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Abstract

Cognitive radios are currently presented as the solution to the ever-increasing spectrum shortage problem. However,
their increased capabilities over traditional radios introduce a new dimension of security threats. Cooperative spectrum
sensing (CSS) has been proposed as a means to protect cognitive radio networks from the well-known security
threats: primary user emulation (PUE) and spectrum sensing data falsification (SSDF). In this paper, we demonstrate a
new threat to CSS protocols that rely on sensor reputations, called the Rogue Signal Framing (RSF) intrusion. Rogue
signals can be exploited to create the illusion of malicious sensors which leads to the framing of innocent sensors and,
consequently, their removal from the shared spectrum sensing. Ultimately, with fewer sensors working together, the
spectrum sensing is less robust for making correct spectrum access decisions. The simulation experiments illustrate
the impact of RSF intrusions which, in severe cases, shows roughly 40% of sensors removed. To counter the RSF’s
impact on the cooperative spectrum sensing (CSS), we introduce a new defense based on cluster analysis and
community detection from analyzing the network’s received signal strength (RSS) diversity. Tests show up to 95%
damage mitigation to the integrity of sensor reputations, thus retaining the benefits of trust-based CSS protocols.

1 Introduction
The growing demand for wireless services shows an
inevitable overcrowding of the spectrum bands, in large
part due to the rapid increase of wireless mobile services
in recent years. Conventionally, the Federal Communi-
cations Commission (FCC) statically assigned spectrum
bands to licensed users for exclusive use on a long-term
basis, precluding anyone else from access [1,2]. Yet, anal-
ysis of the spectrum bands clearly indicate that current
FCC policies have created severely under-utilized chan-
nels, causing a bottleneck for new wireless services [1,3,4].
Dynamic spectrum access (DSA) is the proposed solu-
tion to alleviate the overcrowding of bands by allowing
licensed primary users (PUs) to share unused spectrum
with unlicensed secondary users (SUs) in an opportunistic
fashion [1,5].
Cognitive radios (CR) utilize the DSA technology that

enables autonomous optimization of radio configura-
tions and the scanning of spectrum bands to locate the
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best available channels on a non-interference basis [6-8].
The cognitive radio network (CRN), consisting of SUs,
is given permission to coexist in licensed channels under
two preconditions mandated by the FCC: (1) giving
spectrum priority to licensed users and (2) minimizing
interference to licensed users. The faster the SUs can
detect the primary signal and vacate the licensed chan-
nels, the smaller the interference. For this reason, the
secondary network must achieve accurate spectrum sens-
ing to know exactly when primary users occupy the
channel.
The cornerstone of the IEEE 802.22, the first standard

for cognitive radio networks, requires the SUs to yield to
the PUs immediately after detecting the primary signal
within a designated region [9]. The 802.22 WRAN stan-
dard is aimed at using DSA technology to allow sharing
of geographically unused spectrum allocated for televi-
sion broadcast services. So in the 802.22 WRAN imple-
mentation, the primary network would consist of a TV
broadcasting station (primary transmitter) and the cor-
responding subscribed viewers (primary receivers) [5,9].
Ideally, SUs would occupy unused TV spectrum in geo-
graphical locations where the primary network is absent,
but may coexist as long as the SUs do not interfere with
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the subscribed viewers’ reception of the primary signal.
However, guaranteeing a minimal level of interference to
the primary network is perhaps the biggest obstacle to the
commercialization of DSA technology and a very difficult
problem to solve [5]. In order to have minimal interfer-
ence, cognitive radios must be able to reliably detect, in
real time, the presence or absence of a primary signal
from a given spectrum band. Otherwise, these cognitive
radios can unknowingly transmit signals simultaneously
with the primary transmitter, causing unacceptable levels
of interference to nearby PUs.
Cooperative spectrum sensing (CSS) has been proposed

as an effective approach for boosting the detection of
primary signals in CR networks [5,10,11]. In central-
ized CSS, the SUs submit their sensor reports to the
fusion center (FC), which is a server for aggregating and
cross-examining the network’s sensor reports to make
a robust analysis of the spectrum availability. The pur-
pose of the FC is to output a global spectrum decision,
based on the sensor reports, to notify SUs if they can
access a licensed spectrum band, in accordance to the FCC
statutes. Research results from [1,12] indicate that shadow
fading and multipath fading can be alleviated by requiring
multiple SUs to cooperate with each other in determining
the spectrum availability.
However, CSS is vulnerable to attacks like the spec-

trum sensing data falsification (SSDF) where malicious
SUs make false reports on the spectrum availability to
mislead the FC [13]. To counter SSDF, various trust mod-
els have been proposed to protect CCS from malicious
SUs [13-17]. These trust-based CSS protocols build repu-
tation profiles for sensors and filter out the sensing reports
from those with low reputations. Thus, they can single
out attackers and mitigate their influence in the shared
spectrum sensing.
Unfortunately, we find that the sensor reputations are

exploitable by rogue signals in trust-based CSS protocols.
In secondary networks, it is very hard to conclude the root
cause of bad sensor reports such as malfunctioning sen-
sors, the hidden node problem, SSDF attacks, and rogue
signals. Typically, trust models (from CSS protocols) treat
all inaccurate sensors the same way, in a loss of reputation.
We consider trust models as overly sensitive intrusion
detection systems (IDS) for penalizing sensors without
taking into account the root cause of the abnormal sensor
reports. As a result, attackers can cause inaccurate sensor
reports by transmitting rogue signals in order to destroy
the reputation of the targeted sensors. Accordingly, we
present a new threat to a variety of trust-based CSS proto-
cols, named the Rogue Signal Framing (RSF) intrusion. To
launch this attack, we exploit directional antennas to iso-
late a radiation pattern to a group of sensors in proximity.
The outcome is the emulation of an SSDF attack through
sporadic and misleading rogue signals, causing different

conclusions of channel availability in the network. The
split between local spectrum decisions leads to inno-
cent sensors being treated as malicious and consequently
removed from the shared spectrum sensing.
To counteract this new threat, we propose a new defense

scheme, named the RSF Clustering Defense (RCD) mod-
ule, that looks for dense clusters of sensors and examines
the proximity and similarity of their reports. Based on the
RCD findings, it makes a heuristic decision on whether
or not the network was affected by an RSF attack via
rogue signals. Thus, the RCD module can distinguish
sensors under the RSF intrusion and mitigate the trust
damage. In effect, our defense prevents trust models from
becoming an overly sensitive IDS by minimizing the false
alarms caused by rogue signals but still relies on a trust
model to stop SSDF attacks. The following are a list of
contributions:

• Introduced the Rogue Signal Framing intrusion, an
attack on the trust model of CSS protocols

• Developed a solution, the RSF Clustering Defense
(RCD), that protects sensor reputations from
manipulation in trust models

• Ran simulations that demonstrated the impact of the
RSF intrusion and the RCD solution

The rest of the paper is outlined as follows. Section 2
reviews common CRN attacks and trust-based CSS pro-
tocols. Then, we present the system model in Section 3,
and show the details and analysis of the RSF intrusion in
Section 4. We propose the RCD defense and evaluate it in
Section 5 and conclude the paper in Section 6.

