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Abstract

Cognitive radio has more extensive application in recent years, and it may operate in complex wireless
environmental condition such as communication systems with time-variant multipath flat-fading channel. As an
essential technology for cognitive radio, most existing spectrum sensing methods are designed for time-invariant
propagation channel; thus, it could be extremely difficult to achieve acceptable sensing performance when we apply
them to deal with time-variant multipath fading channel. In order to overcome this obstacle, we design a novel
spectrum sensing method in this investigation. Firstly, a dynamic state-space model is proposed in which two different
hidden Markov models are employed to abstract the evolution of primary user state and time-variant multipath
flat-fading channel gain. Based on the dynamic state-space model, the spectrum sensing problem is formulated as
blind estimation problem. Relying on maximum a posteriori probability criterion and particle filtering technology, a joint
estimation algorithm of the time-variant channel gain and primary user state is presented. Experimental simulations
demonstrate the superior performance of our presented sensing scheme, which could be used potentially in realistic
cognitive radio systems.

Keywords: Spectrum sensing; Time-variant multipath flat-fading channel; Dynamic state-space model; Joint estimation;
Particle filtering
1 Introduction
The development of various wireless technologies and
an increasing demand for high data rate wireless services
result in growing shortage of spectrum resources. How-
ever, the statistical report given by the Federal Commu-
nication Commission (FCC) indicates that the spectrum
utilization in many frequency bands is very low [1]. This
phenomenon is caused by the mismatch of conventional
static spectrum management and the dynamic way radio
resources are used. As a result, the contradiction be-
tween scarce frequency resources and under-utilization
of spectrum restricts the development of wireless commu-
nication seriously. Cognitive radio (CR) technique is a
promising method to improve the efficiency of spectrum
utilization significantly by allowing secondary users (SUs)
to utilize the allocated frequency bands when these bands
are detected inactive [2-5]. In order to take advantage of
CR, a number of wireless standards have developed
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including cognitive features, such as IEEE 802.22 [6],
IEEE 802.11 k [7], and Bluetooth [8]. IEEE 802.22 standard
is known as a cognitive radio standard which contains
cognitive features and spectrum sensing requirements.
In order to ensure the quality of service (QoS) of primary

users (PUs), the SUs should detect the allocated spectrum
frequently, the reasons involve two aspects: firstly, if the al-
located spectrum is detected inactive, the SUs could utilize
it for communication; secondly, whenever the PUs become
active, the SUs must vacate the channel immediately. For
reasons mentioned above, spectrum sensing is a funda-
mental and critical element of CR, and the main propose
of spectrum sensing is to detect spectrum accurately and
determine whether it is available for SUs at a particular
place and time [9]. There have been several classical
methods of spectrum sensing. The most common methods
are energy detection (ED) [10,11], matched filtering detec-
tion (MFD) [12,13], cyclostationary feature detection [14],
and waveform-based sensing [15]. Among these methods,
MFD could achieve the highest sensing accuracy in the
shortest sensing time [16]. Given that pilot, synchronization
code, and spread spectrum code are utilized in quantities
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of wireless communication systems, MFD has a wide range
of application. However, MFD is a parametric hypothesis
method from the statistic view, so the sensing performance
is susceptible to the parameters' value setup; the determin-
ation of parameters' value is a much more formidable
undertaking, and the accuracy of MFD may degrade signifi-
cantly under time-variant multipath flat-fading (TVMFF)
channels which are common in the next-generation com-
munication systems. It is worthy to note that CR technol-
ogy is expected to be utilized in the next-generation
communication systems such as mobile communication
and indoor communication, and there is no effective
spectrum sensing method to deal with TVMFF channels.
In this paper, we propose a new method which could

greatly improve sensing performance over TVMFF channel.
The state of PU is decided by detecting whether pilot,
synchronization code, or spread spectrum code exists. The
innovation of our proposed algorithm involves two aspects:
firstly, a novel dynamic state-space model (DSM) is designed
to describe aptly the actual spectrum sensing process over
TVMFF channel based on matched filtering (MF). In this
model, a two-state Markov chain is employed to characterize
the evolution of PU state. Given that the transmitted signal
of PU and channel amplitude are independent of each other,
we adopt data-independent finite state Markov channel
(FSMC) to model the TVMFF channel [17]. On these bases,
by referring to the traditional MPD sensing scheme, the re-
ceived signal processed by MF is viewed as the observation
for SU; thus, the proposed algorithm could inherit the ad-
vantages of MFD such as rapidity and accuracy. Secondly,
based on the DSM established, we propose a promising algo-
rithm which could estimate the TVMFF channel gain and
the PU state jointly and in real time. Compared with
traditional sensing methods which are overwhelmed by
time-variant channels and covariance absolute value
(CAV) detection algorithm which is newly introduced
and has found a wide application recently [18], the ori-
ginality of our algorithm is that it could estimate the
fading channel gain accurately; thus, the sensing per-
formance based on the result of channel estimation
Figure 1 The block diagram of DSM.
could be improved significantly, and the SU could gain
insights into surrounding environmental conditions.
The rest of this paper is organized as follows. Section 2

provides the DSM of spectrum sensing over TVMFF
channel. In Section 3, we present a simple review of max-
imum a posteriori probability (MAP) criterion and particle
filtering [19]. On this foundation, the joint blind estima-
tion algorithm of PU state and fading channel gain is in-
troduced in detail in Section 4. Numerical simulations and
performance analysis are provided in Section 5. Finally,
conclusion is generalized in Section 6.

