the small average hop progress of the anchor only
indicates that the anchor has detoured paths to other
anchors [11]. In fact, the detoured path detection prob-
lem can be readily solved if the expected hop count of
the direct path between nodes is given; the shortest path
between nodes is considered detoured if the hop count of
the shortest path is larger than the expected hop count.
Unfortunately, the expected hop count of the direct path
between any node pair is unidentifiable. Besides, nodes
are unable to estimate their expected hop count due to
lack of information on their direct path (e.g., the Euclidean
distance). Therefore, the detoured path detection problem
for an anchor-to-normal node pair cannot be solved by
itself.

Suppose that the expected hop counts between anchors
are known (we propose a method to derive the expected
hop count between anchors in this paper). Then, the
detoured path detection can be performed for an anchor
pair’s shortest path. Motivated by this, we solve the
detoured path detection problem for an anchor-to-normal
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node pair by transforming into the problem for an anchor-
to-normal-to-anchor pair. From the viewpoint of a normal
node observing two anchors, the shortest path between
the anchor pair is regarded as the path connecting the
shortest paths from the normal node to the anchors, and
their hop count is calculated as the sum of the separately
measured hop counts to the anchors. Define the short-
est path of an anchor-to-normal-to-anchor pair as the
compound shortest path of the anchor pair for clarity. By
comparing the hop counts of the direct and compound
shortest paths between the anchors, the normal node is
able to judge whether the compound shortest path is
detoured.

Again, to solve the detoured path detection problem
for an anchor-to-normal node pair, we approximate the
anchor pair’s compound shortest path to bypass a vir-
tual hole between the anchors based on the path devia-
tion (i.e., the difference between the expected hop count
and the hop count of the compound shortest path). In
this paper, a virtual hole is modeled as a circular-shaped
hole. By approximating the compound shortest path along
the boundary of the virtual hole, the normal node is now
able to detect whether the shortest path to each anchor
is detoured and to estimate the distance to the anchor by
taking into account the extent of the detour of the path.
Therefore, our problem is to generate a virtual hole based
on the path deviation of an anchor pair. The idea of the
proposed algorithm is illustrated in Figure 1.

3.2 Detoured path detection for compound shortest path
Consider that normal node i observes an anchor pair j
and k. Let 4 x) = hij + hjx be the hop count of the com-
pound shortest path, observed at normal node i, between
anchors j and k. Denote the expected hop count between
the anchors by h]’.kk. The normal node can easily detect
whether the compound shortest path is detoured by com-
paring ;(jx) and h]’.kk. If by = h;.“k, the compound
shortest path corresponds to the direct path between the
anchors, and the shortest paths from the normal node
to the anchors also correspond to their direct paths. If
hi(jky > h., the compound shortest path is deviated from
the direct path between the anchors, and the shortest
paths from the normal node to the anchors are detoured.
Define the difference between () and /z;; as the path
deviation.

The problem here is to find the expected hop count
between anchors. The expected hop count between two
anchors (an anchor pair) indicates the hop count that is
obtainable if nodes are uniformly deployed and any net-
work anisotropy does not exist. Then, the expected hop
count between two anchors j and k can be computed with
their distance dj and the mean distance u; for a sin-
gle hop under the uniform node distribution. Since the
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Figure 1 Approximate shortest paths and distance estimations with circular-shaped virtual hole. The proposed algorithm approximates the
compound shortest path between two anchors as the boundary of a circular-shaped virtual hole whose size and placement are determined based

on the difference between the expected hop count and the hop count of the compound shortest path between the anchors. The distance to each
anchor is then estimated by dividing the approximate compound shortest path according to the hop counts to the anchors.

hop count has an integer value, the expected hop count
between anchors j and k is derived by

«_[9
=[] .