2 Related works
Our work is mostly related to the following attacks and
defenses in CRNs.
PUE and SSDF attacks. Although CRNs are vulnerable

to a variety of attacks [6], two attacks receivedmuch atten-
tion. One is the primary user emulation (PUE) attack
[6,18], where an attacker masquerades as the primary
transmitter from the vantage point of its neighbors. The
other attack is the SSDF [5,13], in which compromised
users falsify the local spectrum sensor reports to obscure
the existence or create the illusion of a primary signal at
the FC [19]. Both of these attacks attempt to deceive the
FC on the availability of spectrum resources, causing net-
works to behave in unintended ways. In contrast, the RSF
intrusion disrupts the trust between the FC and sensors,
which makes the spectrum sensing less stable.
Tom Clancy et al. [6] lists a host of threats such as

sensorymanipulation attacks, belief manipulation attacks,
and objective function attacks to cognitive radios with
embedded learning engines. However, the RSF intrusion
focuses on cognitive radio networks with trust schemes
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and cooperative spectrum sensing, independent of the
learning engine.
Trust-based CSS protocols. To defeat SSDF attacks, sev-

eral trust-based schemes were developed. Chen et al. [13]
presented a sequential probability ratio test (SPRT) that
scales the contribution of sensors by their reputation
in order to mitigate the impact of SSDF attacks. Their
model incorporates sampling votes on the detection or
absence of the primary signal and weighing each vote
according to the sensor’s reputation. For every vote iden-
tical to the global decision, the sensor’s reputation is
incremented, such that their vote carries more weight in
future decisions made at the fusion center. Kaligineedi
et al. [14] presented a pre-filtering average combination
scheme. The scheme’s filters are responsible for (1) fil-
tering extreme outlier sensor reports and (2) ignoring
sensors that have continuously deviated from the majority
over a length of time. Arshad et al. [16] presented a beta
reputation system model for hard-decision CSS proto-
cols. Similar to [13], the sensors are rewarded for agreeing
with the global spectrum decision, but otherwise penal-
ized. Feng et al. [20] introduced the SensingGuard trust
model intended to protect the CSS from rational collu-
sive SSDF attacks, in contrast to sporadic SSDF attacks.
Lai et al. [21] introduced a game theory model, based on
the Newton-Raphson algorithm, that aims to punish self-
ish SUs and reward cooperation. In [17,22,23], the authors
developed a trust-based CSS protocol that penalized sen-
sors if their reports deviated too far from the expected
received signal strength (RSS) values determined by com-
mon RSS models. The similarity of these approaches are
to build reputation profiles for spectrum sensors in order
to filter out sensing reports from untrustworthy sensors.
However, our work shows that the reputations can be
manipulated and, as a consequence, well-behaved sen-
sors are framed and removed from the shared spectrum
sensing.
Received signal strength anomaly detection. Apart from

reputation profiles, there are solutions that rely on RSS
models and statistical methods to validate the authenticity
of sensor reports. Min et al. [24] presented an algorithm
that analyzes sensor clusters and their RSS correlation,
based on distance and approximated shadow fading, to
pinpoint malicious sensors and reduce/remove their input
from the fusion center. A big difference in our work and
theirs is that they rely (and assume) a priori knowledge
of the environment’s shadow fading to accurately predict
the expected RSS value for a cluster of sensors. Secondly,
they have no reputation model to go along with anomaly
detection, so their solution discards the sensor reports
in single intervals instead of penalizing the sensors for
an extended duration. In [19,25], the authors developed
solutions using RSS estimation models and support vec-
tor machines (SVMs), a machine learning technique, to

classify sensors as either anomaly or normal. Unlike the
various aforementioned solutions, we developed our own
defense based on cluster analysis and community detec-
tion to safeguard sensor reputations from manipulation,
instead of only focusing on the integrity of the CCS.
What makes our solution unique is that our defense

protects the integrity of trust models, i.e., sensor reputa-
tions, from rogue signal manipulation. Previous literature
used trust models to stop malicious SUs (and their sen-
sors) from deceiving the CSS, but did not consider the
trust models themselves to be the target of attacks. Trust
models were considered reliable solutions against SSDF
attacks andmalfunctioning sensors, but to our knowledge,
none of the papers discussed how to manipulate and dis-
rupt trust models. We realized the vulnerability of trust
models due to their coarse threshold of penalizing inaccu-
rate sensor reports, i.e., a sensor is deemed untrustworthy
if it does not behave in a predetermined way. However, if
an attacker knows how the sensors should behave, then
they can leverage rogue signals to disrupt typical sensor
behavior and thus destroy their reputations. To protect
sensor reputations, we explored techniques from social
network analytics, such as cluster analysis and community
detection, as opposed to relying on RSS models or shadow
fading estimations to predict the correct sensor report.

2.1 Motivation for distinguishingbetween RSF and SSDF
In an NSF 2009 workshop, the FCC had raised the
question, ‘What authentication mechanisms are needed
to support cooperative cognitive radio networks? Are
reputation-based schemes useful supplements to con-
ventional Public Key Infrastructure (PKI) authentication
protocols?” [26] Reputation-based schemes in CSS (a.k.a.
trust-based CSS protocols) are a popular technique for
performing robust and accurate spectrum sensing with-
out any inter-communication with the primary network,
but the question remains on how effective they are at sat-
isfying the FCC security requirements. Our work takes a
closer look at the robustness of trust-based CSS protocols.
In secondary networks, it is very hard to conclude the

root cause of bad sensor reports, which can vary from
(1) malfunctioning sensors, (2) the hidden node prob-
lem, (3) SSDF attacks (i.e.,malicious secondary users), and
(4) rogue signals. Yet, the trust-based CSS protocols treat
all inaccurate sensors the same way, in that they penal-
ize secondary users and diminish sensor reputation all
the same. An important question we wanted to investi-
gate was, ‘Should the trust-based CSS protocols treat all
inaccurate sensor reports the same way, regardless of the
root cause? Or does it cause more harm than good to the
system in certain scenarios’.
To test our hypothesis, we simulated multiple direc-

tional rogue signals against targeted clusters in a cogni-
tive radio network. The simulation illustrated the impact
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of rogue signals negatively affecting sensor reputations
which, in severe cases, shows roughly 40% of sensors
penalized and eventually ignored in the shared spectrum
sensing process. In other words, nearly half of the sen-
sors were removed without any fault of their own, e.g.,
the sensors were not malfunctioning nor behaving mali-
ciously but were still penalized. That means an outsider
has the potential to trick the reputation scheme in order
to filter out nearly half of the sensors, thus diminishing the
performance of the network’s shared spectrum sensing.
Trust-based CSS protocols have proven effective against
malicious secondary users who report falsified sensing
reports, but they did not consider the impact of rogue sig-
nals. Hence, based on the outcome of our simulations, we
consider trust models as overly sensitive intrusion detec-
tion systems (IDS) for penalizing sensors without taking
into account the root cause of abnormal sensor reports.
Not being able to determine the origin of inaccurate

sensor reports opens the possibility for attackers to use
RSF as a stepping stone attack against trust-based CSS
protocols. Chen et al. [13] models attacks against CSS
protocols as a Byzantine fault tolerance system, in that
the CSS protocol can continue functioning as intended
as long as there are not too many Byzantine failures,
which in this case are generally hidden, malicious, or
malfunctioning sensors. In contrast, our work demon-
strates that the RSF attack lowers the Byzantine fault
tolerance of trust-based CSS protocols, due to having less
secondary users participate in the shared spectrum sens-
ing, thus making the system less robust against Byzantine
failures.
Clancy et al. [6] warns of a similar threat of rogue sig-

nals, but in a different context. They claim that rogue
signals can cause faulty statistics, collected from the phys-
ical layer (e.g., RSS, channel availability, etc.), and stored
in the knowledge base. The cognitive radio’s behavior is
determined by the learning and reasoning engines which,
in turn, depends on the knowledge base of spectrum
observations across many channels overtime. Hence, the
cognitive radio may not behave as intended, or in fact
cause harm, when the knowledge base contains faulty
statistics that inhibits good decision-making. Both our
work and theirs [6] express the importance of being able
to defend against rogue signals. The difference, however,
is that our work protects the sensor reputations in trust-
based CSS protocols whereas their idea is related towards
protecting the integrity of the knowledge base.

