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Abstract

This paper investigates the design of channel-optimized scalar quantizers with erasure correcting codes over binary
symmetric channels (BSC). A new scalar quantizer with uniform decoder and channel-optimized encoder aided by
erasure correcting code is proposed. The lower bound for performance of the new quantizer with complemented
natural code (CNC) index assignment is given. Then, in order to approach it, the single parity check code and
corresponding decoding algorithm are added into the new quantizer encoder and decoder, respectively. Analytical
results show that the performance of the new quantizers with CNC is better than that of the original quantizers with
CNC and natural binary code (NBC) when crossover probability is at a certain range.

1 Introduction

For a uniform scalar source, it is well known from [1] that
if over a noiseless channel, in terms of the mean squared
distortion (MSD), the uniform scalar quantizer is opti-
mal among all quantizers. But if across noisy channels,
the uniform quantizer is no longer optimal. Therefore,
joint source and channel coding has attracted much atten-
tion in [2,3], which has been seen as a promising scheme
for effective data transmission over wireless channels due
to its ability to cope with varying channel conditions
[4-6]. Generally, there are two approaches to improving
the performance of a quantizer over a noisy channel.

One is that the encoding cells in quantizer’s encoders
are designed to be affected by the transmission channel
characteristics, for example [7], or the final positioning of
the reconstruction in decoders depends on channel char-
acteristics, for example [8], which is called as channel
optimized quantizers. In [9-12], some necessary optimal-
ity conditions are given. Alternatively, an error detecting
code can be cascaded with the quantizer at the expense of
added transmission rate in [13].

The other one is index assignment, which is a map-
ping of source code symbols to channel code symbols and
was studied in [14,15]. The usual goal to design an index
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assignment for noisy channels is to minimize the end-
to-end MSD over all possible index assignments. Some
famous index assignments, such as natural binary code
(NBC), Gray code and randomly chosen index assign-
ments, are studied on a binary symmetric channel (BSC)
in [16-21]. In [16], it is proved that NBC is optimal for
uniform scalar quantizers and uniform source. In [17],
McLaughlin et al. extended it to uniform vector quan-
tizers. Farber and Zeger [8] also proved the optimality
of NBC for uniform source and quantizers with uniform
encoders and channel-optimized decoders. In [7], they not
only studied on NBC code, but also proposed a new affine
index assignment, named as complemented natural code
(CNCQ).

Interestingly, it is known from [7] that for uniform
decoder and channel-optimized encoder quantizer with
CNC index assignment, as crossover probability increases
to a certain value, some of the encoding cells appear to be
empty, which is also discovered in [22,23]. These empty
cells can be looked upon as redundancy, just like a form of
implicit channel coding. Besides, it can be discovered in
[7] that there is an implicit assumption is that transmitters
should know transition error probabilities. If this assump-
tion comes true, then decoders would exactly know the
encoding cells in encoders and can judge if the receiving
index is one of the indices of empty cells, but [7] does not
apply any methods to defeat the receiving index of empty
cells.
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In this paper, a genie-aided erasure code is applied
into the ideal quantizer decoders, which can correct the
receiving index of empty cells. The lower bound for per-
formance of the uniform decoder and channel-optimized
encoder quantizer with CNC index assignment is given.
Then, the single parity check (SPC) block code is uti-
lized to approach the lower bound. The main scheme is
that, in transmitters, several indices are grouped into a
block and parity check bits are appended in every block.
Afterwards, if a receiving index is detected to be the
index of empty cells in receivers, then it will be marked
as an erasure. Then, the SPC code is used to correct
erasures column by column for every block. In view of
the structure, the SPC block code is a little similar to
the SPC product code in [24], but their decoders are
very different. The decoding scheme of the SPC block
code is very simple; thus, only a little complexity will be
added.

The rest of this paper is organized as follows. Section 2
gives definitions and notation. In Section 3, the lower
bound for distortion of quantizers with uniform decoders
and channel-optimized encoders is analyzed. Section 4
introduces the SPC block code and gives the distortion
of the quantizer appending it. In Section 5, analytical
results are shown. Finally, the conclusion is presented in
Section 6.

2 Background

Throughout this paper, a continuous real-valued source
random variable X uniformly distributed on [0,1] is
considered. Some of the mathematical notations and
definitions follow [7] in this section.Then, a rate
n-bit quantizer is a mapping from the source to
one of the real-valued codepoints (quantization level)

yi’l (l))

Q:{X|Xe[01]} — {yn(D]i=0,1,...,2" — 1}
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A rate 2 quantizer is plotted in Figure 1 as an example.
The quantizer includes a quantizer encoder that is a
mapping from source X to a certain index i

Q,: {XIX e[0,1]} —> {ili=0,1,...,2" — 1},

and a quantizer decoder that is a mapping from the index
i to codepoint y, (i),

Qu:{ili=0,1,...,2"-1} — {y, () i=0,1,...,2"—1}.

In the encoder, the ith encoding cell can be denoted by
the set

Ry() =2, ().

If R, (i) = ¢, we say R, (i) is an empty cell. In general,
for most quantizers, there are no empty cells in encoding
cells. But a kind of quantizers in [7] is considered, in which
the quantizer encoder may contain empty encoding cells.
The centroid of the ith cell of the quantizer Q is presented
by a conditional expectation

¢n (i) = E[X|X € Ry (D)].

For a noisy channel, an index assignment 1, is often
used to debate noise, which is a permutation of the set
{0,1,...,2" — 1}. Then, if index J is received by a quan-
tizer decoder with index assignment, a random variable
X € [0,1] will be quantized to the quantization level

Qi (m, (D) =y (m, 1 (D).