2 System model
We consider a spectrum sensing communication system,
in which the transmitted signal of PU is contaminated
by a TVMFF channel with additive Gaussian white noise.
The block diagram of this system is shown in Figure 1.
Given that the state of PU is established by detecting
whether the pilot of PU signal exists, the xn represents
the pilot sequence at the nth sensing slot. The TVMFF
channel impulse response is denoted by hn. vn represents
additive Gaussian white noise, and it is a sequence con-
sisting of zero-mean independent and identically distrib-
uted (i.i.d.) random variables, i.e., vn ~N(0, σ2I). At the
PU receiver end, the received signal is processed by MF
and then we can get the observation denoted by yn.
Because both the PU state and channel gain have a

time-variant characteristic, the DSM we designed gives
full consideration to the evolution of these two states
and could be represented as follows:

Sxn ¼ Γ Sxn−1ð Þ ð1Þ
hn ¼ Φ hn−1ð Þ ð2Þ
yn ¼ Ψ hn; xn; vnð Þ ð3Þ

The state of PU Sxn and the TVMFF channel gain hn are
hidden to SU, and they evolve according to the state equa-
tions Γ(.) and Φ(.), respectively, Based on the observation
equation Ψ(.), the observation yn is related to the channel



Zhao et al. EURASIP Journal on Wireless Communications and Networking 2014, 2014:84 Page 3 of 13
http://jwcn.eurasipjournals.com/content/2014/1/84
amplitude, sampling value of transmitted pilot, and noise
level. We will describe these three equations in more detail
in the following sections.
In this paper, we set the length of the pilot as M and the

total number of multipath as L. For the sake of conveni-
ence, the sampling size in one sensing slot equals to the
length of pilot and the sampling point is supposed to keep
accordance with the change of pilot elements. Further-
more, the PU state is assumed unchanged in a sensing
slot. The period of sensing slot is set to be Ts, the sampling
period is illustrated by τ, and the channel coherent time is
denoted by Tc. There are quantitative relationships among
the aforementioned variables, i.e., Ts =M× τ, Tc =Ts/fd.
Here, fd represents the Doppler frequency.

2.1 PU states
The working state of PU comes in two forms: inactive
and active. We utilize S0 and S1 to represent them, re-
spectively. They transfer to each other with specified
probability, as shown in Figure 2. In this figure p01 = 1 −
p00 and p10 = 1 − p11. The configurations of the transition
probability depend on practical application.
There are two hypotheses: (1) H0 denotes that the pilot

signal does not exist, i.e., the PU is inactive. (2) H1 repre-
sents that the pilot signal exists, i.e., the PU is active
[16,20]. We utilize sc to denote the pilot, and the trans-
mit signal in nth sensing slot could be written as

xn ¼ 0 H0

sc H1

�
ð4Þ

2.2 TVMFF channel model
Time-variant multipath flat-fading channels with memory
are very common in wireless communication systems, es-
pecially in mobile radio communication systems [21]. This
paper's goal is to provide an efficient method to alleviate
the noticeable decline in sensing performance caused by
TVMFF channel; thus; adopting an accurate channel model
becomes absolutely critical. In this paper, the multipath
channel is modeled as a linear filter with a time-variant im-
pulse response, and different channels are independent
with each other. Furthermore, we utilize the first-order
FSMC to model every single channel which is regarded as
a finite-state Markov chain. The first-order FSMC model
Figure 2 The two-state Markov transition model of the PU state.
means that the current channel state is not associated with
previous states or future states but the right prior state. In
the following part, we will firstly propose the TVMFF
channel model and then introduce how to utilize FSMC
to model every single channel.

2.2.1 TVMFF channel model
As the other hidden state, the impulse response of time-
variant multipath flat-fading channel at the nth sensing
slot could be written as

Hn ¼
XL−1
l¼0

hl;nδ t−nTs−lτð Þ n ¼ 0; 1;…;N−1 ð5Þ

As mentioned above, L represents the total number of
multipath channel components. Based on the reference
of excess delay bins which means discretizing the multi-
path delay axis into equal time delay segments, we set
the delay time of the lth channel to be lτ. What needs to
be stressed is that the delay time of every channel is
fixed and time-invariant but the amplitude is time-
variant. We use hn to denote a vector contained by am-
plitudes of all channels at the nth sensing slot, and it
could be showed as hn = [h0,n,h1,n,…,hL − 1,n]

