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Abstract

The block diagonalization (BD) is a linear precoding technique for multi-user multi-input multi-output (MIMO) broadcast
channels, which is able to completely eliminate the multi-user interference (MUI), but it is not computationally efficient. In this
paper, we propose the block diagonal Jacket matrix decomposition, which is able not only to extend the conventional block
diagonal channel decomposition but also to achieve the MIMO broadcast channel capacity. We also prove that the QR
algorithm achieves the same sum rate as that of the conventional BD scheme. The complexity analysis shows that our
proposal is more efficient than the conventional BD method in terms of the number of the required computation.

Keywords: Multi-user MIMO; Broadcast channel; Precoding; Block diagonalization; QR decomposition; Eigenvalue
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1 Introduction
Recently, the research of the capacity region of the
multi-user multi-input multi-output (MIMO) broadcast
channels (BC) has been of concern. It is well known that
any algorithm requiring the eigenvalue decomposition
(EVD) suffers from the high computational cost. In mo-
bile wireless communication systems, in which MIMO
technique is utilized, the channel characteristics may
vary faster than the computation process of the precod-
ing/decoding algorithm that is based on the EVD of the
channel matrix that is changing instantaneously.
In [1], the authors proposed the MIMO channel pre-

coding/decoding based on the Jacket matrix decompos-
ition where we believe that the required computational
complexity in obtaining diagonal-similar matrices is
smaller than that required in the conventional EVD.
Definition 1 Let JN ≜ {ai,j} be a N ×N matrix; then, it is

called a Jacket matrix when J−1N ¼ 1
N ai;j

� �−1n oT
, that is,

the inverse of the Jacket matrix can be determined by its
element-wise inverse [2-3].
Definition 2 Let A be an n × n matrix. If there exists a

Jacket matrix J such that A = J ∑ J−1, where Σ is a diag-
onal matrix, then we say that A is a Jacket matrix similar
to the diagonal matrix ∑. Moreover, we say that A is a
Jacket diagonalizable [4].
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Theorem 1 A 4 × 4 matrix J is a Jacket matrix similar to
the diagonal matrix if and only if J has the following form:

J 4 ¼ A½ �2 B½ �2
C½ �2 A½ �2

� �
ð1Þ

i.e., the entries of the main diagonal of a matrix are equal.
Proof Refer to [4] for the proof.
Multi-user diversity can significantly improve the per-

formance of multiple antenna systems. The simplest ways
to achieve the diversity gain in MIMO downlink commu-
nications are the zero forcing (ZF)-based linear precoding
approaches. In [5,6], it was shown that the maximum sum
rate in the multi-user MIMO broadcast channels can be
achieved by dirty paper coding (DPC). However, the high
computational complexity of the DPC makes it difficult to
implement in practical systems. A suboptimal strategy of
the DPC [7], the Tomlinson-Harashima precoding (THP)
algorithm which is based on nonlinear modulo operations,
is still impractical due to its high complexity.
In linear processing systems, several practical precoding

techniques have been proposed, typically as the channel
inversion method [8,9] and the block diagonalization (BD)
method [10]. The ZF channel inversion scheme [8] can
suppress co-channel interference (CCI) completely for the
case where all users employ a single antenna. However, its
performance is degraded due to the effect of noise en-
hancement. Although the minimum mean-squared error
(MMSE) channel inversion method [8] overcomes the
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drawback of the ZF, it is still confined to a single-receive
antenna case. In the scenario where multiple antennas are
located at both the mobile terminal and base station for
each user, low-complexity BD methods have been pro-
posed [8,11-13]. Moreover, the BD attempts to completely
eliminate the multi-user interference (MUI) irrespective of
the noise. The BD precoding has been proposed in [10] to
improve the sum rate or reduce the transmitted power. A
BD precoding algorithm has focused on how to imple-
ment the BD precoding algorithms with less computa-
tional complexity without the performance degradation. A
low-complexity generalized ZF channel inversion (GZI)
method has been proposed in [9] to equivalently imple-
ment the first singular value decomposition (SVD) oper-
ation of the original BD precoding, and a generalized
MMSE channel inversion (GMI) method is also developed
in [9] for the original regularized BD (RBD) precoding.
Therefore, the performance of the BD scheme is poor at
the low SNR regime, while preserving its good perform-
ance at high SNR. With the purpose of improving the per-
formance of the BD, an RBD scheme [14] is proposed.
The QR/SVD techniques require only low complexity to
equivalently implement the BD precoding algorithms. As
an improvement of the BD precoding algorithms, a low-
complexity lattice reduction-aided RBD (LC-RBD-LR)-
type precoding algorithm has been proposed in [11,12]
based on the QR decomposition scheme. However, the
complexity of the RBD is too high, which is difficult to be
implemented in practice. Owing to the SVD in the algo-
rithm, the BD is not computationally efficient.
In this paper, we propose QR-based BD and Jacket