3 Attackmodel
In this section, we define the RSS model and the method
of attack for the RSF which employs directional antennas.
The attacker manipulates sensor reputations by trans-
mitting rogue signals to targeted sensors, thus causing
conflicting sensor reports in the network. To ensure that

reports do conflict, directional antennas are used to avoid
targeting the entire network.
Figure 1 illustrates the system model of trust-based

CSS protocols and the different targets of PUE and RSF
intrusions. In it, f0 represents some wireless spectrum fre-
quency, Si a set of sensors, and Ri the corresponding set of
sensor reports. The system model is a stack of dependent
layers, starting with the spectrum channel, the network of
sensors, the trust model, and finally the FC. The accuracy
of the CSS is dependent on the FC receiving reliable input
from the above layers. For example, the spectrum channel
must be clear enough for communication, the majority of
sensors must not be malicious or malfunctioning, and the
trust model must filter the malicious sensors to protect
the FC from bad input.
Without loss of generality, we use a system as shown in

Figure 2 to discuss the proposed security issues. Within
the network area, the spectrum sensors are randomly
distributed and the attacking antennas are positioned
in the middle. The FC collects the sensor reports and
cross-examines the local spectrum observations to make
a global decision on channel vacancy. Spectrum sensing
occurs in scheduled time intervals when all communi-
cations from the secondary network stops, called quiet
periods, in order to listen for the primary signal [5].

3.1 Propagationmodel
Energy detection. We decided to use energy detection
because it is the most widely used spectrum sensing
technique for cognitive radio networks [10,24]. Secondly,
energy detection is used on three trust-based CSS pro-
tocols that we borrow for our simulations, from papers
[13,14,16].
When an attacking antenna emits signals, the RSS in

decibels per milliwatt (dBm) for any given sensor si can be
modeled as below according to [27]:

Figure 1 Systemmodel.
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Figure 2 Illustration of attack model.

Ri =
{
N (μω , σω), H0

10 log10(Pray(dij)) + Ls[xi, yi] , H1
(1)

The model gives two possible RSS values. When the
antenna is not transmitting (i.e., case H0), the RSS is actu-
ally from the environmental noise, for which μω is the
noise power mean and σω is the noise variance. On the
other hand, when the antenna is emitting signals (i.e.,
case H1), the RSS is determined by the attenuation of
signal propagation from the attacker to the sensor plus
shadow fading on position [ xi, yi]. In the H1 case, we use
the Rayleigh fading model in milliwatts (mW), expressed
as: [28]

Pray(dij) = PtGtGrλ2(
4πdij

)2
√
r21 + r22 (2)

where dij is the distance between si and the jth attack-
ing antenna, λ denotes the wavelength (meters), Pt is the
emission power, Gt and Gr are the antenna gains of the
transmitter and receiver, and r1, r2 ∼ N (0, 1).
The RSS value Ri is measured in decibels per milli-

watt (dBm). However, the Rayleigh fading model (from
Equation 2) is in milliwatts (mW), so we apply the unit
conversion dBm = 10 log10(mW ) in Equation 2 under
hypothesis H1. In addition, Ls[xi, yi]∼ N (0, σL) is the
correlated shadow fading gain [29] between si’s posi-
tion [xi, yi] and the jth antenna’s position [xj, yj], and
σL is the shadow fading variance. In the propagation
model, we assume that the channel bandwidth is much
larger than the coherent bandwidth, so the effect of a
multi-path fading is negligible, and thus removed from
Equation 1 [9].

3.2 Directional antennamodel
Rogue signals are generated by directional antennas to
manipulate the sensor reputations. The antenna radi-
ates in a smaller area surface, compressing the radiated
energy, and thus raising the signal’s strength. Hence,Gt in

Equation 2 is substituted by the directional gain according
to [30]:

G(θ , φ) = (
4πr2

) (
4

πr2sin(θ)sin(φ)

)
(3)

In Equation 3, θ and φ are the vertical and horizontal
angles of the beam width, respectively. For simplifica-
tion, we assume θ = φ. Furthermore, we assume that
the rogue signals only affect the sensors inside the beams
of the directional antennas. To determine which sensors
are attacked, we need to calculate the angle between the
attacked sensor and the directional antenna, as illustrated
in Figure 3. The angle between position �pi of the ith sensor
and position �pj of the jth antenna is as follows:

θij = arccos
( �pi · �pj

‖ �pi‖‖ �pj‖
)

(4)

where �pi, �pj ∈ R
2. The ith sensor is affected by the rogue

signal if θij falls between the lower and upper beam angles
θl, θu of the jth transmitter such that θl ≤ θij ≤ θu.

4 Rogue signal framing intrusion
In this section, we introduce the RSF intrusion and
demonstrate its impact on the network’s total trust
through simulations.
In the CSS paradigm, the physical layer (i.e., the sensor)

provides local signal detection. The FC collects the sen-
sor reports and validates the signal authenticity through
cross-examination of the RSS spatial diversity from the
network. However, verifying the source of RF waves at
the physical layer is incredibly challenging, especially for
energy detectors that can only observe the RSS. Since the
energy detectors only measure raw RF energy, there is no
cryptographic means to identify the source [6].
According to the first CRN standard, the IEEE 802.22,

the secondary network must be self-reliant in minimizing
interference to the primary network which requires accu-
rate spectrum analysis [18]. In the case of SSDF attacks,
trust models have been effective at removing malicious
sensors from the shared spectrum sensing [13-17]. How-
ever, these trust models cannot distinguish between mali-
cious sensors and accurate sensors misled by rogue signals
(as opposed to the legitimate primary signal). In other

u

l

ij

Sensor

Figure 3 Capturing sensors in the radiation pattern of rogue
signals.
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words, sensors are labeled untrustworthy when they have
a consistent history of abnormal sensor reports, regardless
of the cause.
Rogue signals can raise a sensor’s RSS well above what

is expected, especially in the absence of the primary sig-
nal. So a prolonged rogue signal on a group of sensors
can cause a sharp contrast in local spectrum observa-
tion from the others, thus appearing malicious and no
different than SSDF. Consequently, the security proto-
col brands these sensors as untrustworthy and removes
them from the shared spectrum analysis for as long as the
stigma remains. As such, launching rogue signals on spe-
cific regions of the network over many quiet periods leads
to the exploitation of the trust model via the RSF attack.
In the context of CSS, we define the term Rogue Signal
Framing attack as follows:

Definition. Rogue Signal Framing attack breaks the
trust between the fusion center and a group of sensors via
rogue signals to create the illusion of malicious sensors.