where [-] gives the smallest integer greater than or equal
to a number. The mean distance for one hop is computed
as

dmax
nr = / Lpr(£)de, (2)
0

where py (¢) is the probability density function of the dis-
tance between one-hop neighboring nodes, which is given
by [18]

prL(£) = 2 7l exp [—)»ﬂ(drznax - 52)] ®)

with node density A. However, (2) is defined with the
imaginary error function, which cannot be expressed in
closed form and needs an approximation for computation.
With the Riemann sum [26], (2) can be approximated as

d 3A-1 32
KL A 2AT < ‘Z’") > 8% exp [—mdfnax (1 - Az)]
§=0
(4)

where A is the number of tagged partitions. At each
node, the node density can be approximated as A =~
(n+1)/ (ndrznax) ; as a result, the mean distance computed
by each normal node can be different. Throughout this
paper, we omit the subscript indicating normal nodes in
the expected hop count and the mean distance.

3.3 Distance estimation with approximate shortest path
Our problem is to build a virtual hole between an anchor
pair given the path deviation (i.e., the difference between
the hop counts of the anchor pair’s direct and compound
shortest paths) in order to measure how much the short-
est path from a normal node to an anchor is detoured.
Recall that a circular-shaped virtual hole is considered in
this paper. Consider that normal node i observes the com-
pound shortest path of an anchor pair j and k. Let O;jx) =
(%) Vi j,k)]T and r;j(jk) be the center and radius of the
virtual hole, respectively, which is placed between the j-k
anchor pair by normal node i. Since the shortest path is
drawn along the boundary of a hole [19], the compound
shortest path can be drawn along the arc of a circular sec-
tor in our circular-shaped virtual hole model. Denote the
length of the arc (i.e., the compound shortest path) and
the central angle of the circular vector by /; ;) and w;(; ),
respectively. The geometric parameters are illustrated in
Figure 2.

The shortest path represents the total travel distance
of a packet. Hence, the length of the shortest path is
approximately as follows:

dj if igjg) = Mg

. 5
mehiGgy i Rigry > . ©)

Ligj o ~ {

From the geometry, the following relationships are read-
ily obtained:

LGy = wigjioTicjk»

@i(j.k)

‘ for  w;(jx € (0,27).
djk = 2ri(j,k) sin ( 3 )

(6)
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Dij(j ks,
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Figure 2 Geometric representation of approximate shortest path with circular-shaped virtual hole.

From the feasible region of the central angle, r;jx) €
[djx/2,00), and (6) is rearranged in terms of the central
angle to yield

i dirw;(
n( 1(1J<)> _ Gk Gk )
2 ZZL'(]‘,/()

Since there is no closed-form solution to (7), we trans-
form it into an optimization problem to be solved by an
optimization algorithm such as gradient and Newton’s
methods:

2

sin (Muk)) _ dik@iiky
2 ZZi(j,k)
subject to w;(jx) € (0,27).

min f(a)i(j,k)) =

(8)

Because this constrained optimization problem is con-
vex, the optimal central angle, denoted by a);"( ik for the
circular sector can be obtained by updating the central
angle with an optimization algorithm until it converges.
After the central angle is determined, the radius of the
virtual hole can be obtained from (6). The center of the
virtual hole is easily derived because the distances from
the center to the anchors are identical. There are two solu-
tions to the problem of finding the center of the virtual
hole, and the two solutions are symmetric to each other
with respect to the straight line connecting the anchor
pair. As a result, two possible shortest paths, which are
also symmetric to each other, can be drawn. Due to the
symmetric property, the distances from any points on the
shortest path to the anchors are identical to the distances
from the symmetric points to the anchors, irrespective of
the placement of the virtual hole.

