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Abstract

which may also result in smaller size of WBAN devices.

Wireless body area networks (WBAN) emerge as one of the main research streams for future wireless communications.
One of the candidates for the WBAN physical layer is multiband orthogonal frequency division multiplexing ultra-
wideband (MB-OFDM UWB) technology. However, despite its high data rate feature, it performs poorly in the very
dispersive WBAN channel. To improve its performance, this paper proposes two novel mechanisms. First, the
space-time-frequency coding (STFC) is introduced into MB-OFDM UWB system in order to enhance the diversity order,
resulting in a substantial improvement in the average error performance compared to the conventional MB-OFDM
UWB system. Nevertheless, the performance is very sensitive to the body orientation towards the transmitter due to
the body shadowing effect. Secondly, to improve further the performance of the proposed STFC MB-OFDM UWB
system in all body directions, we propose an adaptive scheme that changes the modulation, STFC coding rate, and
constellation power. Simulations confirm that an additional improvement in the order of 1 to 3 dB is achieved by the
adaptive system. This improvement practically means a possible 12.5% to 50% reduction of the power consumption,

Keywords: Adaptive system; MB-OFDM UWB; Space-time-frequency codes; WBAN

1 Introduction
There have been active engagements in the wireless
body area network (WBAN) research in recent years.
One of the key factors for the emergence of WBANS is
the development of advanced, tiny-sized, lightweight,
and extremely low power implantable and wearable sen-
sors [1]. In addition, body centric radio propagation meas-
urement campaigns and WBAN channel modelling have
been robustly fostering research activities on WBAN tech-
nologies and standards. In particular, WBAN is capable of
alleviating the hurdle and inflexibility of cable-connected
devices for, e.g., real-time monitoring of health conditions,
via various implantable and wearable wireless sensors.
WBAN itself is a network of sensors or communicat-
ing devices placed in, on, or off the body to monitor
physiological activities and motions and communicate
the data between those devices and/or to external devices.
Numerous research publications and proposals of WBAN
have been put forward, e.g, [1] and [2]. In order to
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harmonize the development of WBAN, IEEE set up a
technical group TG6 within 802.15 to standardize the
WBAN in November 2007. IEEE 802.15 TG6 released the
WBAN standard in February 2012 that includes the
impulse radio ultra wideband (IR-UWB) as its physical
layer [3]. Prior to this standard, IEEE also released the
WBAN channel models that defined four different chan-
nel conditions, i.e., CM1 to CM4, in which CM4 models
the body-to-external link [2].

Another competing technology for a short range, very
high data-rate communication is multi band orthogonal
frequency division multiplexing ultra-wideband (MB-
OFDM UWB), endorsed by the WiMedia Alliance [4,5]. It
combines the capability of OFDM to flatten the response
of dispersive, frequency selective channels of UWB, while
maintaining the benefit of high capacity of UWB. It is
designed to operate at up to 1 Gbps, at low cost and with
low power consumption.

Meanwhile, multiple-input multiple-output (MIMO)
technology is proven to be able to significantly increase
the wireless system capacity for the same total transmis-
sion power [6]. Its fundamental mechanism lies on the use
of space-time coding (STC) [6-9]. In STCs, signals are
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coded both in spatial and temporal domains, for example,
using the Alamouti code [9] or other similar codes [7-9].
Alamouti code is designed for frequency flat fading and is
capable of providing full rate and full diversity for up to
two Tx and two Rx antennas. As a result, it enhances the
diversity order and improves the link quality and capacity.

However, its direct application for a very dispersive
UWB WBAN channel may not be suitable. Therefore,
in order to attain higher data rates and capitalize on
the rich dispersion of UWB WBAN channels, further
addition of the frequency domain processing in STC
can be deployed. So, the process becomes space-time-
frequency coding (STFC). Readers may refer to [10-17] for
more details about STFCs and its comparison with STC.
It is intuitive that a STFC MB-OFDM UWB system may
provide better link performance and higher data rate and
system capacity. Hence, in [18], we proposed the combin-
ation of STFC and MB-OFDM UWSB, referred to as the
STEC MB-OFDM UWSB, as an improved physical layer
for WBAN.