matrix methods. We consider the channel matrix de-
composition based on QR and Jacket matrices for the
case where each user has multiple antennas. By using the
QR decomposition to find the orthogonal complement,
Figure 1 MIMO broadcasting system model.
the complexity of the SVD-BD can be reduced. As a new
approach of the conventional BD scheme, the QR shows a
significant improvement in computational complexity. In
addition, we prove that the proposed QR algorithm has
the same sum rate as the conventional BD scheme. We
also discuss the block diagonal Jacket matrix decompos-
ition because Jacket matrices are element-wise inverse
matrices. Thus, we can calculate their complexity easily.
The rest of this paper is organized as follows. In

Section 2, we describe the system model. In Section 3, we
discuss the BD method. In Section 4, we analyze the block
diagonal Jacket decomposition of an equivalent channel
matrix. In Section 5, we perform the complexity analysis.
Finally, we draw meaningful conclusions in Section 6.

2 System model
We consider the downlink MIMO broadcast channel
base station (BS) to K mobile users as shown in Figure 1.
The MIMO channel of each user is assumed to be flat
fading with distribution CN 0; Ið Þ , where the BS has NT

transmitter antennas, and each user has NR receiver an-
tennas. In this linear precoding scheme, the precoded
signal vector for the k-th user can be written as

xk ¼ T ksk ð2Þ

The received signal for the k-th user can be repre-
sented as

yk ¼ Hk

XK
j¼1

T jxj þ nk ¼ HkT ksk þ
XK

j¼1;j≠k

HkT jsj

þnk ; k ¼ 1;⋯;K ;

ð3Þ

where k and j are user indices, T k∈ℂNT�Nk is a precod-
ing vector for the user k, sk represents the data symbol
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vector, xk∈ℂNk�1 is a transmit signal, Hk∈ℂNk�NT is a
MIMO channel matrix, and nk is a Gaussian noise with
zero mean and variance σ2. It is also assumed that all

signals are detectable and
XK
k¼1

Nk≤NT.

Note that the precoding vectors are normalized to
unity, i.e., ‖Tk‖

2 = 1 for k = 1,⋯, K. Furthermore, the
power constraints are defined as tr(TkTk

H) ≤ Pk, where Pk
is the total transmission power. The power constraint
corresponding to the BS applies to the transmitters of k-
th BS. Therefore, a sum rate maximization problem with
power constraints can be expressed as

max
X
k

log I þHkT kT
H
k H

H
k

�� ��
s:t: tr T kTH

k

� �
≤Pk ; k ¼ 1;…;K

~H kT k ¼ 0; k ¼ 1;…;K

ð4Þ

The aforementioned problem is categorized as a convex
optimization problem. Thus, it can be solved optimally
and efficiently by using the water filling algorithm, which
is proposed for the multi-user transmit optimization for
broadcast channels.

3 Block diagonalization method
In this section, we represent a novel BD method for
multi-user MIMO systems. The BD algorithm is an ex-
tension of the ZF method for multi-user MIMO systems
where each user has multiple antennas. Each user's lin-
ear precoder and receiver filter can be obtained by twice
SVD operations [15–16].

3.1 Block diagonalization
The key idea of the BD algorithm is to employ the
precoding matrix Τ to suppress the MUI completely.
To eliminate all MUI, the following constraint is
imposed.

~H kT k ¼ 0; k ¼ 1;⋯;K ð5Þ
~H k is defined as the channel matrix for all users other

than the user k.