By constructing the virtual hole based on the path devi-
ation, the compound shortest path is approximated as the
arc of the circular sector of the virtual hole. Recall that
the compound shortest path of the anchor pair is the
path connecting the two shortest paths from the normal
node to the anchors. The circular sector with central angle
a);*(j’k) then can be divided into two subsectors such that
the arcs of the two subsectors correspond to the shortest
paths to the anchors as seen in Figure 2. The central angles
of the two subsectors are calculated by

hy
Rk

wik(j,k) = ﬁlk)a);k(l,k) (10)
],

The distances from normal node i to anchors j and k are
estimated with the cosine rule which are given by

i = ity 2 (1 — cos i), 11

A

dik(jk) = ri(j,k)\/ 2 (1 — cos wi(jp))- (12)

Repeating the above procedure for different anchor
combinations, normal node i acquires A — 1 distance esti-
mates for the distance to an anchor, and the final distance
estimate to anchor j is determined as follows:

dij =Y Wik, (13)

k#j
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where j, k € Q4 and wy(; 1 is the weight of distance esti-

mate of,-j( jk)- Since the approximate shortest paths are not
accurate physical representations, the distance estimates
may be inaccurate with heavily detoured paths due to
the variety of the paths. Another reason for inaccurate
distance estimation in the proposed algorithm is the
path duplicate problem; the separately measured short-
est paths from the normal node to the anchor pair are
duplicated with each other. Due to the path duplicate, the
shortest paths to the anchors are considered to be more
detoured than the actual paths. To minimize the effects
of the detoured paths and the path duplicate problem in
distance estimation, a two-stage weight allocation is pro-
posed. In the first stage, the weight w;;; 1) is computed as

1

e (14)
i — hicjpo|?

Wij(jk) X

where the difference between % and /;j x) represents the
possibility of the path duplicate. It is normalized such that
Dok £ Wij(jJo = 1. The second-stage weight is calculated as

Wij(jk)

— (15)
5 — hicjio|?

Wij(j k) O

where the difference between the expected and measured
hop counts represents the extent of the detour of the path.
With the weight normalization as in the first stage,

Wij(j.k)

= . (16)
Dkt Wik

Wij(jk) =

Through the two-stage weight computation, the dis-
tance estimate with the shortest path considered to be the
direct path has the largest weight.

3.4 Localization based on least squares estimation

We briefly explain a least squares localization algorithm
in this subsection. From the distance estimates to the
anchors, the following linear measurements are obtained:

A2 A2
— 20— ) =29 (y—yk) = djj—dy—p; 1 *+llpell > (17)

forj=1,2,...,A—1,k=j+1,j+2,...,A,andj, k € Q4.
The location of normal node i is estimated with the least
squares estimation,

-1
pi = (HTH> H'z = [&i,yi]T, (18)
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where measurement matrix H is

H=-2x[(p1—p2) -~ P —Pr) - (PA—1—PA)]T

and measurement vector z; is

- A2 A2
d;y —dyp — Ip1ll* + lIp2|?
Z;,=

A2 A2 '
d;’,’ - dik - ||Pj||2 + ||Pk||2

A2 2 '
| dig_1 —diy — Ipa=11* + lIpall®

The proposed algorithm running on each normal node
i is summarized in Algorithm 1.

Algorithm 1 Multihop range-free localization with
approximate shortest path
Input:
Anchor knowledge set received from anchors j and k:
the location information of the anchors and minimum
hop count to each anchor, stored as {p;, px, %;j, hix };
Output: Location estimate p; of node .
1: set RefPosition<— ¢ and EstDistance < J;
2. compute u;—(4);
3. for all anchor combination j and k do
4 sett < 0;
5
6
7

initialize a)f(].,k) <« 2m;
compute /;(jx) and dj;
: compute hj*k and /;jn—(1), (5);
8: while | f (wf(j’ o) (wf(_j}())|>Threshold ort=0do

l

9: update a)f(j;%() via an optimization algorithm;
10: increment ¢ by 1;
11: end while—(8)
. * t .
2 O T Pk
13: compute ry(j ) —(6);

14: divide a);k(/.’k) into wy;(j k) and a)ik(j,k)_(9)¢ (10);
15: compute djj(jx) and digjp—(11), (12);

16: compute w;j(j k) and Wi(j0n—(14);