Radio propagation in, on, and surrounding a human
body is greatly affected by environment, posture, activ-
ities, and human tissue [19-24]. Numerous measurement
campaigns on body centric propagations have been con-
ducted to characterize the body centric channel, includ-
ing UWB channels in the frequency bands of 3.1 to 10.6
GHz. Takada et al. show that the body centric channel
varies according to the type of antennas, the position
and orientation of antennas with respect to the body,
the posture and motion of the body, and the variation of
the human body itself [19]. Wang et al. suggest that the
body shadowing is a prominent factor in short-range
body-centric communications [20]. The effect of loca-
tions of on-body devices, body size as well as the move-
ment of the body is investigated in [21-24]. Finally, the
aforementioned IEEE 802.15 TG6 in [2] has summarized
and proposed four channel models CM1 to CM4 for
UWB WBAN channels, which comprise seven scenarios.
CM1 considers implant-to-implant link for medical
information and communication science (MICS). CM2
determines implant-to-body surface and implant-to-
external links operating in the same frequency band
as CM1. CM3 considers body-to-body link, while CM4
considers body-to-external link. Both CM3 and CM4 are
proposed to operate in UWBs. Due to our focus on the
UWB WBAN system, we will only consider CM3 and
CM4 in this paper.

It is important to highlight the main differences be-
tween UWB channel models for wireless personal area
networks (WPANSs) [25,26] and the aforementioned
UWB WBAN channel. The WPAN channel models are
based on the Saleh-Valenzuela model and do not con-
sider the effect of human body, while the UWB WBAN
channel models do. It is clearly shown in [2] that due to
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the shadowing effect of human body, the UWB WBAN
channel produces a larger amplitude standard deviation
o and a much greater exponential decay factor I' com-
pared to the UWB WPAN channel. Moreover, I' varies
significantly for different body directions with respect to
the transmitter in the case of CM4 over the UWB
WBAN channel. To the best of our knowledge, the per-
formance analysis of a STFC MB-OFDM UWB system
implemented in the WBAN channels has not been
deeply explored. Thus, in [18] as previously mentioned,
we present the performance analysis of STFC MB-OFDM
UWB in CM3 and CM4 WBAN channels using the
Alamouti code. One important observation drawn
from this work is that the average error performance
differs significantly in different body directions, ie., the
direction of the receiver placed on the surface of the body
with respect to (w.r.t) the transmitter. This is due to the
effects of line-of-sight (LOS), partial LOS, and body sha-
dowing. These facts lead to the idea of adding an adaptive
scheme to WBAN systems, in order to further improve
their performance in all body directions.

Adaptive techniques have been employed for numerous
systems and applications [27-31]. For instance, Czylwik
proposed an adaptive modulation for individual subcar-
riers of an OFDM system [27]. Keller and Hanzo inves-
tigated adaptive OFDM with the focus on the trade-off
between the performance and throughput [28]. They also
presented a number of adaptive OFDM techniques and
their performances [29]. In [30], the authors examined a
unified adaptive modulation scheme for a general commu-
nication system where the data rate, transmitted power,
and instantaneous BER are varied to maximize spectral
efficiency. A cross layer adaptive modulation to minimize
the transmission energy in wireless sensor networks is
proposed in [31]. However, an adaptive scheme for the
WBAN physical layer has not been examined. Henceforth,
this paper proposes for the first time a body direction-
based adaptive algorithm for STFC MB-OFDM UWB
WBAN, in order to improve the average BER performance
and/or reduce the power consumption of the body-to-
external link for WBAN applications [32]. The core
idea is that a combination of different digital modula-
tion schemes (binary phase shift keying (BPSK), quad-
rature phase shift keying (QPSK)), powers of signal
constellations, and different rate STFCs is adaptively
selected, depending on the body direction w.r.t. the trans-
mitter. The adaption is carried out by the measurement of
angles of the body w.r.t. the transmitter, e.g., by utilize a
magnetic sensor [33]. The angle information is then fed
back to the transmitter via a simple feedback loop to
vary its modulation, STFC coding rate, and constellation
power. We demonstrate that an additional improvement
in the order of 1 to 3 dB can be achieved with this scheme.
The improvement practically means a possible 12.5% to
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50% further reduction of the total transmitted power,
compared to the non-adaptive system. In other words, the
adaptive scheme can significantly reduce the power
consumption and dimension of WBAN devices.

The paper is organized as follows. Section 2 reviews
the UWB WBAN channel models. Section 3 analyzes
the proposed system model, including the adaptive algo-
rithm and its decoding complexity. Simulation results
and analyses are presented in Section 4. Section 5 con-
cludes the paper.

1.1 Review of IEEE UWB WBAN channel models
Yazdandoost and Sayrafian presented the final document
of the IEEE 802.15 TG6 channel modelling subcommittee,
providing channel models to be used in body area net-
works [2]. The channel models are used as a common plat-
form for evaluating the performance of the physical layer
from various proposals and measurement campaigns.