~H k ¼ HT
1 ⋯HT

k−1H
T
kþ1⋯HT

K

	 
T ð6Þ
By applying the SVD, the following value for the channel
is obtained

~H k ¼ UkΣk V 1ð Þ
k V 0ð Þ

k

h iH
; ð7Þ

where Σk is the diagonal matrix of which the diagonal ele-
ments are non-negative singular values of ~H k and its di-
mension equals to the rank of ~H k . Vk

(0) contains vectors
corresponding to the zero singular values, and Vk

(1) con-
sists of the singular vectors corresponding to nonzero sin-
gular values. Thus,Vk

(0) is an orthogonal basis for the null
space of ~H k . In order to maximize the achievable sum rate
of the BD, the water filling algorithm can be additionally
incorporated. Define the SVD of ~H k ~V

0ð Þ
k as

~H k ~V
0ð Þ
k ¼ ~U k ~Σk ~V 1ð Þ

k
~V 0ð Þ
k

h iH
: ð8Þ

Thus, we define the total precoding matrix as

TBD ¼ ~V 0ð Þ
1 V 1ð Þ

1
~V 0ð Þ
2 V 1ð Þ

2 ⋯ ~V 0ð Þ
K V 1ð Þ

K

h i
Λ1=2; ð9Þ

where Λ is a diagonal matrix of which the element λk
scales the power transmitted into each of columns of
TBD. To maximize the sum rate under a total power
constraint at the BS, where the power allocation matrix
is the solution to the following optimization, with TBD

chosen in Equation 9, the capacity of the BD [10,15] is

CBD ¼ max
Λ

log2 I þ Σ2Λ

σ2

����
����; ð10Þ

where

Σ ¼
Σ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ΣK

2
4

3
5: ð11Þ

The optimal power-loading coefficients of Λ are deter-
mined by using the water filling on the diagonal ele-
ments of Σ, assuming that Pk is a total power constraint.
A summary of the BD algorithm [10] in Algorithm 1.

3.2 Proposed QR-based BD method
In this subsection, we propose an alternative method to
find vectors orthonormal to ~H k based on the QR de-
composition. In order to compute the null space of ~H k ,
we define a QR decomposition of ~H k as

~H k ¼ Qk
�Qk½ � Rk

0

� �
¼ QkRk ; ð12Þ

where Qk is an NT ×NT unitary matrix, so Qk
HQk = Ik; Rk

∈ℂNT�NR is an NT ×NR upper triangular matrix, and �Qk

is an NT × (NR −NT) matrix. �QH
k ¼ Q1

k Q
2
k

� �
; where Qk

1 is
an Nk column unitary matrix.
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The pseudo inverse of the channel matrix Hk =

[H1
TH2

T⋯HK
T]T is �H k ¼ HH

k HkHH
k

� �−1 ¼ �H 1 �H 2⋯ �H K½ � .
Then, we can show that

Hk �H k ¼
H1

⋮
HK

2
4

3
5 �H 1 ⋯ �HK

	 


¼
H1 �H 1 ⋯ H1 �HK

⋮ ⋱ ⋮
HK �H 1 ⋯ HK �HK

2
4

3
5¼

INR;1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ INR;K

2
4

3
5

ð13Þ
Clearly, H j �H k ¼ 0 when j ≠ k, which is called the zero

inter-user interference (IUI) constraint since it gets the

IUI to be zero. By defining ~H j as ~H j ¼ HT
1 ⋯HT

j−1

h
HT

jþ1⋯HT
K �T , it is shown that the zero IUI constraint is

satisfied such as ~H j �H j ¼ 0. The QR decomposition of
~H j is

~H j ¼ QjRj for j ¼ 1;⋯;K : ð14Þ
From the zero IUI constraint, we have ~H jQjRj ¼ 0 .

Since Rj is invertible, it is conjectured that ~H jQj ¼ 0
Let Gk =HkQk

1 and we apply the EVD of Gk as

Gk ¼ ⌢
Uk

⌢
Σk

⌢
U

H

k ; ð15Þ
where

⌢
Uk is a unitary matrix, and

⌢
Σk is a diagonal

matrix. Thus, we get the precoding matrix as

TQR ¼ Q1
1

⌢
U1 Q1

2

⌢
U2⋯Q1

K

⌢
UK

h i
Ψ 1=2; ð16Þ

where Ψ is a diagonal matrix of which the elements
scale the power transmitted into each of columns of
TQR. The capacity of the QR-EVD is

CQR−EVD ¼ max
Ψ

log
I þ ⌢

Σ
2
Ψ

σ2

�����
�����; ð17Þ

where

⌢
Σ ¼

⌢
Σ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯

⌢
ΣK

2
4

3
5: ð18Þ

The optimal power-loading coefficients of Ψ are deter-
mined by using the water filling on the diagonal ele-

ments of
⌢
Σ , assuming that Pk is a total power constraint.