17: end for

18: for all anchor j do

19: stack p; into RefPosition;

20: normalize V.Vij(j,k) such that Z wij(j,k) =1, Vk,
21: compute w;jj ) —(15);

22: compute w;ijx—(16);

23: compute Jij—(13);

24: stack 62,'/ into EstDistance;

25: end for

26: p; < LSEMultilateration(RefPosition,EstDistance)—(18);
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4 Performance evaluation and analysis
In this section, we show the effectiveness of the pro-
posed algorithm via MATLAB simulations. The estima-
tion accuracy of the proposed algorithm is compared to
those of the DV-Hop [11], LAEP [18], and supervised
anchor [21] algorithms under varying network configu-
rations. Other algorithms that run as the DV-Hop algo-
rithm without specific network configurations are not
included in the performance comparison. To evaluate and
compare the performances of the range-free localization
algorithms, the distance and location estimation errors
are computed. The normalized error of distance estimate
from normal node i to anchor j is calculated by &;; = | 0ZL] —
dij|/dmax for i € Qn,j € Q4. Note that a?ij # 0. The nor-
malized localization error of normal node i with distance
estimates to at least three anchors is y; = ||p; — pill/dmax-
We randomly distribute 300 normal nodes over
10dmax X 10dmax irregular regions and vary anchor num-
bers from 4 to 14. The irregular regions used in the
simulations are the C-shaped, E-shaped, and S-shaped
regions as shown in Figure 3. In addition to the large
hole, small holes may exist as well due to the nonuniform
node distribution and radio irregularity. As mentioned in
Section 2, the QUDG model is adopted for irregular radio
propagation.

4.1 Path deviation and communication overhead
Figure 4 shows how the path deviation, which is computed
as the difference between the expected hop count and
measured hop count of an anchor-to-normal pair, changes
with the increase of the DOI ratio and the hop count. The
path deviation represents the extent of the detour of the
shortest path between a normal node and an anchor.

The path deviation increases as the hop count increases
and radio irregularity becomes more severe. This indi-
cates that the shortest path between a node pair is more
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likely detoured at high DOI ratio and large hop count.
In particular, for DOI = 2, the nodes that are 30 hops
away from anchors can, in fact, reach the anchors within
approximately 8 hops in the absence of the network
anisotropy. The path deviation for the nodes at 30 hops
is approximately 19 hops even without radio irregular-
ity. Therefore, the need of the detoured path detection is
emphasized for nodes that large hops away from anchors
even though the effect of radio irregularity is negligible.

The communication overhead of the proposed algo-
rithm is bounded by 20(AN) as well as the DV-Hop and
supervised anchor algorithms. These algorithms perform
flooding twice where each flooding has a communication
overhead of O(AN); each node in the network forwards
a flooding packet, originated by an anchor, at least once.
Each flooding is carried out

1. to broadcast the location information of anchors and
to learn the hop counts between nodes and anchors;
and

2. to broadcast the anchors’ average hop progresses in
the DV-Hop and supervised anchor algorithms or to
inform the hop counts between the anchors in the
proposed algorithm.

The communication overhead of the LAEP algorithm
is O(AN) because flooding is implemented only once in
the LAEP algorithm. Although the proposed algorithm
has a twofold communication overhead of the LAEP algo-
rithm, its overhead is insignificant compared to the other
algorithms.

4.2 Distance estimation error

Figures 5, 6, 7 show how distance estimation errors
of the DV-Hop, LAEP, supervised anchor, and pro-
posed algorithms change with the increase of the hop
count in different irregular regions. In the simulations,

Y (da

)

max:

Figure 3 Exemplary topologies under irregular regions. In irregular regions, one or two large holes are placed and nodes are deployed away
from the holes. According to the placements of the large holes, C-shaped (left), E-shaped (middle), and S-shaped (right) networks are formed.
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Path deviation (hops)
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Hop count to anchor

Figure 4 Path deviation with respect to DOI ratios and hop
counts.