To launch this attack, we exploit directional antennas to
launch rogue signals on a regional group of sensors and
thereby causing them to report abnormally high RSS com-
pared to the rest of the unaffected network.When sensors
start reporting differently, the FC interprets the situation
as an SSDF attack, when in fact, the sensors reported hon-
estly. In essence, we can use rogue signals to emulate false
SSDF attacks to harm innocent sensors and mitigate their
cooperation in shared spectrum sensing.

4.1 Motivation for directional antennas
In a CRN with energy detectors, the RSF attacker must
limit the rogue antenna’s coverage in order to avoid a
successful PUE. Directional antennas make it possible to
isolate its radiation pattern to a targeted group of sensors
(with the rest of the network unaffected), thus convincing
the FC that the defecting sensors are malicious. On the
other hand, isotropic antennas emit RF waves in all direc-
tions and maximize the antenna’s coverage. This leaves a
massive RF finger print in a network of energy detectors.
Chen et al. [18] proposed an RSS-based location verifica-
tion scheme to detect and pinpoint PUE attacks enforced
by a dense network of sensors. However, this scheme was
not tested or tailored for pinpointing directional antennas.
Directional antennas are difficult to detect, and even

harder to pinpoint, because of their ability to emit rogue
signals with narrow and asymmetrical radiation pat-
terns. Any changes made to the beam direction and
beamwidth of a directional antenna can drastically change
the network’s RSS spatial diversity. These observations are
supported by work from Bauer et al. [31]. In their exper-
iments, they demonstrated that directional antennas can
disrupt localization algorithms on IEEE 802.11 WLANs
that resulted in very high errors.

4.2 Trust damage
Themain goal of the RSF attack is to compromise the trust
between the FC and network sensors. To quantify the trust
damage (as a percentage), we use the following equation to
measure the network’s trust score T�[q] on quiet period q
with:

T�[q]=
⎛
⎜⎝ 1∑

si∈S
ti[ 0]

⎞
⎟⎠∑

si∈S
ti[q] (5)

where ti[q] is the trust score of sensor si ∈ S. In each
trust-based CSS protocol, the trust score is represented
differently. In order to compare the trust damage between
each protocol, we normalized the trust score ti such that
ti[q]∈ [0, 1] in the equation.
In each quite period, a group of sensors may lose their

trust due to the RSF intrusion, so T�[q] changes from one
quiet period to the next. As the time passes on, sensors
exposed to RSF suffer an increasing amount of trust dam-
age, so we expect T�[q] will decrease as the number of
quiet periods q increases.

4.3 Attack evaluation
To test our proposed framing intrusion, we borrow three
different trust-based CSS protocols. The first protocol FA,
by Chen et al. [13], utilizes the sequential probability ratio
test (SPRT) and weights the probability by the sensor’s
reputation to mitigate the impact of SSDF attacks. The
second protocol FB, by Kaligineedi et al. [14], utilizes a
pre-filtering average combination scheme. These filters
are responsible for (1) filtering extreme outlier sensor
reports and (2) ignoring sensors with high-trust penal-
ties. The third protocol FC , by Arshad et al. [16], utilizes
a beta reputation system model for hard-decision CSS
protocols. Like FA, the sensors are rewarded for agree-
ing with the global spectrum decision, but otherwise
penalized.
We make the following assumptions on the simulation’s

environment according to an IEEE 802.22 WRAN envi-
ronment that encompasses UHF/VHF TV bands between
54 and 862 MHz [9]. In our simulation, 400 sensors are
located inside a 2, 000×2, 000 grid.We assume the incum-
bent broadcasting station operates at the UHF frequency
of 615 MHz. Like Figure 2, there are four rogue direc-
tional antennas facing the cardinal directions and posi-
tioned on the map’s center. Protocols FA, FB, and FC are
tested on RSF attack scenarios, labeled as RSF-15, RSF-30,
and RSF-45 which corresponds to the scenario’s antenna
beamwidths of 15°, 30°, and 45°, respectively.
Figure 4 shows the network’s total trust T�[q] over

100 quiet periods for each scenario. Depending on
the protocol and different evaluation environment, the
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Figure 4 Display of the network’s total trust (from Equation 5) over 100 quiet periods for protocols FA, FB, and FC . Like Figure 2, there are
four rogue directional antennas facing the cardinal directions and positioned on the map’s center. The beamwidth of each rogue antenna is 15°, 30°,
and 45° for scenarios RSF-15, RSF-30, and RSF-45, respectively.

RSF intrusion removed nearly 15% to 45% of the net-
work’s total trust which correlates to the percentage of
sensors removed from the shared spectrum sensing. As
expected, T�[q] initially decreases and plateaus over time.
It plateaus when the misled sensors eventually have no
more trust to lose.
In Figure 4, the change in the network’s total trust

	T�[q] per quiet period is different for protocols FA, FB,
and FC because a sensor’s trust score is adjusted differ-
ently for each protocol. Hence, these protocols behave
differently against rogue signals, but the overall trend is a
net loss of total trust T�[q] as the quiet period q increases
over time. The protocol differences can be summarized
briefly as follows:

• Protocol FA: sensor trust is increased when the local
spectrum decision agrees with the FC’s global
spectrum decision and penalized otherwise, only
applies to a random sample of sensors with varying
sizes

• Protocol FB: the rate and scope of trust damage
depends on the environment’s RSS variance, the
protocol’s penalty threshold scales with the
environment’s noise variance

• Protocol FC : sensor trust is increased when the local
spectrum decision agrees with the FC’s global
spectrum decision and penalized otherwise, applies
to all sensors

From Figure 4, we observe that both protocols FA and
FC start to plateau because the ti of misled sensors even-
tually falls to 0, causing the 	T�[q] to become stagnant
over time. However, protocol FB differs in that it does not
have local spectrum decisions to compare to FC’s global
spectrum decisions. Instead, it determines if a sensor is
malicious when the reported RSS value exceeds a dynamic
threshold that correlates with the network’s RSS variance.

As the attack coverage increases from RSF-15 to RSF-45,
so does the RSS variance and the FB’s behavior towards
the RSF attack.
The CSS paradigm can be modeled in the context of

the Byzantine fault tolerance problem. The authors in [13]
describe a Byzantine failure as either a malfunctioning
sensor or an SSDF attack. In both cases, the sensors
perform unreliable local spectrum sensing that could ulti-
mately mislead the FC to a wrong spectrum decision in
the form of a misdetection or false alarm. These decisions
are based on the null hypothesis H0, where the primary
signal is presumed absent, and the alternative hypothesis
H1, where the primary signal is presumed present, from
Equation 1.
A misdetection is when the FC decides H0 when in fact

the primary signal is present and may result in unaccept-
able interference to the primary users. Conversely, a false
alarm is when the FC decides H1 when the primary sig-
nal is absent and causes a denial of service of spectrum
resources for secondary users. The hypothesis tests are
represented in Table 1.
The RSF’s ability to damage sensor reputations does

not directly influence the FC’s spectrum decision like in
SSDF or PUE attacks. Instead, the RSF lowers the sys-
tem’s fault tolerance because the FC has to rely on less
sensors to infer the presence of the primary signal. Hence,
the RSFweakens the reliability of shared spectrum sensing
for trust-based CSS protocols in the aftermath of the
intrusion.