Equation 10 and Equation 17 are the same as the chan-
nel capacity of the conventional BD and the QR-EVD
decomposition (Algorithm 2).
Figure 2 shows that the BD method has the same sum

rate as the QR-EVD method and An's method [15]
under condition that a MIMO broadcasting system con-
sists of one base station and two users where the base
station has four transmit antennas and each use has two
receive antennas.

4 Block diagonal Jacket decomposition of an
equivalent channel matrix
In this section, we introduce the block diagonal Jac-
ket decomposition of an equivalent channel matrix.
Assume that Hk is an NR ×NT block diagonal matrix
given by

Hk ¼
LΣL−1
� �

⋯ 0
⋮ ⋱ ⋮
0 ⋯ LΣL−1

� �
2
4

3
5; ð19Þ

and its inverse is

H−1
k ¼

LΣL−1
� �−1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ LΣL−1

� �−1
2
4

3
5: ð20Þ

The channel matrix is decomposed into parallel single-
input single-output subchannels. A special k × k Jacket
matrix called a diagonal Jacket matrix can be defined as
follows:

J½ �k ¼
J1;1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ J k;k

2
4

3
5; and ð21Þ

Its inverse matrix is

J½ �−1k ¼
1=J 1;1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 1=J k;k

2
4

3
5: ð22Þ

Obviously, the unitary matrices can be considered as
the Jacket matrices.
Let us denote B2 as a 2 × 2 block matrix in the main di-

agonal of Hk [1,17]. Then, Equation 19 can be written as

Hk ¼ Ik=2⊗B2; ð23Þ

where

B2 ¼ LΣL−1 ð24Þ

Ik/2 is an identity matrix, and⊗ is the Kronecker prod-
uct. It is worthwhile to note that each block in the diag-
onal of the matrix in Equation 19 is a 2 × 2 matrix that
satisfies the condition specified in Theorem 1, and



Figure 2 Comparison of the sum throughput of BD and QR.
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hence, we say that B2 can be decomposed by the EVD
using Jacket matrices. In other words, B2 is able to be
represented by

B2 ¼ J 2Σ2J
−1
2 : ð25Þ

In addition, it is shown that Hk is decomposed, which
has the diagonal form as
Hk ¼ Ik=2⊗B2 ¼ Ik=2⊗ J 2Σ2J−12
� �

¼ Ik=2⊗J2
� �

diag λ1; λ2⋯λkð Þ Ik=2⊗J−12
� � ¼ JΣJ−1

:

ð26Þ

Thus, we can write

Hk¼JΣJ−1; ð27Þ

where

J ¼ Ik=2⊗J2 ¼
J2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ J 2

2
4

3
5
k�k

; ð28Þ

Σ ¼ Ik=2⊗Σ2 ¼
Σ2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Σ2

2
4

3
5
k�k

; and ð29Þ

J−1 ¼ Ik=2⊗J−12 ¼
J−12 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ J−12

2
4

3
5
k�k

: ð30Þ

Note that the size of each block element in the diag-
onal matrices (28), (29), and (30) is 2 × 2.
4.1 Eigenvalue decomposition of matrix of order 3
In this subsection, we introduce a class of matrices of
order 3 that can be factorized into EVD forms through
Jacket matrices [1,17]. A 3 × 3 matrix A is a Jacket
matrix similar to a diagonal matrix Λ if and only if such
a matrix can be factorized into the form of an EVD such
as A = J Λ J−1. Consider a special matrix, A, of which the
elements in the first row are arbitrary, whereas the ele-
ments in the other rows are generated by cyclically shift-
ing the previous row. One of its examples is given as
follows.

A ¼
a b c
c a b
b c a

2
4

3
5: ð31Þ

The abovementioned matrix, A, can be decomposed as
follows:

a b c
c a b
b c a

2
4

3
5 ¼

1 1 1
1 ω ω2

1 ω2 ω

2
4

3
5

�
aþ bþ c 0 0

0 aþ bωþ cω2 0
0 0 aþ bω2 þ cω

2
4

3
5

�
1 1 1
1 ω ω2

1 ω2 ω

2
4

3
5
−1

;

ð32Þ

where ω = e−j2π/n (n is a matrix order). Note that ω3 = 1,
and ω1 ≠ 1.
Consider a matrix A6 that is able to be decomposed

via Jacket matrices as

A6 ¼ A2⊗A3 ¼ J2⊗J3ð Þ Λ2⊗Λ3ð Þ J2⊗J3ð Þ−1; ð33Þ

where⊗ is the Kronecker product. Then, the EVD of
Equation 33 is given as

A6 ¼ a b
b a

� �
⊗

a b c
c a b
b c a

2
4

3
5

¼ a a
a −a

� �
⊗

1 1 1
1 ω ω2

1 ω2 ω

2
4

3
5

2
4

3
5

aþ b 0
0 aþ b

� �
⊗

aþ bþ c 0 0
0 aþ bωþ cω2 0
0 0 aþ bω2 þ cω

2
4

3
5

2
4

3
5

� a a
a −a

� �
⊗

1 1 1
1 ω ω2

1 ω ω

2
4

3
5

2
4

3
5
−1

:

ð34Þ



Figure 3 The required flops versus the number of transmit
antennas, NT.