Then, the end-to-end mean squared error (MSE) can be
written as

D,y = E[ (X = Qu (m" 1))’ 1)

In this paper, we focus on the quantizers with uniform
decoders and channel-optimized encoders [7]. A quantizer
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Figure 1 The structure of a rate 2 quantizer.
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decoder is said to be uniform if for each i, the ith code-
point satisfies

1
yu (i) = (i + 2) 27", (2)

A quantizer encoder is said to be a channel-optimized
encoder if it satisfies the weighted nearest neighbor
condition, that is,

Wi C R, (i) C W,

where
21
Wi= 1o 3 (=90 ()" P ( () en )
" 3)
2n—1
<3 (=90 ()’ 2 (7 () I (o)) , VK 2
j=0

Here, W; denotes the closure of W;, and p, (} |i) denotes
the probability that index j was received, given that
index i was sent. If assuming a binary symmetric chan-
nel with crossover probability €, p, (j|i) can be defined
as

pu (j1i) = € GD (1 — eyr=Hu (i) (4)

for 0 < € < 1/2, where H, (i,j) is the Hamming dis-
tance between #n-bit binary words i and j. Then, according
to [7], a quantizer with a uniform decoder and a channel-
optimized encoder satisfies, for all j,

Fn(l) ={xe[01]:a,@G kx> Bn (@, k) ,Vk # i} (5)

B _ 2
0,527~ 5],
827" — €, (i + 1) 827" + <A |

r 2
827"+ S i+ 1827 - 5 |,

_ (21 -27)5- ¢ £.1/2],
(1/2, (271 +27 )a +ega,

oy— (273 ) — 3
827" + S5, (D 827 + o |
[ison + : He, (i+1)s27"+ B3|

-2

)8+e(2 3¢) 1]
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where
2" -1
& (iK) = D j[pa (700 () 1 (D) = pn (7 (J) 70 (K))]
j=0
(6)
2" -1
B k) = 27" | an (k) + Y 2 [ (7w () 17w ()
j=0
—pn (0 (J) 1710 ()] | - 7)

Let an encoder-optimized uniform quantizer (EOUQ)
denote a rate n quantizer with a uniform decoder and a
channel-optimized encoder, along with a uniform source
on [0,1], and a binary symmetric channel with crossover
probability €. For each #, the CNC index assignment [7] is
defined by

i for0<i<2v1l-1
nVlCNC @ =1{i+1, for2" 1 <i<?2"_2andieven
i—1, for2" '4+1<i<2"—1andiodd
(8)
Denote

2" + 4 . (arctan(t/o) + 7

n= T I:\/gsm (3
t T 1
" cos (W) _ 1] =

__on—5 __ i n—2 3
o=2 > (2" +1)
T=,/2""4(2"% — o).

The encoding cells of an EOUQ with the CNC index
assignment are given in [7] as follows.
If n > 3and € €[0, ¢*), then

fori=0
forl <i<2"1—3,iodd
for2 <i<2"1_9 jeven

fori=2""1_-1

)

fori=2""1
for2"14+1<i<2"—-3,iodd
for2"-1 42 <j<on

— 2,ieven

fori=2"-1
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where § =1 — 2e.
If n > 3 and € €[€*,1/2), then
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0,52_"—§], fori:Oande<1/(2”/2—|—2)
527" — <, (48 + 6%) 271 4 e] n[o,1], fori=1
DU | ¢ BELDHE 4 ] for3 <i<2""1—3,iodd
(" —4)5 + 82+ 2"TLe) 27771 1/2], fori=2""1-1
Ry () =1 [1/2,(2"+2)8 + 1 —4e* +2"1e) 2771, for i = 271 (10)
20— ;2::11 —4< L, 28(i+;2,fll_462 + 6] , for2"71 42 < i< 2" —4,ieven
[ (on+1_ A2
(ool 26331“ Che (1-27) 8+ 222N (01, fori=2"-2
(1-27) 8+ <32,1] n 0,11, fori=2"—Tlande <1/ (22 +2)
b, else.

As above, when # > 3 and € €[¢*,1/2), there exists an
empty cell set E, which has 2”1 — 2 elements and consists
of all even numbers from 2 to 2"~ —2 and all odd numbers
from 2"~1 4+ 1 to 2" — 3, given by

E £ {i:R, (i) = ¢}
={i:2<i<2"!—2ieven}U{i:2"!
+1 <i<2"—3,iodd).
Let D(z,) denote the end-to-end MSD of EOUQ with

index assignment 77,,. The MSE of an EOUQ with the CNC
index assignment [7] is

(11)

Di(n,¢€), for0 <e <¢€*

DcNe) = Dy (n,¢), fore* <e < ZWAT , (12)
Ds (n,¢), for 2n/2+2 <e<1/2
where
D1 (n,€) = 7 L Y e— (21 —15.2"+4) 2
’ 3(14+2¢) \ 4 2
+6 (2% —2"2—4) &34 (2"—4) (2" -2) €*
- 12 (2"—4)e5>
—3n
Dy (me) = = (2”—3 +[(2"-3) (2*"+ 10) — 2"*1 4 48] €
—[(2" —6) (2" — 5) (2" — 4) — 3-2%"] €*
+2(2"—6) (2" —5) (2" —4) €
+12(2" —5) (2" —4) e* +24(2" — 4) 55>
—3n
Ds (n,€) = (2" +3+[(2"-3) (22" +10) — 2" ]e
—[(2" —6) (2" —5) (2" —4) — 3-2%"] €*
+2(2"—6) (2" —5) (2" —4) €

+12(2" - 5) (2”—4)e4+24(2”—4)e5>.

3 Channel-optimized quantizers with erasure
correcting codes

As to channel-optimized encoders, the implied key
assumption in [7] is that channel state information
(CSI) is known to transmitters. In a time division
duplexing (TDD) mode system, it is easy to know
CSI for transmitters, because uplink and downlink
share the same channel. But in a frequency divi-
sion duplexing (FDD) mode system, it is much harder
to know CSI for transmitters than the TDD mode.
Generally, after CSI is estimated in the receivers, it
must be fed back to transmitters through an extra
reliable channel. Here, in this paper, for a binary
symmetric channel, CSI only includes crossover prob-
ability €. In other words, if the above assumption
comes true, for a given channel-optimized encoder
in [7], receivers absolutely know temporal € and can
judge if there exist empty cells in encoding cells and
whether the receiving index belongs to empty cells
or not. This is because the encoding cells are deter-
mined by €. Once the empty cell index appears,
receivers should recognize that the received index is
erroneously detected. However, in [7], the index that
is known to be an error is still sent to quantizer
decoders.