T. Here, [.]T

stands for the transpose of a matrix or vector.
It is worthy to note that the fading channel considered

is set to be slow fading. It means that the channel im-
pulse response changes much slower than the period of
sensing slot, i.e., Tc > > Ts. In other words, the channel
gain is assumed to be unchanged over several bandwidth
intervals. For simplicity, Tc is supposed to be multiples
of Ts, i.e., Tc = JTs, where J is an integer which is much
larger than 1. Therefore, due to the different location in
a channel gain period, the sensing slots could be classi-
fied into two categories: first slot and non-first slot, and
they are defined as (6). The frame structure is shown in
Figure 3. It is obvious that the channel gain is possible
to transfer into another state only in the first slot.

mod nT s;T cð Þ ¼ 0; First slot
≠ 0; Non‐first slot

n ¼ 0;…;N−1
�

ð6Þ

As mentioned above, the TVMFF channel gain and the
PU state will be estimated jointly and in real time. To
guarantee the accuracy of estimation, the channel gain will
be estimated in every sensing slot according to different
mechanisms which will be introduced in detail in Section
4.2 and then the PU state could be detected based on the
observation and estimation result of channel gain.

2.2.2 FSMC model of single channel
Because of its wide versatility and computational simplicity,
the FSMC model has found wide application for modeling



Figure 3 Frame structure of spectrum sensing.
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wireless flat-fading channels [17,22,23]. The main idea of
data-independent FSMC model is partitioning each chan-
nel gain into K different discrete states, and every state has
its own corresponding steady-state probability and region
boundaries of channel amplitude. Moreover, different states
may transfer to each other in specified transition probabil-
ities. We will give the specific measures to calculate the
aforementioned parameters in the following.
Firstly, the random fading gain of each channel is set

to follow a Weibull distribution with different parame-
ters. The probability distribution function (PDF) of the
lth fading channel gain is given by [24]:

f hlð Þ ¼
βl
λl

hl
λl

� �βl−1

exp
hl

βl

λl
βl

 !
hl≥0

0 hl < 0

;

8><>: ð7Þ

where hl represents the amplitude of the lth channel; λl > 0
is a scale parameter, and βl > 0 is a shape parameter. It
should be noted that l represents the label of a single chan-
nel, and l = 0,1,…, L − 1.
We set the steady-state probabilities of all FSMC states

as equal, i.e., πl.k = 1/K, and the region boundaries could
be achieved by [25]

υl;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ln 1−

kð Þ
K

� �
βl

s
�λl k ¼ 0; 1;…;K−1 ð8Þ

The non-overlapping regions of the lth partitioned chan-
nel amplitude hl could be denoted by

V l ¼
n

υl;0; υl;1
� �

; υl;1; υl;2
� �

;…; υl;K−1;∞
� �o ð9Þ

The statistical channel amplitude corresponding to the
kth state is defined as

hl;k ¼

Z vl;kþ1

vl;k

hl⋅f hlð ÞdhlZ vl:kþ1

vl;k

f hlð Þdhl
k ¼ 0;…;K−1 ð10Þ

Secondly, we utilize Nk to denote the level crossing
rate (LCR) which is defined as the number of times per
second that the fading amplitude crosses the amplitude
boundary threshold υk in a downward direction, and Rk rep-
resents the average number of symbols that are transmitted
in state k per second. The configurations of Nk and Rk could
be calculated by (11) and (12), respectively [25].

Nl;k ¼ f d
λl

2βl
υ
βl−1
l;k exp − 1þ υ

βl
l;k=λ

k
l

� 	h i
Γ

1
βl

� �
ð11Þ

Rl:k ¼ πl;k

T s
ð12Þ

Finally, the transition probability between the channel
states is formulated based on the aforementioned parame-
ters. The transition probability between the lth channel
states is defined as the probability of transition from state
k at time index n − 1 to state k′ at time index n, and it
could be written as

pl;k→k 0≜Pr Shl;n ¼ k 0jShl;n−1 ¼ k

 �

k; k 0 ¼ 0; 1;…;K−1

ð13Þ
To calculate the transition probabilities defined in (13),

we make an assumption that each channel state can have
no more than three outgoing and incoming transitions
as shown in Figure 4 [26]. In other words, the channel
state could only stay in the same state or transfer to its
immediate neighboring state at next time index, and it
could be denoted by

p


Shl;n ¼ k 0 Shl;n−1 ¼ k

�� � ¼ ( pl;k→k 0 k 0−kj j≤1
0 k 0−kj j > 1

k; k 0 ¼ 0;…;K−1

ð14Þ

The general computational method of transition prob-
abilities is given by (15), (16), and (17) [26]:

pl;k→ k−1ð Þ≈
Nl;k

Rl;k
k ¼ 1; 2;…;K−1 ð15Þ

pl;k→ kþ1ð Þ≈
Nl;kþ1

Rl;k
k ¼ 0; 1;…;K−2 ð16Þ

pl;k→k ¼
1−pl;k→ k−1ð Þ−pl;k→ kþ1ð Þ k ¼ 1; 2;…;K−2
1−pl;k→ kþ1ð Þ k ¼ 0
1−pl;k→ k−1ð Þ k ¼ K−1