The channel models are drawn from three possible
types of nodes, namely implant nodes, body surface
nodes, and external nodes. Implant nodes are implanted
below the skin or inside the human body. Body surface
nodes are placed on the surface of the human skin or at
most 2 cm away, and external nodes are placed between
a few centimeters and up to 5 m away from the body.
Figure 1 shows the possible communication links be-
tween the nodes and the defined channel models
CM1 to CM4. CM1 defines an implant-to-implant link
(scenario 1, denote SI) operating in the MICS band (402
to 405 MHz). CM2 determines implant-to-body surface
(§2) and implant-to-external (S3) links, operating in the
same band as CM1. CM3 defines a body surface-to-body
surface link for both LOS (§4) and non-line-of-sight
(NLOS) (S5) scenarios. CM3 is intended to operate in
seven different bands, including the UWB band (3.1 to
10.6 GHz). CM4 determines a body surface-to-external
link for both LOS (S6) and NLOS (S7). It is applied to
three different frequency bands, including the UWB band.
In this work, we only consider CM3 and CM4 for the
UWB band.

Body Direction
90°

o Non-Implant device
o Implant device

270°

Figure 1 Communication links and channel models.
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1.2 Review of CM3 channel model

The CM3 for the UWB band is derived from a measure-
ment campaign in a hospital room environment. The
channel response is characterized by a power delay pro-
file (PDP) as follows [2]:

he) =S arexplioh)8(t- 1) 1)
=0

0,1=0

2 _
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where a; is the path amplitude, ¢; is the path arrival time,
and @ is the phase for the /th path with an uniform dis-
tribution over [0, 2m], respectively. L is the number of
arrival paths with average L. &(¢) is the Dirac function, T
is an exponential decay with a Rician factor y,, S is a
normally distributed random variable with zero-mean
and standard deviation of os, and A is the path arrival
rate. The parameters of CM3 are presented in Table 1.

1.3 Review of CM4 channel model

The CM4 model is based on office environment mea-
surements in which the Tx antenna is fixed near to the
wall, while the Rx antenna is placed at different positions
on the human body. The effect of ground is considered
in measurements. The channel response is characterized
by the following PDP [2]

h(t) = Zjama(t—rm> 2)

where

Im

|a’m‘2 _ Qoe—T— [1—6(m)]ﬂ
1
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@, is the amplitude of each path; 7, m =1,..., L-1, is
the path arrival time; L is the number of the arrival paths
modelled as a Poisson random variable with the mean

Table 1 Parameters of CM3 channel [2]

Main parameter Corresponding parameter Values
a Yo —4.60 dB
r 59.7
s 502 dB
i 'y 1.85ns
L L 38.1
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value of 400, Q, is the path loss; k is the K-factor
(NLOS), d is the Tx-Rx distance, and c is the velocity of
light.

The parameters of CM4 also depend on the direction
of body toward the Tx antenna and listed in Table 2.

From Table 2, the worst link is corresponding to the
270° body direction, rather than 180°, which may be rather
counter-intuitive, and the channel behaviors of the 90°
and 270° are significantly different. This might possibly be
due to the different surrounding environments of the 90°
and 270° directions during the measurement. This obser-
vation will be reflected in our simulation results.

1.4 System model
1.4.1 STFC MB-OFDM UWB WBAN system with simple
adaptive scheme
Figure 2 depicts our proposed STFC MIMO-OFDM
UWB system with M-Tx antennas, N-Rx antennas, and a
simple adaptive scheme. The data stream d(n) undergoes
convolutional coding and interleaving, before being
mapped to symbols. The body direction estimator mea-
sures the orientation of the body w.r.t. the transmitter.
The angular information is then fed back to the trans-
mitter via a simple feedback loop in order to adjust its
modulation, constellation power, and STFC coding rate
accordingly. The adaptive modulation block selects either
QPSK or BPSK, while the power control block adjusts the
constellation power based on certain rules as detailed in
the next section. For a fair comparison, those parameters
are adaptively varied in a way that the average total power
and total data rate over all four body directions are exactly
the same as those in a non-adaptive system. The stream of
modulated symbols is then converted by a serial-to-
parallel (S/P) block into the symbol blocks (or vectors)
X = [x1, %2, ...,me]T, where N is the fast Fourier trans-
form (FFT)/inverse fast Fourier transform (IFFT) size.
The adaptive STFC block creates a space-time-
frequency code with either a full rate or a 3/2-rate. For
the full rate, it uses the Alamouti code [6] to convert the
two consecutive symbol blocks, denoted as X; and Xj,
into a STFC block as follows:

_ X1 X3
X:{Xt‘rm}TxM: |:_)_(; )_(9{:| (3)

Table 2 Parameters of CM4 channel [2]

Body direction I (ns) k (Ak (dB)) o (dB)
0° 44.6364 5111 (222) 7.30
90° 54.2868 4.348 (18.8) 7.08
180° 534186 3638 (15.8) 7.03
270° 83.9635 3983 (17.3) 7.19
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Figure 2 STFC MB-OFDM UWB system with simple adaptive
scheme.