An assumption is made in this section that the
decoders can correct all the receiving indices of empty
cells, using a genie-aided erasure correcting code, which
will be discussed in the subsequent section. In other
words, all encoding cells belonging to the set E are
fixed to empty in the encoder, and the receiving index
of empty cells can be thought as an erasure to be
marked and then recovered in the decoder. Because
of this assumption, the probability that index j was
received given that index i was sent will be changed
as
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Pn (T () |70, (D) + ZkeEPn (70 (k) |77 (£))

Vi € B pl, (mn (J) I7tn () = 0

o (70 () 1701 ()

Then, similarly, if the proposed quantizer encoder is said
to satisfy the weighted nearest neighbor condition, then
the encoding cells should satisfy

W/ CR, (i) C W] VieE,

where

A2 : .
W, = {as Syepe (6 = 9 (1)) 2 (0 () 17 )
+ Yjee & = ¥ (D) pu (700 (f) 1700 ()
A\ 2 ;
< 2_jeE* (x —n (/)) Pn (71,, (/) |77 (k))
+ Yjer @ — 90 (00 py (0 () 1 (), Y £ 1}
(14)
It is worthwhile to note that the second term in each
side of the less-than operator in W is different from W;
in (3). This term means that if receiving an empty cell
index, our proposed quantizer decoder is able to correct

it. In order to be easier to solve (14), it is rewritten as
follows.

Lemma 1. For all i, the encoding cells of our proposed
EOUQ satisfy,

R, () ={x€[0,1]: 0}, k) x = B} (i, k), Yk £ i}, (15)
where
oy, () =Y j [Pn (700 () 700 D) = P (70 () 720 (K)) ]
JEEC
+ 3 i pu (70n () l2n ()
jeE
—k - pn (700 (j) 700 (K)) ] (16)

By (i k) = 27" (a,; k) + Y7 [ (e () In ()

—Pn (7Tn (]) |70 (k))]
+ > [ b (7 () 170 ()

jeE

—HWW@W@O

17)
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j=i
jeE
jeEand j#£i

(13)

After substituting (8), o, (i, k) and B,,(i, k) can be sim-
plified as the following two corollaries.

Corollary 1. ), (i, k) can be simplified as follows.
1.i=0
al<k<21_1 kodd; 2" ! <k <2"-2 keven

@, (0,k) = — k + (—2"+2k+2) € + (2" —2k—4) >
(1) et - (@) e
— (2"—k=1) pu (2" 2|7y, (k)
+ k- pn (Ol (k)

b k=2"-1

a, (0,2"-1) = —2" + 14 2¢ + (2"1'—6) >

+ (2n+1_2) 6”71 _ (2n+1_2) e

21<i<2"-1,iodd; 2" —1<i<2"-2 ieven

a k=0

ay, (5,0) = i+ (2"-2i—2) € + (2" 42i+4) >
+ (=2"+1) "7t + (2"-1) €”
+ (2"=i=1) p (2" 2070 (1)) — ipn 017 ()

b.1 <k <21, kodd; 2" —1 < k < 2"2, k even;
k#i

o, Gy =@G—k) —2(—ke+2(G—k e
+ (2"—i—1) py (2" 2|7, ()
— i pu Oy () — (2"—k=1) py (2" 2|, (K))
+ k- pu Ol7r, (k)

ck=2"-1



Qiao and Li EURASIP Journal on Wireless Communications and Networking 2014, 2014:99

http://jwen.eurasipjournals.com/content/2014/1/99

ay, (,2"-1) = — (2"—i—1) + (2"-2i) € + (2i~2) €
+ (2n_1) 6rz—l + (_2n+1) "
+ (2"—i=1) pu (2" 2|74 (i)
— ipy (0], (D))

3i=2"-1
a k=0

), (2"-1,0) =2" — 1 —2¢ — (2""1—6) €
_ (2n+1_2) €;1—1 + (2n+1_2) "
b 1<k=<2"-1,kodd; 2" —1 <k <2"-2, keven
ay, (2"-1,k) = (2"—k-1) — (2"-2k) € — (2k—2) €
—(2"-1) "+ (2"-1) €”
— (2"—k=1) pu (2" 2|7, (k))
+ kpy (Ol7, (K))

Corollary 2. B, (i,k) can be simplified as seen in the
Appendix (‘The simplification of B,, (i, k)’).

It is known from the above two corollaries that for a
given i and &, a;, (i, k) and B;, (i, k) have only one variable
€, so the symbolic toolbox in Matlab can be used to solve

1+240e* —223¢3 —55¢2+52¢
0’ 4 3 2
16(1+30e3—18e3-23¢2+11¢)

]

—5+4+240e*—173€3465¢2—13¢
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the inequality set. The encoding cells R, (i) are solved for
the 3-bit and 4-bit quantizer, as shown in the following
two theorem.

Theorem 1. For 0 < € < 0.5, the encoding cells for the
3-bit quantizer are

1+42¢3—48€2+12¢ .

[0’ 8(1+125371552+3e)] ' Jori=0

144263 —48¢2+12¢  5—30e34+6¢2—3¢ fori=1
8(1+12e3—15€2+3¢)” 8(2—6€3+3¢2—3¢) |’ -

o fori=2
5—30e34+6€2—3¢ 142¢3—2¢ .