8<:
ð17Þ

In this situation, the transitional probability matrix
(TPM) Pl of the lth channel contained by transitional
probability between channel states is a matrix whose
non-zero elements only occur in principal diagonal and
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the two diagonal lines next to the principal diagonal,
and it could be represented as follows:
Pl ¼

pl;0→0 pl;0→1 0 … 0 0 0

pl;1→0 pl;1→1 pl;1→2 … 0 0 0

0 pl;2→1 pl;2→2 … 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ pl; K−3ð Þ→ K−3ð Þ pl; K−3ð Þ→ K−2ð Þ 0
0 0 0 … pl; K−2ð Þ→ K−3ð Þ pl; K−2ð Þ→ K−2ð Þ pl; K−2ð Þ→ K−1ð Þ
0 0 0 ⋯ 0 pl; K−1ð Þ→ K−2ð Þ pl; K−1ð Þ→ K−1ð Þ

2666666664

3777777775
K�K

ð18Þ
Because any channel is independent of each other.
The transition probability between channel states is de-
fined by

hn∼pðhn hn−1j Þ ¼
YL−1
l¼0

p hl;njhl;n−1

 �

¼
YL−1
l¼0

p Shl;n ¼ kjShl;n ¼ k 0

 � ¼YL−1

l¼0

pl;k→k 0

ð19Þ

2.3 Observation
The achievement of observation contains three steps:
firstly, the pilot sequence of PU transmitted signal is
convolved by the multipath channel impulse response.
Secondly, the convolution is added by additive Gaussian
white noise. Finally, the received signal is processed by
MF and then we can get the observation. In summary,
this process could be represented by

yn ¼ xn⊗Hn þ vnð Þ⊗sc ¼ XT
n � hn þ vTn


 �T � sc

ð20Þ

Here, vn = [vn,0, vn,1,…, vn, M − 1] and vn,m represents
the random additive noise value with zero mean and
variance σ2, i.e., vn,m ~N(0, σ2). sc is a column vector
whose length is M. ‘⨂’denotes convolution operation. Xn
Figure 4 First-order FSMC transition model of the TVFF channel.
represents a matrix contained by sampled signal, and it
could be written as

Xn ¼

xn;0 xn;1 … xn;M−2 xn;M−1

xn−1;M−1 xn;0 … xn;M−3 xn;M−2

⋮ ⋮ ⋱ ⋮ ⋮
xn−1;M−Lþ2 xn−1;M−Lþ3 … xn;M−L xn;M−Lþ1

xn−1;M−Lþ1 xn−1;M−Lþ2 … xn;M−L−1 xn;M−L

266664
377775
L�M

ð21Þ

3 Sequential MAP estimation and particle filtering
The fundamental purpose of this investigation is to design
an algorithm which could detect the PU state when the
channel is time-variant, and its parameters are unknown to
the SU. Based on the DSM described in Section 2, we adopt
Bayesian inference and PF methodology to derive a blind
scheme for MAP data detection that operates sequentially
and recursively. In this section, we will make a detailed
introduction about the MAP criterion and PF technology.

3.1 Sequential MAP estimation
From the Bayesian view point, MAP criterion is an esti-
mation method that chooses an estimation of unknown
variable which could maximize the posterior probability
distribution function, i.e.,

θ̂ ¼ arg max
θ

p θjyð Þ ð22Þ

Here, θ is the unknown variable to be estimated, and y
denotes the observation. As we all know, p(θ|y) = p(y|θ)p
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(θ)/p(y); thus, the MAP estimation of θ could be repre-
sented as

θ̂ ¼ arg max
θ

p yjθð Þp θð Þ
p yð Þ ¼ arg max

θ
p yjθð Þp θð Þ ð23Þ

The aim of this paper is to estimate the TVMFF channel
gain and PU state jointly based on the observed symbols.
From the Bayesian perspective, the joint estimation could
be achieved by MAP criterion, and it could be written as

ĥ0:n; x̂0:n

� 	 MAPð Þ
¼ arg max

h∈H;x∈X
p h0:n; x0:njy0:nð Þ½ �

¼ arg max
h∈H;x∈X

p y0:njh0:n; x0:nð Þp h0:n; x0:nð Þ½ �

ð24Þ
It is obvious from (24) that the MAP estimation leads

to extremely high computational complexity. To solve
this problem, we can re-write (24) as an iterative and se-
quential form.

p h0:n; x0:njy0:nð Þ ¼ p ynjh0:n; x0:n; y0:n−1ð Þp hn; xnjh0:n−1; x0:n−1ð Þ
p h0:n−1; x0:n−1jy0:n−1ð Þ

¼ p h0; x0ð Þp y0jh0; x0ð Þ
Yn
n†¼1

p yn† jh0:n† ; x0:n† ; y0:n†−1ð Þ
Yn
n†¼1

p hn; xnjh0:n−1; x0:n−1ð Þ
ð25Þ

But, unfortunately, attributed to the dynamic charac-
teristics of the proposed DSM, the involved prior prob-
ability p(hn,xn|h0:n − 1,x0:n − 1) and likelihood function
p(yn

†|h0:n
†, x0:n

†, y0:n
†
− 1) are time-variant. As a result, the

above sequential MAP procedure represented in (25) is
only a theoretical solution of the Bayesian statistical infer-
ence, and it is almost impossible to derive in practical
applications, so we should resort to a flexible method to
approximate the complex distribution.
As a powerful methodology for sequential signal pro-

cessing, PF could address this approximation problem
effectively, and we will describe this technology in detail
in the next part.