DOI = 1.5 and 14 anchors are randomly deployed in
the C-shaped, E-shaped, and S-shaped regions. As seen
in these figures, the distance estimation accuracy of
the range-free algorithms decreases as the hop count
increases. The performance of the DV-Hop, LAEP, and
supervised anchor algorithms starts to deteriorate dra-
matically at around 15 hops. By using the DV-Hop,
LAEP, and supervised anchor algorithms, the distance
estimation errors at 30 hops reach approximately 5.4dyax,
10.5dmax, and 6.6dmax in the C-shaped region; 3.8dmax,
4.5dmax, and 6.3dmayx in the E-shaped region; and 3.6dmax,
8.8dmax, and 3.7dmax in the S-shaped region. In contrast to
the three localization algorithms, the proposed algorithm
achieves the distance estimation errors less than 2dmax
regardless of the hop counts and the regions. Through
these simulations, it is demonstrated that the proposed
algorithm significantly improves the accuracy of distance
estimates in anisotropic networks.

To evaluate the performance of the range-free algo-
rithms with a small number of anchors, 4 anchors are

_
N

—=—DV-Hop

——LAEP

[| —e— Supervised anchor : : A
—v—Proposed p

—_
o

Distance estimation error (d__ )
max

00 3 6 9 12 15 18 21 24 27 30

Hop count to anchor

Figure 6 Distance estimation errors of range-free localization
algorithms in E-shaped regions with 14 anchors.

randomly distributed in the S-shaped regions and DOI =
1.5. The result is presented in Figure 8. Compared with
the result in Figure 7, the distance estimation errors of
the range-free algorithms, except for the LAEP algorithm,
increase. This is because that the LAEP algorithm uses
only local node density, which is stationary with change in
anchor numbers, in distance estimations. Even though the
performance of the proposed algorithm is degraded with
the reduced number of anchors, it still provides distance
estimates with significantly less errors compared to the
other algorithms. Furthermore, the proposed algorithm
achieves better performance with only 4 anchors than the
other algorithms using 12 anchors.

Although the LAEP and supervised anchor algorithms
were proposed for anisotropic sensor networks, they do
not show any significant performance improvement over
the DV-Hop algorithm in the simulations. As the LAEP
algorithm copes with nonuniform node distribution, it
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Figure 5 Distance estimation errors of range-free localization
algorithms in C-shaped regions with 14 anchors.
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Figure 8 Distance estimation errors of range-free localization
algorithms in S-shaped regions with 4 anchors.

is able to estimate the distance between one-hop neigh-
boring nodes precisely. However, the distance between
multihop-away nodes is determined as the sum of the
distance estimates between one-hop neighboring nodes
without any consideration of other network anisotropy.
For this reason, the LAEP algorithm encounters avalanche
errors in distance estimations for nodes having large hops
to anchors. The supervised anchor algorithm allows the
nodes that are one-hop away from the anchors to use the
best anchor subsets determined by the one-hop neighbor-
ing anchors. Since the other nodes use the anchor subset
that are obtained based on the location estimates of one-
hop neighboring normal nodes, improper anchor subsets
can be derived. Numerous anchors are required to pre-
vent this problem, but since the number of anchors is far
less than the number of normal nodes in the simulations,
considerably large errors are observed as well as the LAEP
algorithm.
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Figure 10 Localization errors of range-free localization

algorithms with respect to anchor numbers in E-shaped region.