J

where X; and X, are symbol vectors transmitted from
the first and the second antenna at a given time slot,
respectively. ()" denotes complex conjugate. For 3/2-rate
STFC, three symbol vectors are encoded following the
Sezginer-Sari code [7]:

X = {Xem b,y = bx dx;

where a, b, ¢, and d are complex-valued parameters.
Here, we use the optimal parameters @ = ¢ = v/2 and
b=d= (1 +j\/7)/4 as determined in [7].

We denote the matrix X in the general form as X =
{Xtﬁm}Tx ,p Where the index ¢ indicates the time slot and
m indicates the mth Tx antenna. Each of the symbol vec-
tors in the matrix X is then converted into an Ng-point
MB- OFDM symbol by the IFFT block, resulting in the
STFC code matrix XOFDM whose elements are the Nig-
point IFFT of the corresponding symbol vectors X;,, in
X. Hence, the transmitted matrix of STFC MB-OFDM
symbols is:

XOFDM - {XOFDM,t,m}TXM {IPFT{xth}}TXM 5)

The actual transmitted matrix is denoted as XZP
whose elements are the Ng-length vectors Xorpm,» in
XOFDM appended with the 37 samples zero-padded
suffix (ZPS), denoted as Xzp ;. ZPS is used here instead
of cyclic prefix (CP) due to the fact that adding CP
to an OFDM symbol will introduce redundancy into
the transmitted signal. The CP produces correlation
in the transmitted signal, which results in ripples in
the average power spectral density (PSD) of MB-OFDM
UWB system that could be as high as 1.5 dB [14]. This
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problem might force power back off at the MB-OFDM
UWB transmitter, hence reducing the transmission range.
When a ZPS is used, ripples in the PSD can be reduced
significantly, thus the power back off problem at the
transmitter can be mitigated and the system can achieve
the maximum possible range. So, the transmitted signal
becomes:

Xzp = {Xzpim o0 (6)

The channels between M-Tx and N-Rx antennas are
defined as the channel matrix H:

Bl,l BM‘I
H=| : =~ (7)

1TlL,N FlM.,N

where Em,,, is the channel coefficient vector between the
mth Tx antenna, for m = 1, 2,..., M, and the nth Rx
antenna, n = 1, 2,..., N, containing L multipaths. The
distribution and parameters of ﬁmJ, are determined by
Equation 1 and Table 1.

The received signal at the nth Rx antenna during the
tth transmitted OFDM symbol duration is computed as:

M
ft,n = Z()_(ZP,t,m * ITIm,n) + ﬁt,n (8)

m=1

where (*) denotes the linear convolution, Xzp;, is the
MB-OFDM symbol including ZPS transmitted from the
mth Tx antenna, and n;, is the zero mean additive white
Gaussian noise (AWGN) vector. The ZPS is removed by
an overlap-and-add-operation (OAAQ) prior to the FFT
operation. After performing OAAO, the received signal
can be written as:

M
TOFDM,t,n = E XOrDM £,m @My + 1y 9)

m=1

where ® denotes circular convolution. After the FFT
block, the output signals of the STFC decoder are calcu-
lated as:

M
Et‘n = Zit,m' I]m,n + ﬁIt.,;'l

m=1

(10)

where (¢) denotes the Hardamard product between
the vectors, ¥, = FFT (Toppin) = [Cmnl + -os b ]T,
X¢m is original modulation symbols, §,,,, = FFT (h,) =
[hm,,,vl s eees P Ny, }T, and WM., = FFT(ﬁt_’,,). Denote
R = {Ets”}Tx y to be the matrix of the received signals

after FFT, H = {ﬁmn to be the channel response

}M><N
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matrix, and N = {ftt,n the matrix of noise. Then,

we can rewrite (9) as:

}T><N

R=X-H+N (11)

where (°) denotes the operation which is similar to
the normal matrix multiplication, except that each
element in R is determined by (9). Thus, the detected
vectors are decided by the following maximum likeli-
hood (ML) rule:

{):(tvm} = arg min R-X-H3

Xt.m

(12)

Since the matrix X preserves its orthogonality in the
similar manner as in a conventional STBC MIMO
system, the STFC MB-OFDM UWB system can also
employ a simple linear decoding process [14,15]. For
simplicity, we can omit the time index t. Hence, in the
2110 (2-input 1l-output, i.e., by using two Tx antennas
and one Rx antenna) configuration with M-PSK modula-
tion, we have the following decoding metrics:

_ . o = W ok -2
X1 = arg min (I]lot‘l + I]zot‘z) Xz

xeCND ~ B (13)
Xy = arg min (§,eF, -} .E*) =x2
2 giEcND (12 1=Y1e¥y F

where Np is the number of data subcarriers (Np = 100,
according to the standard [4]), and CN? denotes the Np-
dimensional complex space of the transmitted vector Xx.
For the 2120 (2-input 2-output, i.e., by using two Tx an-
tennas and two Rx antenna) configuration, the decoding
metrics are:

. S N 2
X; =argmin H H (‘]11"'11 031085 + Bppetin + ‘]22"‘22)"‘“”] H
xeCNe £
S 2
H (1121'1‘11—111101‘21 + 1122.1'12—11124'22) -x‘.Az} HF

(14)

Xp = argmin
xeCND

More importantly, each data point in an MB-OFDM
symbol can be decoded separately rather than jointly
[14], thus the decoding process is significantly simplified.
In particular, the decoding metrics of each data at the
kth subcarrier (k=1, ..., Np) in the MB-OFDM symbols
for the 2I10 configuration are:

2
X1k = arg min U (h;kl‘lyk + g i k) —xlyk’ }
x1 x€C ’ !

) (15)
fox = arg min[’(h;krl,k-hl,kr;,k) —xl,k( ]

xlkec
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Similarly, for the 2I20 configuration, the decoding
metrics are:
) 2
> (flimkl‘l,n,k + flz,n.kt‘imk) —X1 k
n=1
2}

(16)

x1x€C

X1k = arg min [
2
* |+
(hz,n,ktl,n,k—hl,n,klin,k) X0k
=1

X2 €C n—=

X2k = arg min [

For the 3/2-rate STFC, we follow the decoding
process mentioned in [7]. Generalization for the case
of M-Tx and N-Rx antennas is straightforward.

1.5 Adaptive selection algorithm

As mentioned previously, adaptive modulation and
coding schemes have not been examined for WBANs
using STFC MB-OFDM UWB technology, though
they have been intensively researched for other sys-
tems. This section proposes for the first time a
simple-but-efficient adaptive modulation and space-
time-frequency coding scheme for such a system. The
adaptive scheme is controlled by the measurement of
the angular direction of the body. Depending on
which region among the three regions shown in Figure 3
the current body direction belongs to, the corre-
sponding 2-bit angular information is fed back to the
transmitter to select a suitable combination of its
modulation, STFC coding rate, and constellation
power. It is noted that the three regions in Figure 3
have been derived based on our observations that the

Body Direction
/2
A
4
AN
AN
AN
AN
Ne——
N Set-2
AN
AN
AN
0« > T
- /
Set-1 P N N
7 N
/
/
/ N N
4 N
7 AN
Set-3
/4 / v 5n/4
3n/2
----—- Angle/direction boundaries
Figure 3 Angular direction boundaries for adaptive decision.
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best channel behavior is corresponding to the 0° dir-
ection, while the 90° and 180° directions possess relatively
close error performances, and the worst channel behavior
is the 270° direction.

Either QPSK or BPSK is used for modulation. We
use two different STFC coding rates, namely coding
rate 1 which uses the Alamouti full rate code, and
coding rate 3/2 which uses the Sezginer-Sari 3/2 rate
code. The normalized transmitted constellation power
may take one of the three values 0.5, 1, and 1.5. The
selection of the adaptive scheme is done in a way that
the average data rate and total transmitted power
over all main four directions of the body are main-
tained exactly equal to those in a non-adaptive system
(rate 1 STFC, constellation power 1, and QPSK modula-
tion for all four directions) for a fair comparison. This is
done as follows.

1. Data rate constraint: the lowest density signal
constellation (BPSK) is used for the worst link
(270°) in order to improve the system error
performance over this direction. A higher density
constellation (QPSK) is used for all other three
directions. The highest rate STFC (rate 3/2) is
selected for the best link (0°) while the rate 1
STEC is selected for all three remaining
directions. Thus, the average spectrum efficiency
over the four main directions is maintained at
2 bits/s/Hz which is exactly the same as that in
the non-adaptive system.