3.2 PF technology
PF is a sequential Monte Carlo methodology based on se-
quential importance sampling (SIS). The basic idea of PF
is that the probability distribution of estimation is approx-
imated with discrete random particles which are assigned
to different weights, and it could be represented as (26)

ẑ MAPð Þ
0:n ¼ arg max

z0:n
p z0:njy0:nð Þ≈ arg max

z0:n

XI
i¼1

w ið Þ
n δ z0:n−z

ið Þ
0:n

� 	" #
ð26Þ
Here, z(i) n represents the particles whose associated
normalized weights are denoted by w(i) n, and I repre-
sents the total number of particles. δ(.) is the Dirac delta
function, δ(.) = 1 if z = z (i) and δ(.) = 0 otherwise. The
marginal data detection of (26) at time n could be calcu-
lated by

ẑ MAPð Þ
n ¼ arg max

zn

XI
i¼1

w ið Þ
n δ zn−z ið Þ

n

� 	" #
ð27Þ

It could be obtained from (27) that the main operation
steps of PF are generating particles and updating the asso-
ciated weights when the new observation arrives. The for-
mulas for computing are shown as (28), (29), and (30) [27].

z ið Þ
n eπ znjz0:n−1; y0:nð Þ ð28Þ

~w ið Þ
n ¼ w ið Þ

n−1

p ynjz ið Þ
0:n; y0:n−1

� 	
π z ið Þ

n jz ið Þ
0:n−1; y0:n

� 	 ð29Þ

w ið Þ
n ¼ ~w ið Þ

nXI

i¼0
~w ið Þ
n

ð30Þ

Here, the π(zn|z0:n−1,y0:n) denotes the importance PDF
with the same support of PDF p(zn|z0:n−1,y0:n) but is
much easier to sample from. It should be noted that the
importance PDF and the likelihood function p(yn|z(i) 0:
n-1,y0:n-1) are not fixed but changes according to prac-
tical applications. To sum up, the concrete procedure of
basic PF algorithm is presented in Algorithm 1 [27].
4 Joint estimation algorithm
The fading channel considered is set to be slow fading,
and the coherence time of channel Tc is multiples of Ts,
i.e., Tc = JTs. It means that the channel gain remains con-
stant in the j × Jth to (j + 1) × J − 1th sensing slot, here,
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j = 0,1..,N/J. In order to improve the accuracy of esti-
mation, the channel gain will be estimated in every
sensing slot based on the real-time observation. But,
unfortunately, it is apparent from (20) that the channel
gain hn will disappear thoroughly when the PU is in-
active, i.e., xn = 0, so the estimation of the channel gain
becomes unconquerable in this situation. Besides, the
channel gain is possible to transfer into another state
only in the first slot. For reasons as noted above, we
design different mechanisms to estimate the channel
gain which is more practical and flexible. More specif-
ically, the novel estimation algorithm designed consists
of three steps. i.e., (1) coarse detection, where the PU
state is detected roughly in this step; (2) the estimation
of fading channel gain based on the MAP criterion;
and (3) the PF-based PU state detection. These steps
will be described in detail as follows.

4.1 Coarse detection
The purpose of this step is to detect the PU state roughly
in order to provide a reference for the mechanism choice
of channel gain. We get an initial result by comparing the
observation with a specified threshold; the threshold is
achieved by

τCD ¼ 1
2
� sc⊗hminð Þ⊗sc½ � ð31Þ

Here, hmin represents a vector which consists of the mini-
mum amplitude of every channel, hmin = [min(h0,0:K − 1),
min (h1,0:K − 1),…,min(hL − 1,0:K − 1)]

T . Based on the deci-
sion criterion above, we could get the coarse detection as

x†n ¼
0 yn < τCD
sc yn ≥ τCD

�
ð32Þ

Note that the purpose of coarse detection in this in-
vestigation is to provide the basis for the choice of
mechanism which will be applied to estimate the chan-
nel gain. Even though the accuracy of coarse detection is
relatively low, the subsequent step will modify the esti-
mation result for the purpose of accurate detection.

4.2 Estimation of TVMFF channel gain
In this section, we utilize three different mechanisms for
estimating the TVMFF channel gain. The reasons for the
choice are twofold. Firstly, as mentioned previously,
the sensing slots are classified into two categories, and the
channel gain is possible to transfer into another state only
in the first slot. Secondly, the MAP criterion for esti-
mating channel gain becomes useless when the PU
state is inactive, i.e., xn = 0; therefore, we should resort
to some other effective ways to combat this problem.
Based on the two reasons mentioned previously, this
paper presents the overall design diagram for the TVMFF
channel, and it could be divided into three situations.
If x†n = 0, and the sensing slot is the first in a channel

state period, we could obtain the estimation of hn only
based on the prior transition probability of time-variant
channel, as shown in (33).