Table 1 Hypothesis test

Primary signal absent (H0) Primary signal
present (H1)

H0 is accepted Correct decision Misdetection

H0 is rejected False Alarm Correct decision
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4.4 Two types of framing
To create an illusion of malicious sensors, there needs to
be a separate group of well-behaved sensors to delineate
good-from-bad sensor reports. Unfortunately, classifying
sensors as either honest or malicious is speculative, as the
FCC regulations remove any obligations of the primary
network to communicate with the secondary network [6].
Hence, the secondary network is left to assume chan-
nel occupancy (i.e., the global spectrum decision) with
hypotheses like H0 and H1. Therefore, if all sensor repu-
tations are in good standing, such that all sensors equally
participate in the shared spectrum sensing, then the global
spectrum decision is typically determined by the majority
of sensors.
This is especially true for hard-decision combining,

which is when the FC makes a global spectrum deci-
sion based on a collection of local spectrum decisions,
reported by sensors individually, in the form H0 and H1.
Protocols FA and FC use hard-decision combining, with
each decision weighted by sensor reputations. Alterna-
tively, the FC can perform soft-decision combining to
determine the global spectrum decision based on a col-
lection of non-discrete sensor observations, e.g., energy
detectors that report the RSS values instead of a local
spectrum decision.
Soft-decision combining not only benefits from using

more descriptive data but also becomes more vulnera-
ble to outliers in sensor reports, e.g., extremely high or
low RSS values. Generally, CSS protocols are designed to
reduce the impact of outliers or remove them entirely,
but this still leaves the majority of sensor reports as a
strong determinant of the global spectrum decision, just
like in hard-decision combining. That is, a majority of
sensors will typically decide the global decision, even if
thatmajority is comprised of malicious sensors or affected
by a wide-reaching rogue signal, as seen in the case of
a PUE attack. In such a case, the FC concludes that the
disagreeing minority of sensors, even if well-behaved, are
presumed inaccurate.
Hence, we define two outcomes of rogue signals with

regard to damaging sensor reputations, called type 1
framing and type 2 framing:

• Type 1 framing: the sensors misled by the rogue
signal are in the minority and lose trust, while the
rest of the network gains trust

• Type 2 framing: the sensors misled by the rogue
signal are in the majority and gain trust, while the
rest of the network loses trust

For consistency, we will describe sensors affected by a
rogue signal asmisled sensors, and sensors that are not as
unaffected sensors, like in Table 2.
Prior to this section, type 1 framing has been the des-

ignated type of trust manipulation to describe the RSF

Table 2 Simulation parameters

Parameter Value Description

Ns 400 Number of
sensors

Nr 4 Number of rogue
antennas

γθ -92 dBm Sensor sensitivity

f 615 MHz Channel
frequency

μω 95.2 dBm Noise power
mean

σω 0.3 dB Noise power std

dθ 150 m distance threshold

σL 4.5 dB Shadow fading
variance

Nx × Ny 2,000 m ×2, 000m Grid dimensions

Cmin 5 Minimum cluster
size

Zθ 0.3 Cluster threshold

attack. Type 2 framing, which is also a result of rogue
signals, is worthy of discussion for simultaneously accom-
plishing a PUE attack and harming sensor reputations.
Both attacks are manifested through rogue signals but
can only be distinguished by the attack’s outcome, such
as misleading the trust model (via RSF attack) or the
FC (via PUE attack). To our knowledge, the fact that a
PUE attack may inadvertently affect sensor reputations
has not yet been considered in previous literature. We
believe that type 2 framing is important in that it high-
lights the more subtle deficiencies in trust models, like
how PUE attacks can also harm sensor reputations as a
side effect.
Figure 5 illustrates two cases of trust damage when the

secondary network is bombarded by rogue signals: type 1
framing when theminority of sensors are within the attack
coverage and type 2 framing when the minority of sensors
are outside the attack coverage. Assuming the network’s
trust is in a healthy state, the sensors that disagree with
the global spectrum decision will be presumed malicious.
In type 2 framing, the sensors outside the attack coverage
will experience trust penalties.
To show the two types of framing, we tested for the

number of misled (attacked) sensors and PUE success rate
with respect to antenna beamwidth to identify whether
trust damage occurs during a PUE attack, or at least from
a rogue signal with a wide attack coverage. We followed
the same system parameters from Table 3. The rogue
signals are launched for a duration of 100 quiet periods
with a transmission power of 10 mW for each integral
beamwidth, from 20° to 70°. The recorded trust damage is
based on Equation 5 with a fixed quiet period q = 100.
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Figure 5 The two outcomes of rogue signals in trust-based CSS protocols. The plus sign indicates an increase of reputation for some sensor,
while the minus sign indicates a decrease.

Figure 6 depicts the simulation results of type 2 framing
on protocols FA, FB, and FC which shows the trust damage
T�[100] (on the 100th quite period) and the PUE suc-
cess rate (%) with respect to antenna beamwidth θ °. Trust
damage is evident in all three protocols during successful
PUE attacks, i.e., when the PUE success rate is above 0. In
cross examining these results, a negative correlation can
be observed between the trust damage and the PUE suc-
cess rate, especially upward of the 60° beamwidth mark.
Hence, we use these results to reinforce the notion of type
2 framing as a result of rogue signals from Figure 6.
Table 4 shows the corresponding false alarms (sen-

sors misled by rogue signals) for the beamwidth used
on the four attacking directional antennas from Figure 6.
The number of false alarms increases sporadically as the
beamwidth increases because of the random placement of
sensors.
From observing the results in Figure 6 and Table 4 and

understanding the trust model algorithms, we see a clear
pattern between the relationship of trust damage and false
alarms. In the polar cases of 0 or Ns false alarms (where
Ns is the number of sensors), the trust damage is virtually
0, since the FC cannot find any disagreements among the
sensor reports.
If the trust damage decreases to 0 as the number of false

alarms approaches the polar ends (0 or Ns), then it can
be surmised that somewhere near the middle should hold
the maximum trust damage TD� for a given trust model.
In other words, having false alarms equal to roughly N/2
produces the maximum trust damage TD� because that is
when the sensor network ismost divided in local spectrum

Table 3 Attack outcomes on trust models

RSF PUE

Misled sensors Lose trust Gain trust

Unaffected sensors Gain trust Lose trust

decisions. We will denote FA� as the number of false
alarms that produces TD�, as depicted in Figure 7.
The RSF and PUE labels over Figure 7 reflect the likely

outcome of an attack from rogue signals. As the false
alarms approachNs due to rogue signals, a successful PUE
attack is more likely to occur than the RSF attack. This
can be observed in the PUE success rate in Figure 6 as the
directional antennas’ beamwidth broadens and the num-
ber of false alarms increases. It is important to note that
regardless of the attack (RSF or PUE), trust damage occurs
unless the number of false alarms is either 0 or Ns.
As seen in Table 5, the trust-based CSS protocol FA can

lose over 50% of its sensor trust (essentially removing over
half its sensors) because it randomly samples sensors to
make decisions, and only the sensors in the current sample
are penalized if deemed inaccurate by the FC. Otherwise,
protocols FB and FC have the same FA� as a result of
examining the reports of all sensors instead of sampling.
The TD� differs between all three protocols considering
that they each use different trust update calculations.