2. Power constraint: the normalized power of one
is selected for the signal constellations (QPSK) for
the 90° and 180° directions, similar to that in the
non-adaptive system, while the highest power
level (1.5) is selected for the best link (0°) to
compensate for the possible performance
degradation caused by the highest STFC coding
rate (3/2) chosen for this direction. The above
power allocation leaves the power of 0.5 for the
BPSK signal constellation in the 270° direction.
Thus, the total transmitted power over all
four main directions is exactly the same as that
in the non-adaptive system.

The core idea behind the proposed algorithm is that
the best channel conveys the most information with
the most power allocated while the worse link carries
the least information. Hence, we define three sets of
adaptive schemes (see Figure 3). Set 1 is aimed to
take advantage of the best channel link by maximiz-
ing the capacity, i.e., by using the QPSK modulation,
STFC code rate 3/2, and normalized power Tx 1.5.
Set 2 uses QPSK, STEC code rate 1, and power Tx 1,
and set 3 uses BPSK, STFC code rate 1, and power
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Tx 0.5. The proposed algorithm is summarized as
follows:

Algorithm

Start
Detect body direction = bd;

If 0<bd<™/, and 7/,m<bd<2m

Set Modulation = gpsk;

Set Power Tx = 1.5;

Set STFC rate = 1.5;
If T/, <bd<®/,m

Set Modulation = gpsk;

Set Power Tx = 1;

Set STFC rate = 1;

If S/ym<bd<’/ym

Set Modulation = bpsk;
0.5;
Set STFC rate = 1;

Set Power Tx =

End

1.6 Decoding complexity
Let P be the constellation size of the P-PSK modulator
used in sets 1 and 2 (here, we used QPSK, so P is equal
to 4). As a result, the constellation size of the BPSK
modulator used in set 3 is P/2. The decoding process of
set 1 with QPSK and 3/2 rate STFC is as follows: the
decoder firstly has to determine X3 from four possible
symbols in QPSK, prior to decoding X; and X, symbols.
Then, X; and X, are decoded independently, given X3 is
known, for every QPSK constellation. Hence, the ML
decoding complexity is the decoding complexity of X3,
which is in the order of B added with the complexity of
two independent decoding processes of X; and X, given X3
is known, which is equal to 2P. Thus, the overall decoding
complexity is in the order of 38 which is consistent with
the analysis in [7]. Set 2 uses a QPSK modulator with the
full rate Alamouti code as the STFC. The symbols x; and
X, are decoded independently for every constellation, lead-
ing to a 2P-decoding complexity. Set 3 uses the full rate
Alamouti code in which x; and X, symbols are decoded
independently for every BPSK constellation point. There-
fore, the ML decoding complexity in set 3 is 2 X g =PD.
There are four possible body directions with three pos-
sible adaptive schemes. If the four body directions are

Page 7 of 11

assumed to be equiprobable, i.e., the probability of each
possible direction is 0.25, with the note that set 2 is used
for two body directions, the overall complexity of the
ML decoding process in the proposed adaptive scheme
is 0.25(3P) + 0.5(2P) + 0.25(P) or 2B, beside the body dir-
ection estimation. It can be inferred that the ML decod-
ing complexity in our adaptive approach is in the order
of P or O(P). It is obvious that the complexity of this
adaptive system only linearly increases with respect to
the number of signal constellations, thanks to relatively
simple decoding processes.

For the body direction estimation, a simple direction
sensor, e.g., by using a giant magneto resistance (GMR)
thin film sensor chip [33], can be used. It is a robust
magnetic sensor, which is capable to provide 360°-angu-
lar measurements. The measured body direction is not
fed back directly to the transmitter. Instead, depending
on which region among the three pre-defined regions
shown in Figure 3 this body direction belongs to, 2-bit
angular information will be fed back to the transmitter
to indicate this region in order for the transmitter to se-
lect the corresponding combination of modulation, STFC
structure, and constellation power. In other words, the
proposed adaptive scheme could be implemented with
only minor increase in system complexity.