ĥn ¼ arg max
hn∈H

p hn ĥn−1
�� 	

x†n ¼ 0& first slot
�

ð33Þ

If x†n = 0, and the sensing slot is the non-first, the esti-
mation of fading channel gain is assumed unchanged,
like (34).

ĥn ¼ ĥn−1; x†n ¼ 0 and non‐first slot ð34Þ

If x†n = sc, we could obtain the MAP estimation of
channel gain by (35).

ĥn ¼ arg max
hn∈H

p hnjĥ0:n−1; x̂0:n−1; x
†
n ¼ sc; y0:n

� 	
ð35Þ

The posterior probability in (35) could be derived as
(36), and a more detailed explanation of (36) is specified
in Appendix 1.

p hnjĥ0:n−1; x̂0:n−1; x
†
n ¼ sc; y0:n

� 	
∝p ynjhn; x

†
n ¼ sc


 �
p hnjĥn−1

� 	
ð36Þ

The likelihood function p(yn|hn, x† n = sc) in (36) fol-
lows the Gaussian distribution, and the configuration
could be calculated by

p ynjhn; x†n ¼ sc

 � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π sTc � sc

 �

σ2
q
exp

− yn− hn⊗scð Þ⊗sc½ �2
2 sTc � sc

 �

σ2

( )
ð37Þ

4.3 PF-based PU state detection
Based on the use of the Bayesian theory and SIS, particle
filtering technology shows huge potential when handing
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with blind estimation problem. The key of particle filter-
ing is approximating a complex distribution by a series
of particles with associated weights and then the MAP
estimation could be drawn, and the marginal data detec-
tion at time n is given by [28]

x̂ MAPð Þ
n ¼ arg max

xn∈X

XI
i¼1

δ xn−x ið Þ
n

� 	
w ið Þ
n

( )
ð38Þ

The process of PF technology applying for signal de-
tection covers five basic steps as mentioned in Section
3.2. We will give a specific implementation program of
these steps.
Step 1: We begin the SIS algorithm by drawing par-

ticles from the important probability distribution
function. The form of the important function varies
according to the actual situation. In this paper, we
adopt the optimal importance function, and it could
be written as

π
�
xn x ið Þ

0:n−1; ĥ0:n; y0:n

��� 	
¼ p

�
yn xn; x

ið Þ
0:n−1; ĥ0:n; y0:n−1

��� 	
p xn x ið Þ

0:n−1; ĥ0:n; y0:n−1

��� 	
≈p yn xn; ĥn

�� 	
p xn x ið Þ

n−1

��� 	���
ð39Þ

Step 2: The associated importance weights could be
computed recursively by

~w ið Þ
n ∝w ið Þ

n−1 �
p ynjx ið Þ

0:n; ĥn; y0:n−1
� 	

π x ið Þ
n jx ið Þ

0:n−1; ĥn; y0:n
� 	∝w ið Þ

n−1 � p ynjx ið Þ
n−1; ĥn

� 	
ð40Þ

The likelihood function in (40) could be calculated by
(41), that is,

p ynjx ið Þ
n−1; ĥn

� 	
¼

X
x ið Þ
n ∈ 0;scf g

p ynjx ið Þ
n ; x ið Þ

n−1; ĥn

� 	
p x ið Þ

n jx ið Þ
n−1

� 	
¼

X
x ið Þ
n ∈ 0;scf g

p ynjx ið Þ
n ; ĥn

� 	
p x ið Þ

n jx ið Þ
n−1

� 	
ð41Þ
The likelihood function in (41) could be calculated by
(42) and (37):

p
�
yn x†n ¼ 0; ĥn

�� 	
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π sTc � sc

 �

σ2
q

exp
− yn½ �2

2 sTc � sc

 �

σ2

( )
ð42Þ

Step 3: Normalize the calculated importance weights
using (30).
Step 4: The degeneracy of weight is usually inevitable

after several times of iteration, and weight degeneracy
may cause the approximation of posterior probability
to deteriorate seriously and even become useless. Re-
sampling procedure is proposed to alleviate this prob-
lem efficiently. The main idea of re-sampling is to
eliminate particle trajectories with small normalized
importance weight while concentrating upon those
particles which have larger normalized importance
weight, and implementation procedures are shown as
follows [27]:
Set N eff ¼ 1XI

i¼1
w ið Þ
n

h i2 and choose the value of ε with

the limitation 0 < ε < 1.
If Neff < ε, then.

For i = 1:I, set ~x ið Þ
0:n ¼ x ið Þ

0:n with weight w ið Þ
n ;

Set x ið Þ
0:n ¼ ~x ið Þ

0:n and w ið Þ
n = 1/I, i = 1,2,…,I.

Step 5: The MAP estimation could be achieved by (38)
based on the particles and associated weights computed
above.