5 Rogue signal framing clustering defense
This section introduces the RSF clustering defense (RCD)
module that operates in three steps: 1) analyze the RSS
diversity for any clustering behavior, 2) compute the clus-
tering strength in order to conlude the presence of a
rogue signal, and if so 3) ignore trust penalties of sen-
sors in the attacked clusters. The defense relies on the
fact that directional antennas leave isolated radiation pat-
terns that form dense communities of sensors reporting
H1. Malicious sensors can perform SSDF attacks from the
software layer without the need of rogue signals and thus
operates outside the physical limitations of signal proper-
ties. In contrast, the RSF attack coverage is bound by the
rogue signal’s radiation pattern. Hence, we look towards a
solution involving cluster analysis to exploit the rogue sig-
nal’s physical characteristics and the finger print it leaves
behind in a region of the network.
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Figure 6 Trust damage over 100 quiet periods with respect to beamwidth and the corresponding PUE success rate. For protocols FA , FB ,
and FC .

5.1 Network classification and clustering
The beginning of this section briefly examines the
necessary network terms and concepts for better under-
standing the RCD algorithm and its motivation. We use
graph partitioning and community detection as the basis
for discovering clusters of RSF-attacked sensors. To par-
tition the graph in a meaningful way, we assume that
the nodes (e.g., sensors) have discrete characteristics such
as a type or class. In our system model, the sensors
are classified based on their local spectrum decision
such that a given sensor si has a corresponding class ci
where (ci = −1) if si reports H0 and (ci = 1) if si
reports H1. This allows for the measuring of the net-
work’s assortative mixing, a term defined as the pairing
of nodes with the same class [32]. However, the net-
work of sensors also needs meaningful edges for commu-
nity detection. The RCD module pairs any two sensors
si, sj based on their class ci, cj and their mutual dis-
tance dij from each other in order to observe spatial
clustering.
The goal of the RCD module is to find an isolated

and strongly concentrated group of sensors that report
H1. The Kronecker’s delta function δ(·) is a commonly
used piecewise constant function in assortative mixing to
specify whether or not the two nodes are of the same
class [32]:

δ(ci, cj) =
{
0 if ci �= cj
1 if ci = cj

(6)

A basic mathematical formula for discretely measuring
the assortative mixing in a network can be expressed
by [32]:

∑
edge(ij)

δ(ci, cj) = 1
2

∑
ij

Aijδ(ci, cj) (7)

where ci, cj are the node classes and δ(ci, cj) is the
Kronecker’s delta function from Equation 6. The left
side of the Equation 7 is a summation series that iterates
through an edge list and increments for each pair of the
same class. The right side of Equation 7 is the matrix
formula which iterates through an adjacency matrix and
increments the same way. The one-half fraction from the
matrix formula is there to remove the double counting of
pairs.
Consider Figure 8, a network with two classes of nodes

such that one class is designated by black circles and the
other by red squares. In such a network, a node can have
a degree for each class. Each node ni keeps track of the
number of edges connected to nodes of the same class,
denoted as degree ksame

i , as well as the number of edges
connected to nodes of a different class, denoted as degree
kdiffi . The degree ksame

i can be computed by Equation 7.
Similarly, the degree kdiffi can be computed by the same
equation, i.e., Equation 7, with the exception of inverting
the sign for the Kronecker’s delta function. Figure 8 dis-
plays these two types of degrees above each node in the
form of

(
ksame, kdiff

)
which can be used to measure the

strength of the assortative mixing.

Table 4 Number of false alarms for each corresponding beamwidth (degrees) from Figure 6

Number of false alarms

Beamwidth 20° 25° 30° 35° 40° 45° 50° 55° 60° 65° 70°

False alarms 56 74 100 123 143 170 190 209 229 249 283
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Figure 7Modeling the trust damage from Figure 6.

Our solution, which involves graph partitioning and
community detection, is based on the principle of assorta-
tive mixing, but tailored in the context of cognitive radio
networks. The RCD has three requirements for operation.
First, it needs the local spectrum decision ci ∈ {H0,H1}
for all sensors si ∈ S. Second, it needs two sets of sen-
sors where SH0 = {si|ci = H0} and SH1 = {si|ci = H1}.
Lastly, it needs an adjacency matrix A of size |S| × |S|
such that

Aij =
{
1 if dij ≤ dθ

0 if dij > dθ
(8)

where dij is the distance between sensors si and sj and dθ

is the distance threshold.
The RCDmodule locates k disconnected clusters of sen-

sors Ck such that sj ∈ Ck , Aij = 1, and ci = cj for sensors
si, sj ∈ Ck . The RCD module’s goal is to locate isolated
communities Ck that are surrounded by sensors in SH0 . To
start, we measure the cluster density of sensors with the
same class by counting all connected pairs (si, sj) such that
si ∈ Ck , sj ∈ SH1 , and Aij = 1. This is computed on all
sensors in Ck with:

{
dH1
i

}
k

=
⎧⎨
⎩

∑
sj∈Ck

(
Aijδ

(
ci, cj

)) − 1 | si ∈ Ck

⎫⎬
⎭ (9)

where δ(ci, cj) is a simple Kronecker’s delta function from
Equation 6 that indicates a difference in a node’s class c,
i.e., the local spectrum decision. Next, wemeasure the iso-
lation of sensor si ∈ Ck from sj ∈ SH0 by counting all
connected pairs (si, sj) such that Aij = 1. This is computed
on all sensors in Ck by:

{
d	
i

}
k = D(Ck) =

⎧⎨
⎩

∑
sj∈SH0

Aijδ
′(ci, cj) | si ∈ Ck

⎫⎬
⎭ (10)

δ′(ci, cj) = D′(Ck) =
{
0, if ci = cj
1, if ci �= cj

Table 5 Trust model comparison

Trust model FA� TD�

FA 235 63%

FB 201 48%

FC 201 34%

Figure 8 Example of assortativemixing.

Finally, to measure the isolated clustering strength zk ,
we use the function:

zk = Z
({

dH1
i

}
k
,
{
d	
i

}
k

)
=

∑
i d

H1
i∑

i

(
dH1
i + d	

i

) (11)