1.7 Performance evaluations

The performance of a STFC MB-OFDM UWB system
with and without the adaptive scheme will be examined
in comparison with a conventional MB-OFDM UWB
system in WBAN channel. The performance in terms of
BER is assessed for three different configurations, i.e.,
single-input single-output (SISO), 2110, and 2120, assum-
ing perfect channel state estimations be available at the re-
ceiver. The total transmitted power from all Tx antennas
is kept equal at all times in all configurations, in order to
fairly compare their performances. Channel coefficients
are assumed to be constant during two consecutive
OFDM symbols, i.e., during each STFC block, but random
between consecutive STFC blocks. Other simulation pa-
rameters are listed in Table 3.

The performances of the proposed STFC MB-OFDM
UWB and of the conventional (SISO) MB-OFDM UWB
system for the CM3 WBAN channel, with the QPSK
modulation, are compared in Figure 4. The average trans-
mitted powers are kept the same for both systems, by scal-
ing down the symbol power in the STFC MB-OFDM UWB
by a factor of 2. Figure 4 shows that the improvement of at
least 5 and 10 dB can be achieved at BER =10™* in the
2110 and 2120 STFC MB-OFDM UWB systems, respect-
ively, compared to the conventional MB-OFDM. Thus,
the proposed STFC MB-OFDM UWB provides superior
performance over the conventional MB-OFDM, thanks to
the higher diversity order introduced by the STEC [14].
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Table 3 Simulation parameters

Parameters Value
FFT and IFFT size Neg 128
Number of ZPS Nzps 37

Convolutional coder (K=7) rate One-half

Convolutional decoder and mode  Viterbi, hard
Interleaver/de-interleaver Column-wise written, row-wise read
Average number of paths in CM3 38

Average number of paths in CM4 400

Body directions 0°,90°, 180°, 270°

Figure 5 compares the performance of the proposed
STFC MB-OFDM UWB WBAN system in CM3, using
BPSK, QPSK, and 8PSK modulations, for both MIMO
configurations. It clearly shows that the system can
achieve a good BER performance from a reasonably low
E,/Ny range in both MIMO configurations, even if we
use 8PSK modulation. For example, a BER of 10™* can
be attained at E,/N, = 4.8 dB for 2120-QPSK, 8.5 dB for
2120-8PSK, 10.2 dB for 2I10-QPSK, and 14 dB for
2110-8PSK. Beside the diversity order introduced by
STFC, the reason for this good performance is that the
length of zero-padded suffix Nzps =37 is close enough
to the mean number of multipaths in CM3, i.e,, L = 38
(cf. Table 1). Therefore, the system experiences fre-
quency flat fading channels. Significant improvement of
at least 6 dB is shown in 2120, compared to 2I10 at
BER=10"% In addition, the system performance im-
proves by 2 to 4 dB, if we employ lower level M-PSK
modulations. In particular, BPSK and QPSK modulations
provide 6 and 4 dB better performances compared to
8PSK, respectively. As a result, BPSK and QPSK are of

—#— 2120-BPSK
—O— 2120-4PSK
—A— 2120-8PSK
=--#=:- 2|110-BPSK
-0~ 2110-4PSK
=fx-- 2|110-8PSK

BER

E»/No [dB]

Figure 5 Performance of STFC MB-OFDM in CM3 WBAN channel

with various M-PSK modulations.

particular interest and are used as the two main modula-
tion constellations in our proposed adaptive scheme.
The effect of body directions to the system perform-
ance in the CM4 channel is depicted in Figure 6. In this
simulation, we use the IEEE 802.15 TG6 WBAN channel
model [2]. According to [2], which is based on an exten-
sive measurement campaign in the office environment
for medical applications, different orientation angles of
the body cause different channel behaviors due to the
possible change of propagation environment and the
effect of body shadowing. This channel model reveals that
the channel characteristics are worst in the 270° direction
and that the channel parameters of the 90° and 270° angles
are different. These facts might be because of the sur-
rounding environments varied and/or the asymmetric ra-
diation patterns of the antennas used in the campaign.

—#— 2120 MB-OFDM
—O— 2110 MB-OFDM
—~A— MB-OFDM

BER

0 2 4 6 8 10 12 14 16
E4/No [dB]

Figure 4 Performance comparison between STFC MB-OFDM
and conventional MB-OFDM in CM3 WBAN channel.
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10" —se—0deg., 2120
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"""" Average BER, 2110
------- Average BER, 2120

BER
5

2 4 6 8 10 12 14 16
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Figure 6 Performance of STFC MB-OFDM in CM4 WBAN channel
for various body directions with Q-PSK modulation.
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The performance comparison in Figure 6 reveals a sig-
nificant degradation in the BER performance when the
receiver (on the body) turns away from the transmitter.
The front body (0° direction) has a LOS component,
which results in the best performance compared to other
directions. The back of the body (180° direction) suffers
from a body shadowing effect, and the receiver only
receives NLOS multipath signals. Nonetheless, the per-
formance is still reasonably good, particularly with the
2120 configuration, compared to the 270° direction. Its
performance degrades 3.5 dB at BER = 10~%, compared
to the front body. The 270° direction experiences the
worst performance, and its performance is different from
the performance of the 90° direction. This observation is
consistent with the parameters of CM4 mentioned in
Section 2.2. The average BER performance for each
MIMO configuration shown by the dash-dotted curves
in Figure 6 is calculated over four body directions. They
are used as the benchmark for comparison with the
adaptive system.