Figure 4 The required flops versus the number of users, K.
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In general, a matrix of order n (n = 2k × 31) can be
decomposed via Jacket transform as follows:

An ¼ A2k�3l ¼ A2k⊗A3l

¼ J2kΛ2k J
−1
2k

� �
⊗ J3lΛ3l J

−1
3l

� �
¼ J2k⊗J3lð Þ Λ2k⊗Λ3lð Þ J2k⊗J3l Þ−1



ð35Þ

The diagonal mobile communication channel matrix is
given by Equation 23, where

B2 ¼ cos450 −i sin450

sin450 i cos450

� �
¼ 1ffiffiffi

2
p 1 −i

1 i

� �

¼ 0:8881 −0:3251þ 0:3251i
0:3251þ 0:3251i 0:8881

� �

0:9659−0:2588i 0
0 −0:2588þ 0:9659i

� �

0:8881 0:3251−0:3251i
−0:3251−0:3251i 0:8881

� �
¼ QΛQH :

ð36Þ
A 4 × 4 block wise Jacket matrix is

H4 ¼ B½ �2 0
0 B½ �2

� �
¼ 1ffiffiffi

2
p

1 −i 0 0
1 i 0 0
0 0 1 −i
0 0 1 i

0
BB@

1
CCA

¼ 1 0
0 1

� �
⊗

1ffiffiffi
2

p 1 −i
1 i

� �
¼ I½ �2⊗ B½ �2:

ð37Þ

Then, the capacity of a MIMO wireless communica-
tion system is given by

C ¼ log2 det INR þ
SNR
NT

HkH
H
k

� �� �
bits=s=Hz ð38Þ

The channel matrix Hk is also able to be decomposed
by the EVD

Hk ¼ QΛQH : ð39Þ
Then, the EVD is obtained as

HkH
H
k ¼ QΣΣHQH ¼ QΛQH ; ð40Þ

where QQH =QHQ = IN, and Λ = dig(λ1, λ2,⋯, λK) with
its diagonal elements given as

λk ¼ σ2k ; if k ¼ 1; 2;⋯;Kmin

0; if k ¼ Kmin þ 1;⋯;K :

�
ð41Þ

It is shown that the MIMO system capacity can be
written as
C ¼
XK
k¼1

log2 1þ SNR
NT

λk

� �
bits=s=Hz: ð42Þ

Therefore, the EVD can be also applied to block diag-
onal Jacket matrices.

5 Complexity analysis
In this section, we quantify the complexity of the QR-
EVD decomposition algorithm and compare it with the
conventional SVD-BD schemes. The complexities of the
alternative methods are usually compared by the number
of floating point operations. A flop is defined as real
floating operations, i.e., real additions, multiplications,
divisions, and so on. One complex addition and multipli-
cation elaborate two and six flops, respectively.



Table 1 Complexity comparison

Method Computational complexity

SVD-BD 6K 9 K−1ð ÞNkð Þ3 þ 8 K−1ð ÞNkð Þ2NT þ 4 K−1ð ÞNkN2
T


 �
8KNkNT(NT − (K − 1)Nk)

6K 9N3
k þ 8N2

k NT− K−1ð ÞNkð Þ þ 4Nk NT− K−1ð ÞNKð Þ2

 �

2K2Nk
2 + 6KNk

KNk þ 2KN2
k þ 8KNT NT− K−1ð ÞNkð ÞNk

QR-BD 12K K−1ð Þ2N2
k NT− K−1ð ÞNk=3ð Þ

8KNkNT(NT − (K − 1)Nk)

6K 9N3
k þ 8N2

k NT− K−1ð ÞNkð Þ þ 4Nk NT− K−1ð ÞNkð Þ2

 �

2K2Nk
2 + 6KNk

KNk þ 2KN2
k þ 8KNT NT− K−1ð ÞNkð ÞNk
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5.1 Complexity of matrix operations
For an m × n complex-valued matrix E ∈ ℂm × n, its
multiplication with another n × p complex-valued matrix
D ∈ ℂn × p, we use the total number of flops to measure
the computational complexity of the existing algorithms
[11,13,18,19]. We summarize the total flops needed for
the matrix operations as below:

� Multiplication of m × n and n × p complex matrices
is 8mnp flops.