4.4 Implement
Based on the elaborations above, the joint detection
algorithm comes in its fullness. At the receiver end,
we could detect the PU state in the following three
steps.
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5 Simulation experiments
In this investigation, the false alarm pf and the missing
alarm pm will be considered in a comprehensive way. In
other words, we adopt a novel definition of detection
probability, and it could be written as

pd ≜ p x̂n ¼ 0 jH0ð Þ p H0ð Þ þ p x̂n ¼ sc jH1ð Þ p H1ð Þ
¼ 1 − p f p H0ð Þ − pm p H1ð Þ

ð43Þ
In this investigation, we firstly compare the sensing

performance of traditional MFD, proposed algorithm,
and CAV detection algorithm which is newly introduced
and has found a wide application recently. Secondly, we
mainly study the effects of the following three parame-
ters of wireless communication environment have on
the sensing performance, i.e., Doppler frequency shift fd,
number of multipath channel L, and sampling size in
one sensing slot M. In addition, we will evaluate the
MSE performance of the unknown multipath channel.

5.1 Comparison of sensing performance
In this simulation, the number of multipath L is set to
be 4, the size of partitioned channel states number K is
set to be 5, the mean of multipath taps is configured to
E{h} = [1,0.1,0.02,0.01], and the sampling size M = 7. It is
obvious from Figure 5 that compared with the two other
methods, the sensing performance achieved by the pro-
posed algorithm could be improved significantly. For ex-
ample, when the detection probability surpass 0.95 and
the fd = 0.1, the desired SNR of the new algorithm and
traditional MFD method is 4.5 and 12 dB, respectively.
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Figure 5 Comparison of sensing performance achieved by traditional
Furthermore, it should be noted that the performance of
the CAV detection is unacceptable. That is because the
validity of the CAV algorithm relies on the assumption
that the sampled signals are correlated, and the correlation
of the received signals in the model proposed is lower.
5.2 Doppler frequency shift
In this simulation, the number of multipath L is set to
be 4, the size of partitioned channel states number K is
set to be 5, the mean of multipath taps is configured to
E{h} = [1,0.1,0.02,0.01], and the sampling size M = 7.
Three configurations of maximum Doppler frequency
shift fd are adopted in this experiment, i.e., fd =0.2, 0.1,
0.05. The simulation results are shown in Figure 6.
It is obvious from Figure 6 that compared with the trad-

itional MFD method, the sensing performance achieved
by the proposed algorithm could be improved significantly
when operating at the TVMFF channel. In addition, from
Figure 6, it is seen in a clear logical way that the perform-
ance of the proposed method will degrade as the value of
the Doppler spread increases.
5.3 Number of multipath channel
In this simulation, the maximum Doppler frequency
shift fd = 0.1, K = 5, and the sampling size M = 7. The
number of multipath channel L is 3, 4, and 5, respect-
ively. The average values of the multipath taps are con-
figured to E{h} = [1,0.1,0.02], E{h} = [1,0.1,0.02,0.01], and
E{h} = [1,0.1,0.02,0.01,0.005]. From the numerical experi-
ment results shown in Figure 7, it should be noted that
with the advance of L, both the sensing performance
5 10 15 20

NR/dB

MFD, CAV detection, and the proposed algorithm.
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Figure 6 Sensing performance under different maximum Doppler frequency shifts fd.
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achieved by the proposed algorithm and the traditional
MFD will decrease. That is because the greater the num-
ber of channel, the more sensing performance suffers
from intersymbol interference (ISI).

5.4 Sampling size
In this simulation, fd = 0.1, K = 5, L = 4, and E{h} =
[1,0.1,0.02,0.01]. The configurations of the sampling
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Figure 7 Sensing performance under different numbers of multipath
size M are set to be 7, 15, and 31. From the numerical
experiment results shown in Figure 8, it should be
noted that with the advance of M, the performance of
proposed algorithm will increase obviously. That is be-
cause the greater the number of sampling size, the
more information of PU that SU could get from the
observations. As a result, the accuracy of the estima-
tion increases.
2 6 10 14 18

NR/dB
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MFD:L=5
proposed algorithm:L=4
MFD:L=4
proposed algorithm:L=3
MFD:L=3

L.
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Figure 8 Sensing performance under different sampling sizes M.
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5.5 MSE of estimations
The purpose of this experiment is to evaluate the MSE
performance of the multipath channel estimated. The
MSE is defined as

MSEĥ ¼ E
1
N

XN
n¼0

ĥn−hn

�� ��2" #
ð44Þ

In this simulation, fd = 0.1, K = 5, M = 15. The con-
figurations of multipath channel L are 3, 4, and 5, and
Figure 9 MSE performance under different numbers of multipath L.
the average values of multipath taps are configured to
E{h} = [1,0.1,0.02], E{h} = [1,0.1,0.02,0.01], and E{h} =
[1,0.1,0.02,0.01,0.005]. It has been demonstrated in
Figure 9 that with the improvement of L, the MSE will de-
crease and the estimation result of channel gain achieved
by the proposed algorithm is comparatively accurate.