Ry = [8(2—663—0—362—36)’ 2(263—2¢+1) |’ fori=3

3 14263-2¢  11-18€3+18€2—21¢ fori=4
2(263—2¢+1)” 8(2—6€3+3€%2—3¢) |’ -

o, fori=5

11-18¢34+18¢2—21e  74+54€3—72¢%+12¢ fori=6
8(2—6€3+3e2—3¢) ’ 8(1+1263—15¢2+3¢) |’ -
74+54€3—72¢2412¢ P

|:8(1+12€3—1562+36)’1:|, fori=7

(18)

Theorem 2. For 0 < € < 0.5, the encoding cells for the
4-bit quantizer are

[ 142406422363 —55¢24-52¢

@,
—5+240e*—173¢34+65¢2—13¢  94-37€3—33¢%—4e
16(—2+30e*—21€3+2€2+3¢) ” 32(1+€3+€2—2¢)

@,
9437¢3—-33¢2—4¢  13+240e*—335¢3+115¢%—-20¢
32(1+e3+e2—2¢)’ 16(2+30e*—43e3+17€2—4¢)
@,

13+4240€*—335¢34+115¢2—20¢ 1

16(2+30e*—43e34+17¢2—4¢) * 2 |’

1 19+24O€4—353€3+15762—44€]

)

[i’ 16(2+30€%*—43€3+17¢2—4¢)
é,

19+240e*—353¢34+157¢% —44e  23—5¢3+65¢2—60¢
16(2+30e*—43e3+17¢2—4¢) 7 32(1+e3+€2—2¢)

R, (i) =

[

o,
23—56€3465¢2—60e  —274240€*—163¢3—33€2+61¢
32(1+€3+€2—2¢) 7 16(—2+30e*—21€3+2¢2+3¢)

¢r

16(1430e*—18¢3—-23e2+11€)* 16(—2+30e*—21e3+2€2+3¢)

|

’

I

|

—27+4240*—163€3—33¢24+61€  15+240€* —65¢3 —313€2+124¢

[
[

15+4240¢*—65¢3 —313¢24-124¢
16(1+30e*—18¢3—23¢2+11¢)’

I

16(—2+30€*—21€3+2€2+3¢) * 16(1+30e*—18¢3—23¢2+11¢)

fori=0
], fori=1
fori=2
fori =3
fori =4
fori=5
fori =6
fori="7
(19)
fori =38
fori=9
fori =10
fori =11
fori=12
fori =13
| fori=14
fori =15
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For i € E, define the quantities = Yick, Ljek, pn( (ENO () [ NS (z))
X Jroy (% (o> = 2y (j) + 97 (j))
I, (i) = argmin ¢, (j) + ek, Z,eEPn( (NE () I JNO (i))
{EE . X Jroy (8 = 20y (0) + 55, (D) dx
cn(f)>cn(d) _ (CNC) (| _(CNC) -
I; (i) = argmax ¢, (/) = Y ik, ZjeECpn(”n () 7t (l)>
jeE* 1+05 j+05)2
Cn(j)<cn(i) x fR U ( ( 2" ) dx
Zn (i) = supRy (i) + Yrer, Le o 1 () 15N )
V = {i:lﬁfn(i)}ﬂEc XfR " (x _2x1+05+(z+05) )dx
— (4 n— "
L =V‘NE =§—2 14 9-2n-2
=27 Y ek, (25 () — 20 (1 ()]
Let Dlowfr bound Jenote the end-to-end MSE of modified X [Zie}gc ]'Pn<ﬂr(1CNC) () s N (i)>
EOUQ with index assignment 7,, appending a genie-aided . (CNC) (| (CNC) ,,
+ n
erasure correcting code, which is the lower bound for the ZE’;E i "(nn ' () I ' (l))]
MSE of modified EOUQ. +277 Yk, [2n () — 20 (1 )]

% [Ziee, +72) pu 7N () 11N @)
Theorem 3. The lower bound for MSE of a modified o, (©NO) /A +_(CNC) -
EOUQ with the CNC index assignment is + e (i +i )1”"(”" () 17en (l))] .

After re-expressing I; (i) the above formula with respect
to I, (i), and merging like terms according to the defini-

. / . / .
Dé%vxgound 3 _2—n—1+ 9-21-2 | 5-n [Z 22 () - oty (iy Iy (i) tions of a;, (i, k) and B, (i, k),
eV
1
Dl(ocv{\?ég)ound g g—n—1 + 27 2n—2 +27" |:Z Z%l oty (1 (7))
(S0 gmeea)
icE,

)} - ( jou(\NO () 17\ N (1))
jeE,

+ ipn(7(CNO (CNC) )
4o 2n (Z (j+j2)pn(ﬂ,§CNC) (]) IH}ECNC) (11)) /GZE ( (/ 1 )):|

i€k,
o2 4 12) pu(7ENO) () |7 CNO) (f
+Z (H— iz)pn<nr(lCNQ (]) |n’§CNC) (11))) . + (/Z (/ +J )P (ﬂy, (/) (E ( 1))

+ Y ipa(7{O () 17ANO (1))

ieE

jeE.
ieE

(20) 3+ iz)pn(ﬂV(ICNC) (j) 1SN0 (h))) .
Proof. According to (1) and the assumption we make, et

O
Dlgyerbound — 5~ S o pn< (NO) () | {NO (i)) After substituting (18) and (19), respectively, Theorem 3
‘ gives the following results.
XfR,,(z)( - n(])) dx
CNC) (No)
+ Dier. jek p”(”” () I (’)> Theorem 4. The lower bound for MSE of a 3-bit modified
X fr = yn () dx EOUQ with the CNC index assignment is
lower bound _ 5243¢ +135€24579€> — 66, 276€°+-39, 330€% — 13, 93264413, 176¢% — 59, 184¢° + 84, 888¢7
Dienoy (21)

768 (1+12€3 —15€243¢) (2—6€3+3€% —3¢)
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Theorem 5. The lower bound for MSE of a 4-bit modified
EOUQ with the CNC index assignment is