� When D = E∗, the complexity is reduced to 4 nm
(m + 1) flops, where D is a diagonal or block
diagonal matrix.

� The flop count for the SVD of real-valued m × n
(m ≤ n) matrices is 4m2n + 8mn2 + 9n3. For
complex-valued m × n (m ≤ n) matrices, we
-5 0 5

0

20

40

60

80

100

120

SN

C
a
p
a
c
it
y
,C
(
b
p
s
/H
z
)

Conventional EVD

Jacket EVD

Figure 5 Capacity versus SNR at different sizes of matrix.
approximate the flop count as 24mn2 + 48m2n + 54m3

by treating every operation as the complex
multiplication.

� The QR decomposition on E using the Gram-Schmidt
Orthogonalization (GSO) method takes 6 × 2m2n
flops.

� The water filling operation is 2m2 + 6m flops for
the water filling over m eigenvalues [18].

5.2 Complexity analysis for BD methods
For the conventional SVD-BD method, obtaining the or-
thogonal complementary basis Vk

(0) requires K times of
SVD operations [19]. Hence, we consider GSO or QR

decomposition methods. To calculate all, ~H k ~V
0ð Þ
k re-

quires K matrix multiplications while obtaining the sin-

gular vectors ~V 1ð Þ
k and the singular values λk require

another K SVD operations. The water filling is needed to
find Pk. The square root of the real-valued diagonal
matrix Pk

1/2 needs to be calculated and multiplied by
~V 0ð Þ
k and V 0ð Þ

k , respectively. Those operations repeat K
times as well.
Based on the above analysis, two results of the SVD-

BD and the QR decomposition are shown in Figures 2
and 3, respectively. Figure 3 shows the required number
of flops according to the number of transmit antennas,
NT, where n = 2 and k = 2. Figure 4 shows the required
number of flops according to the number of users, K,
where m = 24 and n = 2. From Figures 3 and 4, it is obvi-
ous that the QR decomposition can significantly reduce
the number of flops compared with the BD algorithm.
The larger values NT and K have, the less number of
10 15 20 25

R[dB]
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flops the QR decomposition has. Figure 4 shows that the
number of flops significantly decreases. In other words,
the complexity highly declines.
The channel in Equation 27 can be decomposed by

Jacket matrices, which has the diagonal form, where J is
a unitary matrix. Therefore, Equations 8 and 15 are the
same as Equation 27 because U and V are unitary matrices
and a family of Jacket matrices, which are mathematically
proved in the previous sections. Thus, the complexity ana-
lysis of Jacket matrices are the same as that of the QR-
EVD decomposition as shown in Table 1. The complexity
of the conventional EVD method and Jacket-based EVD
method increases as the respective sizes of their matrices
increase, as shown in Figure 5. In addition, we compare
the performance of the conventional-based EVD method
and Jacket-based EVD method. Classes of these matrices,
which are simply decomposed by the EVD based on Jacket
transform, have been used to significantly reduce their
computational complexity compared to the conventional
EVD method.
6 Conclusion
In this paper, we propose the QR method to obtain the
precoding matrix for MIMO broadcast downlink sys-
tems. In addition, the QR scheme that of achieves the
same sum capacity as the SVD-BD scheme. We show
that the new method has the lower complexity than the
conventional BD method through complexity analysis,
and the efficiency improvement becomes significant
when the base station or users have a large number of
transmit antennas. These results also show that the QR
decomposition algorithm requires much less complex-
ity than the conventional BD method. Thus, the complex-
ity analysis of Jacket matrices is the same as that of the
QR-EVD decomposition. We believe that the amount of
computation required to obtain diagonal-similar matri-
ces is much smaller than that of computation required
in the conventional EVD. In addtion, by using the QR de-
composition to find the orthogonal complement, it is
shown that the complexity of the SVD-BD can be sig-
nificantly reduced. In addition, we show that EVD can be
extended to the high-order matrices. These properties
may be used for Jacket matrices to be applied to signal
processing, coding theory, and orthogonal code design.
The EVD can be used in the information-theoretic ana-
lysis of MIMO channels.
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