4.3 Localization error

Figures 9, 10, 11 show the localization errors of the range-
free algorithms by varying the number of anchors in the
C-shaped, E-shaped, and S-shaped regions, respectively.
The DOl ratio is set to 1.5 in the simulations. The localiza-
tion accuracy of the range-free algorithms is enhanced as
the number of anchors increases. Especially, the localiza-
tion errors of the supervised anchor algorithm are rapidly
reduced by increasing the number of anchors. This is
because nodes are able to effectively select a set of anchors
whose paths are rarely detoured when a sufficient num-
ber of anchors are deployed in the supervised anchor
algorithm. Since the proposed algorithm can detect the
detoured path with a small number of anchors, it has
higher localization accuracy than the other localization
algorithms in any conditions. The proposed algorithm
achieves similar or even higher localization accuracy with
4 anchors than the other algorithms with 14 anchors in
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Figure 9 Localization errors of range-free localization
algorithms with respect to anchor numbers in C-shaped region.
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algorithms with respect to DOI ratios in C-shaped region.
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Figure 14 Localization errors of range-free localization
algorithms with respect to DOI ratios in S-shaped region.

the C-shaped, E-shaped, and S-shaped regions. The sim-
ulation results showed the network anisotropy can be
handled with only few anchors by using the proposed
algorithm.

Performance of the range-free localization algorithms
under different DOI ratios is evaluated, and the results are
shown in Figures 12, 13, 14. In the simulations, the DOI
ratios vary from 1 to 2. Recall that the link connection
is perfectly established between nodes within the maxi-
mum transmission radius from each other when DOI =
1, and the distance that guarantees a perfect link between
nodes is reduced to half of the maximum transmission
radius for DOI = 2. Therefore, the shortest path between
nodes is more likely detoured as the DOI ratio increases
(see Figure 4). The increase of detoured paths at high DOI
ratios leads to performance degradation of the range-free
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Figure 13 Localization errors of range-free localization
algorithms with respect to DOI ratios in E-shaped region.

algorithms as shown in the figures. It has to be empha-
sized that the performance degradation of the proposed
algorithm from radio irregularity is marginal while the
performance of the other algorithms is degraded dramat-
ically. Moreover, regardless of the DOI ratios, the local-
ization errors of the proposed algorithm are less than or
nearly equal to 2dm,x; whereas, the other algorithms pro-
vide location estimates with errors over 2dax €ven in the
case of DOl = 1.

Figures 15, 16, 17, 18 show the localization errors of the
range-free algorithms at different node locations under
DOI = 2. For the ease of visualization, the simulations
were conducted only in the C-shaped region. The local-
ization errors of the proposed algorithm are mostly less
than those of the DV-Hop, LAEP, and supervised anchor
algorithms at any locations. Especially, the localization
accuracy at the hole boundaries and at the beginning
and end of ‘C’ is significantly improved with the pro-
posed algorithm. Nodes located at those areas tend to
have heavily detoured shortest paths to distant anchors.

max)

Localization error (d.

hma) x(d

max

Figure 15 Localization errors of DV-Hop algorithm at different
node locations in C-shaped region.
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Figure 18 Localization errors of proposed algorithm at different
node locations in C-shaped region.

At the corners of the C-shaped region, the localiza-
tion errors of the proposed algorithm are higher than
those at the other locations. It is possible that the per-
formance at the corners is relatively poor because the
shortest paths to most of the anchors are duplicated with
each other. Nevertheless, the proposed algorithm achieves
better or similar performance compared to the other
algorithms.

5 Conclusions

A multihop range-free localization algorithm with
approximate shortest paths was proposed for anisotropic
networks. In the proposed algorithm, each normal node
approximates the shortest paths to two arbitrary anchors
with a virtual hole placed between the anchors and esti-
mates the distances to the anchors by considering how
much their approximate shortest paths are detoured. By
using approximate shortest paths, the proposed algorithm
can effectively handle with the anisotropic network local-
ization problem with fewer anchors compared to existing
range-free algorithms. Through extensive computer sim-
ulations, we demonstrated that the proposed algorithm
enhances the distance estimation accuracy and achieves

o

N

Localization error (d__ )
max’
oo w o ©

x(d_)

max’

max

Figure 17 Localization errors of supervised anchor algorithm at
different node locations in C-shaped region.

improved localization performance than other range-free
algorithms with a small number of anchors.
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