Dgyeeyound = (11,740€ + 5,884¢> — 476,023€°
+ 3,328, 344¢* — 1,195,090, 122¢ 12
— 5,134,292,766¢° + 4,009, 702, 089¢ 14
— 801, 350, 784¢'3 + 156,129, 6238
—107,373,749¢’ + 47,124, 939¢°
— 14,855,907¢> +1,183,613,619¢!!
— 441,562, 375¢'0 — 43,375, 642¢°
+ 2,844, 849, 870¢1° + 155, 520, 000¢ 1
— 518,967,000 '® — 143,067, 600¢'7 + 52)
/12,288 [(1 4 30e* — 18¢® — 23¢” + 11¢)
x (2 — 30e* + 21€® — 2¢* — 3¢)
X (1+63+62—26)
(2 +30e* — 436> + 17¢* — 4¢) |
(22)

4 EOUQ with CNC aided by single parity check
block code

A good erasure code for our proposed quantizers should
have excellent ability to correct erasures but no ability to
correct errors. This is because the codes that have error
correcting ability can improve the performance of not
only our proposed quantizers but also the quantizers in
[7], and the benefits are equal. Thus, in this section, we
focus on SPC code to correct the empty cell index that
appears in receivers, in order to approach the lower bound
for EOUQ with CNC index assignment.

4.1 SPCCode

The SPC code is one of the most popular error detection
codes for it is easy to be implemented, which is also able
to correct a single erasure. But, if there exist multiple era-
sures, the typical decoding method for the single-erasure
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case will fail to recover them. In this paper, we present
a modified decoding method to deal with the multiple-
erasure case for the SPC code. The main idea is that when
one of the multiple erasures is being recovered, the other
erasures are restored to the original value before being
marked. Then, the multiple-erasure case can be trans-
ferred to several cases for a single erasure. Thus, the
typical decoding method for the single-erasure case is still
to be effective. Figure 2 gives an illustration of the mod-
ified decoding algorithm for the SPC code. According to
Figure 2, as multiple erasures are recovered independently
if multiple erasures exist, the erasure recovery probabil-
ity P, with modified decoding method for the single-
or multiple-erasure case is equal to the erasure recovery
probability P, with typical decoding method for the single-
erasure case, i.e.,

P, =P,. (23)

Then, the probability P, that a single erasure can be recov-
ered by the SPC typical decoder is given in the following
theorem.

Theorem 6. If a single erasure is detected, the probability
that the erasure can be recovered by SPC code is

k
J k—j—1 _j
P, = Z Co A=) 4,
j=0
jis even

(24)

where CK denotes an n choose k function, k =
21(k — 1) /2], and |x| means to round x to the nearest
integers less than or equal to x.

Proof. 1f a single erasure appears in the receiving SPC
code, all error events can be classified into the following
several cases.

Case 1. No error: when there exist no errors in the col-
umn, the erasure can be definitely recovered. Then, in this
case, the recovery probability is (1 — €)X

Case 2. One error: when there exists one error in the col-
umn, only if the single error happens to be located at the

Error Pattern
Source D

==
110 1 11
Data after

Decoding 1o I]II
|

Figure 2 An example of a modified decoding algorithm for SPC code.

Erasure Pattern
0 x x x 0

irta 01110 I I
1011|1|:“>1100|1|:(>1><xx|1
- I I
1I0|00|1<):1x00|1

- | I
11I1|o|1<}:11xo|1

110><:1

“Single Erasure
Decoding
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erasure, the erasure can be recovered. Then, the recovery
probability, in this case, is (1 — e)k_1 €.

Case 3. Two errors: when there exist two errors in the
column, only if the two errors are both not located at the
erasure, the erasure can be recovered. Then, the recovery
probability, in this case, is C,%_l (1—e)f2e2,

Case 4. Odd number of errors: when there exist i (odd
number) errors in the column, similar to ‘one error case’,
only if one of the errors happens to be located at the era-
sure, the erasure can be recovered. Then, the recovery
probability, in this case, is C,i:ll (1 — e)k—iel,

Case 5. Even number of errors: when there exist j (even
number) errors in the column, similar to ‘two errors case’,
only if all errors are all not located at the erasure, the era-
sure can be recovered. Then, the recovery probability, in
this case, is CLI (1—e)é.

In sum, according to all cases, the probability that the
single erasure can be recovered by SPC code can be
written as

P, = (l—e)k + C,,i1 (l—e)k_2 4.
+C_ A—afTd .l a—ef e

+Cla-of S+ Ot a-of ey,

where i is an odd number and j is an even number. Assum-
ing k is odd, without of generalization, let i = j+ 1, so that

P, = (1—e)k+Cl%71(1_€)k7262+_”
+ C;<71 1- E)k_j e+
+CGo a—ef e
+ C,‘:’:i Q—ef 3 4+...
G ARTLTC B L L P
+ Clzq [(1 —ef 22 41— )3 63] 4.
+ C;;—l [(1 —efTd 4+ (1—efT1 e/"'l] 4o
+ C,’jj [(I_E)k—(k—l) Gk—l+(1_E)k—(k—1)—1€k—1+1:|
=C  A-o '+ a-of B+
+ C;(—l 1 - 5)k_j_1 Gj + C/I::iek—l
k—1 )
= Z C;(—l (1 _ 6)/(7]71 6/.

Jj=0
jis even
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Supposing k is even, also let i = j + 1, so that
P=(1-of+Cl  a-of 2+
+C_ - T 4.
+C - e+ la—of 3+
P A
=l [a-of+a-eofe]
+C2 [(1 — k22 (1 - ekB e?’] 4o
+c_, [(1 kT 41— ek ef“] 4o
i CI]:% [(1_6)k—(k—2)€k—2+(1_é)k—(k—Z)—lek—2+1]
=C Q-+ a-ef B+
+C_ A —f T+ CE 21— ) <2
k=2
= Z C;(_l (1—ef771d,

j=0
jis even

Therefore, for any k > 2, the probability that the single
erasure can be recovered by SPC code is

20;k-D/2) o
Po= Y C_ a-efTld (25)
jis}:?/en
O

4.2 SPCblock code

In this paper, k — 1 transmitting indices with parity bits
are grouped into a k x n SPC block code, as shown in
Figure 3. In a SPC block code, every index is converted
to a binary word and then placed row by row, and bits
in every column are grouped to a SPC code, respectively.
If an index in a row is detected to belong to the empty
cell set, all entries in the row are marked as an erasure
word. In this paper, erasure word denotes the whole erased
bits in one row, and then, a bit in the erasure word is

Information bit |:|

Parity bit D

Figure 3 The structure of SPC block code.
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called as erasure bit. Then, the modified SPC decoding
method shown in Figure 2 is used to recover every era-
sure bit column by column. Figure 4 gives an illustration
of the decoding algorithm for a 3-bit quantizer aided by
5 x 3 SPC block code. As shown in Figure 4, if multiple
rows are marked as erasure word, when the erasure words
in one row are being recovered, the erasure words in
other rows are restored to the original value before being
marked.