In the off chance that a number of malicious sensors
from SSDF are positioned near each other, we want to
have a level of tolerance Zθ and a required minimum
number of sensors per cluster Cmin. The restraint Cmin
prevents a high clustering score Zk from an insignificant-
sized cluster.
Figure 9 shows two scenarios: (1) the RSF-45 where each

rogue antenna has a beamwidth of 45° and (2) the SSDF-
40 where 40% of the sensors, randomly selected, perform
SSDF. The red nodes are sensors reporting H1, and the
blue nodes are sensors reporting H0. The red edges are
formed when ci = cj and dij < dθ for sensors si and sj.
The blue edges are formed by the same rules except that
ci �= cj.
The red and blue graph both give valuable information

in detecting directional rogue signals by the cluster forma-
tions they create. The goal of the red graph is to identify
a strong concentration of sensors perceiving a radio signal
within a small area. In contrast, the blue graph demon-
strates disagreements in spectrum decisions (i.e., H0 and
H1) between neighboring sensors. As can be seen in the
RSF scenario in Figure 9a, the red graphs (created by the
rogue signals) is surrounded by the blue graph and lacks
any significant overlap between the two graphs. The pres-
ence of a red graph, without the intersections of blue
edges, outlines a radio’s antenna coverage and becomes a
clear indication of a rogue signal. However, the SSDF sce-
nario in Figure 9b shows that an overlapping of red and
blue graphs reveal a strong likelihood of malicious or mal-
functioning sensors, instead of a rogue signal’s presence,
since there is no apparent pattern of spectrum decisions.
Since we are assuming an environment that conforms

to the IEEE 802.22 standard, we assume a network of
Customer Premise Equipment (CPE) sensors that infers
a static network. This eliminates the option of malicious
users moving closer together and forming dense clusters
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Figure 9 Clustering illustration of our RSF Clustering Defense (RCD) algorithm. The RCD forms two graphs, a red and blue graph, for cluster
analysis. The red graph contains edges between sensors reporting H1. The blue graph contains edges between sensors with opposing local
spectrum decisions.

in order to be protected by the RCD module during SSDF
attacks. There is a possibility that a group of CPE sensors
remain in proximity by coincidence, but the chances can
be reduced by adjusting Cmin, Zθ , or dθ accordingly.
Figure 10 illustrates the sequence of operations in a

trust-based CSS protocol with our RCD solution added to

the system. In the first step, the base station (where the
FC resides) collects all sensor reports from the network of
sensors S. The second step applies the trust model’s filter
by removing untrustworthy sensors Sr from S. The third
step requires the FC to make a global spectrum decision,
denoted as GD, from sensors in (S − Sr) as it normally

Figure 10 Diagram of the RCDmodule added to the general framework of trust-based CSS protocols. Sensors protected by the RCD are
denoted as SP .
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Figure 11 The network’s total mitigated trust damage (Equation 12) from the RCDmodule.

would in trust-based CSS protocols. The fourth step dis-
covers signs of an RSF intrusion and identifies the group of
attacked sensors, denoted as SP. In the final step, the trust
model updates the sensor reputations except for the set
of sensors SP that are presumed affected by rogue signals.
The last step is important because it prevents attackers
from exploiting trust models with rogue signals.

5.2 Defense evaluation
In this section, we evaluate the RCD module’s perfor-
mance on its ability to mitigate trust loss from RSF
intrusions. Additionally, we compare the RCD module’s
outcome on RSF and SSDF attacks.
In our simulations, we have two groups of scenarios, the

RSF and SSDF. The simulation environment is the same
as the one used by the RSF intrusion in Section 4. The
beamwidth of each rogue antenna is 15°, 30°, and 45° for
scenarios RSF-15, RSF-30, and RSF-45, respectively. The
SSDF scenarios simulate malicious sensors by randomly
selecting a percentage of the sensors and raising their RSS
by 20 dBm from the noise floor. We randomly selected
20%, 30%, and 40% of sensors from the scenarios SSDF-20,
SSDF-30, and SSDF-40, respectively.
Figure 11 shows the amount of mitigated trust damage

(%) with the RCD module under the same scenarios. The
mitigated trust damage is denoted asTM[q] and calculated
by:

TM[q]= TR
�[q]−T�[q]

T�[0]−T�[q]
(12)

where TR
�[q] is the network’s total trust on quiet period q

when using the RCD module, T�[q] is the network’s total
trust without the RCDmodule (from Figure 4), and T�[0]
is the initial state of trust scores. We use a minimum clus-
ter size Cmin = 5, a clustering threshold Zθ = 0.3, and a
distance threshold dθ = 150 m.

As shown in Figure 11, each protocol benefited from
our proposed defense against the RSF intrusion. However,
the RCD module offered less protection to protocol FA
due to its sequential random sampling of sensors, instead
of cross-examining all sensor reports for a more robust
analysis. The spikes from FB in Figure 11c are due to its
protocol design of having a dynamic threshold for decid-
ing malicious sensors. During the spikes, FB’s dynamic
threshold is stabilizing as it replaces the old RSS statistics
with new data.
Figure 12 shows the rate of false alarms, i.e., the number

sensors reporting H1 when the FC reports H0, before and
after applying the RCDmodule. In all three RSF scenarios,

RSF−15 RSF−30 RSF−45
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Figure 12 The number of false alarms before and after applying
the RCDmodule.
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Figure 13 Comparison of the RCD results between RSF and SSDF intrusions. SA , number of attacked sensors; SP , number of sensors protected
by the RCD.

the RCD module managed to limit the false alarms to a
maximum of 3% of total sensors Ns.
Figure 13 compares how the RCD responds to the RSF

and SSDF intrusions in terms of the number of sensors
attacked SA and the number of sensors protected SP by
the RCD module. The goal is to maximize SP for the RSF
scenarios and minimize it for the SSDF scenarios so that

the reputations of malicious sensors are not protected. In
scenario RSF-45, the strongest RSF attack, the RCD mod-
ule protects 95% of sensors from losing trust due to rogue
signals. In contrast, the RCDmodule erroneously protects
15% of the sensors in scenario SSDF-40. This margin of
error is acceptable as 40% of malicious sensors is an unre-
alistic and profuse amount of attacks in any CR network.

Figure 14 The sensor network is partitioned into a red and blue graph before being analyzed by the RCDmodule. The red filled nodes are
cognitive radios reporting H1 and are connected to nearby neighbors with similar observations.
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Figure 15 RCD solution applied to a dense network of 400 sensors. From left to right, the RCD’s distance threshold is 150 m, 300 m, and 450 m,
respectively.

The outcomes of Figure 13 show a high resiliency against
the exploitation of SSDF attacks.

5.3 Overhead of defense
To address the time complexity overhead of our defense,
we have to examine the algorithm it uses before we can
identify the order-of-growth category it belongs to. The
proposed RSF Clustering Defense (RCD) algorithm can
be separated into three distinct parts: (1) the graph setup,
(2) the breadth-first search to identify all the clusters (i.e.,
subgraphs), and (3) calculating the clustering strength of
an identified cluster. Each part can be summarized by the
following:

1. Connect all the vertices in the adjacency matrix Aij to
its neighbors within a distance threshold dθ ; this step
has a time complexity of O

(|V |2) where |V | is the
number of sensors

2. Find all non-overlapping subgraphs (i.e., clusters Ck)
using a breadth-first search; this step has a time
complexity of O

(|V |2) since it traverses the

adjacency matrix Aij and creates adjacency lists that
represent each Ck cluster

3. Calculate the clustering strength of cluster Ck based
on the assortative mixing equations (Equations 9 and
10); this step iterates through each Ck adjacency list,
thus it has a time complexity of O(|E| + |V |)

So the time complexity of the RCD defense is the sum-
mation of all three parts:O

(|V |2)+O
(|V |2)+O(|E|+|V |).