Figure 6 also shows the presence of error floors, where
further increasing E,/N, does not bring about a signifi-
cant improvement. This is due to the fact that the ZPS
is much shorter than the channel length in the very dis-
persive CM4 channel. Thus, the inter-symbol interfer-
ence (ISI) cannot be overcome completely. The residual
ISI is still large enough to neutralize the performance.
This is the reason why the MB-OFDM technique has
been proposed where consecutive MB-OFDM symbols
are transmitted over different radio frequencies (RF),
thus avoiding the residual ISI. For simplicity, simulations
are run here in the baseband rather than in the RF band,
thus the error floors can be observed. In other words,
the performance provided in the paper works as the
lower bound for the improvement that could be pro-
vided by the proposed system.
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It is worth to note that while the particular level of
performance improvement achieved by the proposed
adaptive approach might vary should a different channel
model be used, the overall idea of the proposed ap-
proach (probably with slight modifications) could be still
valid for other channel models.

To further improve the performance of the proposed
STFC UWB WBANS, the proposed adaptive modulation
and space-time-frequency coding scheme is implemen-
ted. Figure 7 shows the improvement gained by the
adaptive scheme, compared to the non-adaptive one, in
both 2I10 and 2120 configurations. The average BER of
the adaptive scheme shown by a circled solid line is con-
sistently better than that of the non-adaptive one by
about 1 to 2 dB in a 2110 configuration and about 1 to
3 dB in a 2120 configuration in the medium-to-high
SNR region. If we compare the average BER of the adap-
tive scheme with the BER of the worst scenario (270°
direction) in the non-adaptive one (cf. square-marked
curves in Figure 6), the improvement is significantly
higher, i.e., 5.5 dB at BER 5x 1072 in the 2110 configur-
ation and 6 dB at BER 4 x 10™* in the 2120 case. Compar-
ing to the BER of the best link (0° direction, cross-marked
curves in Figure 6) of the non-adaptive system in both
MIMO configurations, as expected, the averaged BER of
the adaptive scheme is slightly worse. This is because the
adaptive system selects the highest STFC coding rate (3/2)
for the 0° direction in order to maximize the capacity, with
a price of minor performance degradation compared to
the best performance scenario in the non-adaptive case.

It is noted that the aforementioned average BER
improvements are achieved without any increase of the
total transmitted power or any sacrifice of the data rate.
In other words, an improvement in the order of 1 to 3
dB means a possible reduction of 12.5% to 50% of the
total transmitted power, while maintaining the same

BER
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==¥=-- Non-Adapative-2110

4 6 8 10 12 14 16
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Figure 7 Performances of adaptive scheme in CM4 WBAN channel (A) 2110 configuration and (B) 2120 configuration.
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BER performance and data rate as in the non-adaptive
STFC MB-OFDM UWB system. Due to the fact that
power is the main constraint in WBAN applications [1],
this power saving will significantly reduce the total
power consumption of a WBAN system and/or reduces
the dimension of WBAN devices.

2 Conclusions

This paper proposes a STFC MB-OFDM UWB system
as an alternative high data-rate physical layer for a
WBAN system. The results confirm that the proposed
system can achieve significantly better BER perfor-
mances, compared to the conventional MB-OFDM sys-
tem. To improve the performance of STFC MB-OFDM
UWB systems further, a simple body direction-based
adaptive modulation and coding scheme is proposed.
This adaptive scheme brings about an additional improve-
ment in the order of 1 to 3 dB. Those improvements prac-
tically mean a possible 12.5% to 50% reduction of the total
transmitted power, hence reducing the dimension of
WBAN devices and prolonging their battery life. We con-
clude that, with the price of slightly increased complexity,
the proposed systems could be an effective solution to
achieve a power saving and better average BER perform-
ance for WBAN applications without sacrificing the data
rate. Our future work will focus on the adaptive scheme
driven by the measured signal quality in the receiver.
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