In order to avoid confusion, we define that I denotes
the transmitted index, K denotes the input of the
SPC block decoder, and J denotes the output of
the SPC block decoder. Then, the SPC block code-
aided transition probability p, (j|i) can be defined as
follows.

Theorem 7. If aided by SPC block code, the transition
probability p, (jli) that index j is output from the SPC

000
Transmitted 0 0 1 Information Assuming Index
Data 1 oo Bit belonging to Empty
,,,,, 110 Cells include:
0 1 1 Parity Check 01 0
Bit
Error 101
Pattern
010
00l Channel
001
0 00
000
\ Belong to
Receiving Empty Cells
Data —
Marking Marking
Erasure% & Erasure
X X X 010
00 0 00 0
1 01 X X X
N T T U
01 1 011
Recovering Recovering
Erasure by Erasure by
SPC Decoder SPC Decoder
{ i 010
Data Output
from SPC |
Block Decoder
Figure 4 An example of decoding algorithm for a 3-bit quantizer
aided by 5 x 3 SPC block code.
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block decoder given that index i is transmitted can be
written as

P (1) + (Cpcp pn (k1D) - (1 — Pyt pr ) 5 g p

Pn (]ll) = .
(Sker b (k1)) - (1 — Poyn ) i~ () jeE
(26)
Proof.
P (jli) & pu (J =1 =)
Dn (I =)
Subn (I =) K =kI=i)
P =10)
YU =K =kI=i) -py(K=kI=i
Pn =)
=Y o =jK=kI=i) pa(K=kI=i)
k
=Y Bu(I =jIK =k I=i)pu(kli), (27)
k

where p,, (k|i) is defined in (4). Obviously, p, (K = k|I = i)
= pn (Kli).

Case 1: k ¢ E (index input into decoders does not belong
to empty cells)

lk=jandj ¢E
0k #J.

This is because if the input index does not belong to the
empty cell, it will not be marked as erasure and not be
changed by the SPC block decoder.

Case 2: k € E (index input into decoders belongs to
empty cells)

In this case, py (] =jIK=kI= i) denotes the proba-
bility that index j is output from the SPC block code, given
that index i is sent and index &, which belongs to empty
cells, is received and input into the SPC block decoder.
The whole bits in the row where index k lies in will be
marked as erasure word. According to the proposed SPC
block decoding algorithm shown in Figure 4, every erasure
bit will try to be recovered by the modified SPC decoder
(mentioned in Figure 2) column by column, respectively.
If multiple rows are marked as erasure word, when erasure
words in one row are being recovered, the erasure words
in other row are restored to original value before marked.
Recalled from (23), the recovery probability for one era-
sure bit, P,, can be obtained from Theorem 6. Assuming
N denotes the number of bits that fail to be recovered
for an erasure word, then the number of bits that succeed

P =jIK =kI=) ={ (28)
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to be recovered for an erasure word is equal to n — N.
Then,

Pa=jIK=kI=i) = (1-B)"
= (l_Pc)N

pn—N
. PC

PN (29)

Obviously, N = H, (i, j), where H, (i, j) is the Hamming
distance between z-bit binary words i and j.
Therefore,

(1= poytnti) p i)
(30)

I =jK=kI=i)=

After substituting (28) and (30), (27) can be rewritten as

P (1) + (Siep pn (k1D) - (1 = P @) P70 g
(Skep 2n (kID) - (1 = (@) p=11:)

Dn (1“) = jeE .
(31)
O

Then, MSD can be written as

Z Zp ( (CNC) (] |7_[(CNC) (z))

[ oo
_ ZZP ( (CNC) (] |7_[(CNC) (l))

x(’f—yno>x2+yzu>x)

SPC
Diexey =

Ru (i)

Now, D(gNC) is a function of € and k. Thus, we can
use the Symbolic toolbox in Matlab to obtain the exact
expression for every special case as follows.

For 3-bit quantizer, K = 3

DK3

(CNC) = = (7,962, 624€>! — 66,686,976

+264, 508,416 — 669,171, 456¢18
+1,226,192, 256€17 — 1,745,986, 752¢1©
+2,013,793,056¢1> — 1,922,961, 168¢ 4
+1,526,564, 664¢'3 — 992,715,912¢12

+509, 652, 360€ 11 — 192, 400, 668¢10
+44,669,958¢” — 1,219,602¢® — 2,647, 899¢
+71,307€® + 553,449¢> — 180, 846¢*

+ 4,059¢3 + 2,763€% + 501¢ + 10)

/[768 (<2 + 63 - 3¢ 4 3¢)°
x (141263 — 15€> + 36)2]
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For 3-bit quantizer, K = 4
DK=4

{cne) = (63,700,992¢** — 629,047, 296¢23

+2, 944,180, 224¢%2 — 8,785,760, 256¢21
+18, 977,504, 256620 — 31,903, 206, 912¢1°
+43, 683,065, 856¢18 — 50,100, 968, 448¢7
+48,911, 316, 480¢1° — 40, 974,579, 648¢1°
429,499,005, 376¢14 — 18,128, 322,720¢ '3
+9, 340,103, 424€12 — 3,904, 109, 052¢11
+1, 250,869, 332¢10 — 273,128, 574¢°
+26,813,814€8 + 3,148,215¢” + 92,601¢°
—947,925€” 4 277, 830¢*