6 Conclusion
In order to troubleshoot the problem in practical spectrum
sensing results from multipath time-variant fading channels,
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a promising spectrum sensing algorithm which could find
wide use in CR systems is proposed in this article. The ad-
vantages of this algorithm are fivefold. First of all, TVMFF
channels are common in the next-generation communica-
tion systems such as mobile communication and indoor
communication. It is a grim challenge to perform spectrum
sensing under TVMFF channel. The algorithm designed
could overcome this shortcoming effectively. Secondly, be-
cause the spectrum sensing could be achieved by detecting
whether the pilot or synchronization code exists, the algo-
rithm proposed could be applied for most CR systems, and
it inherits the advantages of MFD such as rapidity and accur-
acy. Thirdly, a novel DSM is established by making a liberal
allowance for the dynamic evolution behaviors of the
TVMFF channel and PU state. This DSM could be applied
extensively for signal estimation in other communication
systems. Fourthly, by resorting to MAP criterion and PF
methodology, we propose a joint estimation algorithm which
could estimate the channel gain and PU state sequentially
and timely without a training sequence, and simulation ex-
periments indicate that this method could achieve better
performance than the other methods over TVMFF channel.
Finally, the MAP criterion is easy to accomplish in practice,
and the number of particles is in small batches or singly;
therefore, the complexity of this algorithm could be con-
trolled to manageable proportions, and the feasibility could
be ensured. Because of the aforementioned advantages, this
proposed method could provide a referential solution to the
practical design of spectrum sensing algorithms and im-
prove the sensing performance in practical CR networks
significantly.

Appendix 1
Posterior probability of TVMFF channel gain
The posterior probability of hn could be represented as
Equation 45:

p hnjĥ0:n−1; x̂0:n−1; x†n ¼ sc; y0:n
� 	

ð45Þ

Based on the conditional probability p(B|A) = p(AB)/p
(A), we could rewrite Equation 45 as
p hnjĥ0:n−1; x̂0:n−1; x†n ¼ sc; y0:n
� 	

¼
p hn; ĥ0:n−1; x̂0:n−1; x†n ¼
�
p ĥ0:n−1; x̂0:n−1; x†n ¼ sc
�

¼
p ynjhn; ĥ0:n−1; x̂0:n−1; x†n ¼ sc; y0:n−1
� 	

p hn; ĥ0:n−1; x̂0:n−1; x†n ¼
�

p ĥ0:n−1; x̂0:n−1; x†n ¼ sc; y0:n
� 	

¼
p ynjhn; ĥ0:n−1; x̂0:n−1; x†n ¼ sc; y0:n−1
� 	

p hnjĥ0:n−1; x̂0:n−1; x†n ¼
�

p ynjĥ0:n−1; x̂0:n−1; x†n ¼ sc; y0:n−1
� 	

p ĥ0:n−1

�
¼

p ynjhn; ĥ0:n−1; x̂0:n−1; x†n ¼ sc; y0:n−1
� 	

p hnjĥ0:n−1; x̂0:n−1; x†n ¼
�

p ynjĥ0:n−1; x̂0:n−1; x†n ¼ sc; y0:n−1
� 	
It is obvious from Equation (20) that the observation
yn is only associated with the channel gain and PU state
in current sensing slot; thus, the simplification could be
performed as follows:

p ynjhn; ĥ0:n−1; x̂0:n−1; x†n ¼ sc; y0:n−1
� 	

¼ p ynjhn; x†n ¼ sc

 �

ð47Þ

p ynjĥ0:n−1; x̂0:n−1; x†n ¼ sc; y0:n−1
� 	

¼ p ynjx†n ¼ sc

 �

ð48Þ
Furthermore, the channel gain and the PU state are in-

dependent with each other; thus,

p hnjĥ0:n−1; x̂0:n−1; x†n ¼ sc; y0:n−1
� 	

¼ p hnjĥ0:n−1

� 	
ð49Þ

In combination, Equation 46 could be simplified as

p hnjĥ0:n−1; x̂0:n−1; x†n ¼ sc; y0:n
� 	

¼
p ynjhn; x†n ¼ sc

 �

p hnjĥ0:n−1

� 	
p ynjx†n ¼ sc

 �

∝p ynjhn; x†n ¼ sc

 �

p hnjĥ0:n−1

� 	 ð50Þ

We have declared that the first-order FSMC is adopted
in our investigation to model the TVMFF channel, so
the current channel state is only associated with the
right prior state while irrelevant to all other past or fu-
ture channel states. For this reason, a final conclusion
has been arrived:

p hnjĥ0:n−1; x̂0:n−1; x
†
n ¼ sc; y0:n

� 	
∝p ynjhn; x

†
n ¼ sc


 �
p hnjĥn−1

� 	
ð51Þ
sc; y0:n
	

; y0:n
	

sc; y0:n−1
	

sc; y0:n−1
	
p ĥ0:n−1; x̂0:n−1; x†n ¼ sc; y0:n−1
� 	

; x̂0:n−1; x†n ¼ sc; y0:n−1
	

sc; y0:n−1
	

ð46Þ
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