Yet, in a static network, where the cognitive radios do
not move, we can ignore the complexity of part 1 since it
is only computed once during the program initialization.
Hence, the time complexity for each reoccurring quiet
period isO

(|V |2)+O(|E|+|V |). The quiet period is when
the cognitive radio network stops transmitting to listen for
the primary signal.
The bottleneck of our defense is either in part 2 or

part 3, whichever has a worse order of growth between
O

(|V |2) andO(|E|+|V |), depending on the sizes ofV and
E. The RCD algorihm travereses through K adjacency lists
representing each cluster Ck , where 0 ≤ k < K . Figure 14

Figure 16 RCD solution applied to a sparse network of 100 sensors. From left to right, the RCD’s distance threshold is 150 m, 300 m, and 450 m,
respectively.
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Figure 17 The accuracy of the RCD for dense and sparse networks with dθ = 150, 300, and 450m.

shows K = 3 clusters present (C0,C1, and C2) in the net-
work where each cluster is roughly 1/4 to 1/8 the size
of V .
Time complexity can be an issue if an attack is able

to impact the network before the defense can adequately
prevent or mitigate the damage. However, our algorithm
has a descent order of growth, i.e., O

(|V |2) + O(|E| +
|V |) ≈ O

(|V |2), which is smaller than many cluster-
ing algorithms such as the Kernighan-Lin algorithm that
have an order of growth of O

(|V |3). Secondly, we are
assuming that all intensive processing happens at the base
station, with a dedicated server and adequate computing
resources performing the analysis, and not on the cog-
nitive radios itself. As such, the time complexity is very
feasible for most anticipated network sizes, e.g., no more
than several thousand sensors. Furthermore, the calcu-
lation of the clustering strength is only applied to small
sections of the network, which is usually much smaller
than the total number of sensors |V |. This occurs in part
2 of our defense where Ck clusters with identical sensor
reports are identified using BFS, in similar fashion to the
flood fill algorithm.
The need for more intensive processing, like graph algo-

rithms, in radio networks usually raises concerns about
the impact it has on a radio’s battery life. This is not
a concern in our system because the cognitive radios
only submit sensor reports every 30 s to a stationary
base station that does all the processing on a dedicated
server. Hence, the cognitive radios are spared the process-
ing that would otherwise quickly deplete itself of battery
life. In a decentralized CSS protocol, each cognitive radio
is responsible for computing the shared spectrum algo-
rithms locally, but our system employs a centralized CSS

protocol which removes the intensive processing burden
on the radio itself.

5.4 Cluster parameters and impact
Naturally, the size and topology of the cognitive radio
network has an effect on our RCD solution. A dense net-
work can easily show patterns of rogue signals where as a
sparse network gives less information to analyze. To show
the difference, we tested our solution on a second net-
work, denoted as the sparse network, consisting of 100
randomly placed sensors. In contrast, the dense network
has 400 randomly placed sensors, which is the same net-
work tested and discussed in previous sections. For both
dense and sparse networks, we only display the RSF-45
scenario to limit the number of graphs. The RSF-45 sce-
nario emits four rogue signals in the cardinal directions
with 45° beamwidth.
The distance threshold dθ is the condition required to

form edges between two sensors. A red graph indicates a
strong concentration of sensors perceiving a signal, such
that it potentially reveals a rogue signal’s antenna cov-
erage. The red graph is formed by sensors that share
H1 reports within the distance threshold, dθ . Likewise,
the blue graph is formed by sensors that simply disagree
with their neighbors’ spectrum decisions (i.e.,H0 and H1)
within dθ . The blue graph helps reveal an SSDF attack,
especially when the red and blue graph are overlapping,
and not clearly segregated.When a rogue signal is present,
the red graph should be surrounded by the blue graph,
outlining the reach of the rogue signal’s antenna coverage.
Figures 15 and 16 show the changing composition in

the red and blue graph (created by the RCD) in both
dense and sparse networks with different dθ , where dθ =
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150, 300 and 450 m. For the dense network, the attack
coverage of the rogue signals is clearly visible with all
three values for dθ . For the sparse network, the visibility
of rogue signals becomes much more difficult to per-
ceive, especially when dθ = 150 m. Naturally, this occurs
from having fewer sensors, randomly placed, over the
same area as the dense network. In other words, the sen-
sors are farther away from their neighbors in the sparse
network.
At first glance, it might be tempting to just assign an

excessive number for dθ to avoid the sparsity problem, i.e.,
when clusters are not clearly visible because dθ is too low.
Actually, a very large dθ can decrease the accuracy of the
RCD solution as shown in Figure 17. An infinitely large dθ

will always form complete blue and red graphs across the
sensor region, which is not always more informative.
Figure 17 shows the accuracy of the RCD solution for

both dense and sparse networks with dθ = 150, 300, and
450 m. The accuracy is represented by the number of sen-
sors protected by the RCD solution divided by the number
of sensors inside the rogue signal’s attack coverage, i.e.,
SP/SA. Notably, the dθ = 300 m in the sparse network
reaches 100% accuracy, but dθ = 450 m does not, even
with more edges to analyze. The reason for this phenom-
ena is due to the blue edges lowering the clustering score
Zk for cluster Ck . This can seen in Equation 11, where the
clustering score Zk decreases because the denominator
increases as more blue edges form (from variable d	

i ).
There are many variables in our simulations that are

worth analyzing at a more comprehensive level. The num-
ber of sensors, the number of attackers, the shape and
size of the rogue signal, the network’s topology, and even
the environment’s landscape. In future studies, we intend
to explore how these variables impact our solution and
to establish metrics that fit the parameters according to
different scenarios.

6 Conclusions
In this paper, we demonstrated the RSF intrusion, a new
threat to trust-based CSS protocols. The attackers can
transmit rogue signals onto groups of sensors to emu-
late SSDF and ruin their reputation with the intent of
having them removed from the shared spectrum sensing.
Our work cautions the use of trust-based CSS protocols
and warrants a line of defense against rogue signals. The
RSF simulations were conducted in a realistic environ-
ment based on the 802.22WRAN standard and illustrates
the impact of the RSF intrusions on sensor reputation
scores. Tomitigate the trust damage, we introduced a new
defense based on community detection and cluster analy-
sis. The simulation experiments showed that our defense
solution, the RCD module, could effectively keep the sen-
sor reputations intact while distinguishing rogue signals
from malicious sensors.

Appendix
Rogue Signal Clustering Defense (RCD) Algorithm
The RCD Algorithm is the psuedo code that locates
sensors affected by rogue signals in trust-based CSS pro-
tocols.

Algorithm 1 The RSF Cluster Detection Module
Function:RCD(A, SH0 , SH1)
1: Initialize cluster index k ← 0
2: Initialize set of protected sensors SP
3: Initialize set of visited nodes V
4: Initialize breadth-first search queue Q
5: Initialize set of clusters Ck
6: Initialize list clustering strength values Zk
7: for all si ∈ SH1 do
8: if si /∈ V then
9: k ← k + 1
10: add si onto Ck ,V , and Q
11: while Q is not empty do
12: sq ← dequeue(Q)
13: for all sj ∈ SH1 do
14: if sj /∈ Vand Aqj = 1 then
15: add sj onto Ck ,V , and Q
16: end if
17: end for
18: end while
19:

{
dH1
i

}
k

← D (Ck)

20:
{
d	
i

}
k ← D′ (Ck , SH0

)
21: zk ← Z

({
dH1
i

}
k
,
{
d	
i

}
k

))
22: add zk onto Zk
23: end if
24: end for
25: for all zk ∈ ZK do
26: if |Ck | ≥ Cminand zk > Zθ then
27: SP ← SP ∪ Ck
28: end if
29: end for
30: return SP
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