— 7,539€3 — 3,735¢2 — 501¢ — 10)

/[~768 (14 123 — 152 + 3¢)°
x (~2+ 63 — 32 + 3¢)’]

For 3-bit quantizer, K = 5
DK=5

(cne) = (509,607,936€ — 5,796,790, 272€

+31,484,215,296¢2° — 109, 374, 603, 264¢24
+274, 864,472, 064€2® — 535,778,758, 656¢22
+847,229, 552, 640¢2! — 1,120, 016,581, 632¢2°
+1,262, 654,369, 280! — 1,229, 166, 254, 592¢18
+1,040, 713, 894, 656¢17 — 768, 801,597, 696¢ 16
+495,151, 866, 816¢1° — 276,513, 260, 880¢14
+132, 315,403, 416¢13 — 53,156, 640, 288¢12
+17,336,334, 384¢1! — 4,320,019, 992¢10
+713,651,970€° — 39, 095, 6348
—11,051,139€7 + 193,347¢% + 1,467, 897¢°
—386,442¢* +9,711€3
+4,707€% 4 501€ + 10) / [768 (—2 + 6¢3
3 € +3¢)” (14 126 — 15¢2 + 3¢)° |

(34)

For 4-bit quantizer, K = 3

DK=3

(o) = (14,276,736,000,0006%107, 794, 022, 400, 000>

+290, 417, 114, 880, 0003733, 167, 086, 848, 00036
—2,096, 081, 266, 694, 400€3°

+7,146,138, 215,312, 640¢3411, 787,493, 179, 759, 552¢33
+4, 294, 650, 642, 726, 528¢32

+30, 745,837, 163, 362, 608¢3193, 407, 604, 210, 871, 728¢30
+152,012, 048, 832, 668, 19622160, 041, 493, 676, 832, 384¢>8
+101, 864, 889, 812, 630, 04027

—14, 665, 606,004, 624, 67062045, 599, 458, 954, 787,901€%°
+54,961,029, 779, 720, 829¢2*

—31, 880, 510,555, 625, 807¢%3

+7,071, 644, 674, 463, 0642

44,425,365, 815, 868, 583¢2!

—5,028, 119,456,259, 998¢

+2,223, 302, 804, 647, 541€19234, 761,920, 605, 312¢ 18
—379,032, 669, 202, 8217

+329, 357, 542, 510, 98210163, 086, 464, 543, 222¢1°
+57,945,094, 589, 773¢ 1415, 146, 844, 338, 710 13
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+2, 665,837,646, 460¢ 12154, 116, 255, 422¢ 11
—97,607,466,956¢10 4 50,967,593, 269¢°16, 469, 653, 1078
+4,300,904, 858¢” — 1,004, 660, 075¢°
+202, 215, 844€°22, 094, 182¢*1, 646, 856€> + 400, 968>
+48, 104¢ + 208) / [12, 288 (2 + 30¢443€3 + 17¢%4e)’
(1+ 306418¢323¢2 + 11¢€)” (=2 4 30¢21€3 + 2¢% + 3¢)”
(1+e3+e* - 26)2:|

(35)

For 4-bit quantizer, K = 4

DiGie, = (114,213,888,000,000¢** — 1,033,673, 011, 200, 000€*!
+3,285, 980, 835, 840, 000€*® — 427,035, 193, 344, 000€>°
—29,615,491, 894, 579, 20038 + 103, 980, 817, 090, 897, 920¢%7
—164, 725,822, 832, 887,296€3 + 34, 515, 810, 866, 297, 088¢3°
+472, 361,930,923, 112, 064¢3* — 1,315,712, 396, 208, 910, 656¢>3
+2,125,947,487,263, 270, 816¢3? — 2,411,219, 122, 612, 440, 912¢3!
+1,921, 993,430, 825, 213, 592¢%° — 851,450, 424, 470, 925, 900€°
—285, 553,775,320, 155,900€28 + 988, 348, 010, 466, 804, 588¢%7
—1,071, 182,372, 882, 329, 488¢%° + 716, 211, 751,000, 262, 427¢%°
—268, 380,717, 446, 800, 437¢%* — 24,693, 601, 109, 397, 063¢2
+117, 058,813, 839,308, 184€22 — 91,679, 254, 830, 762, 285¢>!
440,953, 822, 541, 585, 40620 — 8,513,469, 892, 437, 467¢1°
—2,817,431,401, 552, 608¢'® + 3,612, 067,778, 674, 335¢7
—1,903,032, 054, 185, 672¢1° + 647, 855,202, 371, 522¢1°
—132,028, 998,320,989+ — 1,029, 960, 719, 786¢13
+13, 574,222,503, 848¢'2 — 6,451, 548,073, 534€!!
+1,919,139, 169, 130€° — 412, 300,519, 087¢°
+64,933,542, 8133 — 7,683,962,162¢7 + 1,043, 876,171€°
—249,828,052¢> + 40, 140, 886¢* 4 201, 576¢3
—467,304€2 — 48,104€ — 208)
/ [—12, 288 (14 €3 + €2 — 2¢)” (=2 + 30€* — 2163 + 2¢2 + 3¢)’
(2 + 30€* — 4363 4+ 172 — 4¢)” (1 + 30t — 18¢3 — 232 + 115)2]

(36)
For 4-bit quantizer, K = 5

DS, = (208 + 48,104 + 533,640¢> + 1,165, 656¢>
—58,458,982¢* + 281,191, 396¢°
—1,006, 697, 867¢® + 15,450, 699, 362¢”
—19,1847,469,599¢® + 1,488,428, 462, 173¢°
—8,189,718, 621, 524¢10 + 33,774, 417,209, 110!
—103,453, 615,005, 2042 + 207,719, 199, 032, 498¢ 13
—66,906, 562, 649, 267¢'* — 1,513,988, 103, 500, 822¢
+7,587,789,874,788,170€'° — 22,537,124, 796,414, 813¢'7
444,795,080, 053,420, 036¢ ' — 45,411, 147,473, 877,727
—64,724,051, 540,787,962 + 441,781, 898,032, 166, 091!
—1,209, 986, 072, 300, 463, 732¢22 + 2,194, 513, 539, 257, 525, 709¢ 3
—2,581,081, 879,055,831, 871€2* + 852,406, 151,910,028, 791¢
+4, 532, 585,756, 743,770, 546€2° — 13,587, 290, 869, 775, 967, 948€%7
423,129, 883, 155, 269, 680, 864¢%8 — 26,732, 149, 422, 180, 934, 236¢>°
+17, 882,765, 153, 323, 206, 432¢%° + 4,450, 563, 097, 100, 665, 344€>!
—32,275,487, 629, 836, 383, 808¢32 + 51,938,010, 511, 486, 921, 344€33
—53,591,598, 103,908, 331, 776¢>* + 38,728, 483, 984, 293,107, 712¢3°
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—18,259, 673,092,737, 874, 944€3® + 3,150, 966, 289, 987, 906, 560¢>”
+2,903, 688,409, 553, 842, 176€38 — 2,899, 835,033, 082, 052, 608¢>°
+1,258, 694, 025,775,349, 760€*0 — 228, 653, 524, 883, 865, 600¢*!
—47,498, 124, 460, 032, 000€*? + 39, 377,206, 149, 120, 000+
—9,639, 950, 745, 600, 000 + 913,711,104, 000, 000¢**)

/[12.288 (<24 30¢* — 2163 + 26 1+ 3¢)° (1 + €3 + € — 2¢)°
(2+306* — 4367 +17¢ — de)” (1+ 30¢* — 18¢3 — 23¢? + 11¢)’

(37)

5 Distortion analysis

In this section, several figures are plotted to analyze
performance of the standard [7] and proposed modi-
fied EOUQ. Distortion of the standard EOUQ and the
lower bound for distortion of the modified EOUQ with
CNC index assignment for 3-bit and 4-bit are shown in
Figures 5 and 6, respectively, which are plotted in imi-
tation of Figure six in [7] in order to clearly display the
difference between those. According to Figures 5 and 6,
when the crossover probability € is greater than 0.01,
the performance of our proposed EOUQ is better than
that of the standard EOUQ with CNC index assign-
ment, which shows the benefit obtained from a good
erasure correcting code. Additionally, when ¢ < 0.01,
the proposed one is worse than the standard one. This
is because the modified EOUQ would increase the quan-
tization error due to the fixed empty cells for all € in
(18) and (19). But this problem can be solved by switch-
ing work mode in encoders and decoders. As mentioned
before, the difference between the standard and proposed
EOUQ is that an erasure correcting code into encoders
and the corresponding decode scheme into decoders are
appended. So, in a practical system, we can initially give
a threshold value ¢, for ¢, for example, €, = 0.01 for
3-bit and 4-bit quantizers. When ¢ < ¢€,, the stan-
dard quantizer is adopted. Then, when encoders and
decoders realize € > ¢€,, an erasure correcting code is
appended.

The X axis (which represents crossover probability) of
Figure 5 is numbered from 0 to 0.5. However, in com-
munication systems nowadays, the crossover probability
seldom happens to reach 0.5. So, it is a preferable way
to clearly display the performance that the logarithmic
axis numbered from 1072 to 10~! should be chosen as
X axis. Then, the proposed modified EOUQ appending
a SPC block with K = 3,4,5 in MSE achieved by CNC
index assignment for rate » = 3 and n = 4 is shown
in Figures 7 and 8, respectively. As shown in Figures 7
and 8, when crossover probability is less than 1072, all
lines are almost overlapped, that is to say that most of
empty cell indices are recovered by SPC block decoders.
However, when crossover probability is greater than 1072,
the curve of our proposed quantizer using SPC block
code gradually deviates from the lower bound, because
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Figure 5 The difference between EOUQ and proposed modified EOUQ in MSE achieved by CNC index assignment for rate n = 3.

the SPC block decoder does not have enough capabil-
ity of correcting all erasures so that a few of empty cell
indices cannot be recovered according to Theorem 6. This
is a performance penalty incurred by the sub-optimal
erasure correcting code used in this paper. If another
well-designed SPC code that can increase recovery prob-
ability in Theorem 6, for example SPC product code,
or better erasure correcting code is adopted, the perfor-
mance will approach the lower bound. But it is impor-
tant that when crossover probability is numbered from
1072 to 107!, the performance of proposed quantizers
with CNC index assignment using SPC block code is still

better than that of standard quantizers with CNC index
assignment.

6 Conclusion

In this paper, the lower bound for a modified uniform
decoder and channel-optimized encoder quantizer with
CNC index assignment is proposed. After appending the
SPC block code and its decoding algorithm into encoders
and decoders, respectively, the performance of this mod-
ified quantizer approaches the lower bound and is better
than that of the standard quantizer when crossover error
probability € is greater than a threshold é,,.

0.01 T T T T

-0.01

-0.02

-0.03

Difference of Distortion

-0.04

lower bound
-0.05 D(CNC) “M(cNo)
- D(NBC)_D(CNC)
_0.06 1 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Crossover Probability

Figure 6 The difference between EOUQ and proposed modified EOUQ in MSE achieved by CNC index assignment for rate n = 4.
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Proof of Corollary 1

In order to prove Corollary 1, the following corollaries will
be firstly evidenced.

Corollary 3. If0 <i <2" — 1, then

2"—1

> (i) = (2 = 1) € +i (1 26), (38)
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Corollary 3 was proved in [7].
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The proof of the case that i = 2" — 1 is very similar to
the above.
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The proof of the other two cases is similar to the above.
O

Clearly,
By (i k) = by (i) — by (k). (47)

After substituting (46) for b, (i) and b, (k) in (47) and
merging like terms, B, (i, k) is simplified.
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