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Abstract

We propose a study using hidden Markov model (HMM) with state prediction for opportunistic spectrum access (OSA)
in cognitive radio (CR) networks. The primary channels are assumed to be operating in a TDMA manner with
synchronous time slots of equal length and alternating between idle and busy states. The secondary users (SUs) may
use them when they are idle by channel sensing. In contrast to the traditional scheme relying only on channel sensing
for exploring spectrum opportunities, the proposed prediction scheme takes advantage of state prediction, channel
sensing, and acknowledgments (ACKs) from the receiver in an attempt to maximize the utility. In the prediction
scheme, there are three distinct actions: direct skip, sensing then conditional access, and direct access. We impose
some constraints on the system parameters and derive thresholds by which we can specify the optimal action. We
then conduct simulations to compare the performance of the prediction scheme to that of the traditional scheme.
Results show that the former is superior to the latter. We believe the proposed prediction scheme is suitable for the
OSA system using spectrum sensing.
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1 Introduction
The spectrum resources are rare, and a large part of the
spectrum licensed for various applications are not fully
used in times or in spaces. These facts motivate the use of
cognitive radio (CR) networks coexisting with the licensed
primary networks [1,2]. In CR networks, the secondary
users (SUs) are allowed to utilize the frequency channels
assigned for the primary users (PUs) when they are cur-
rently not being used. This kind of spectrum sharing is
referred to as opportunistic spectrum access (OSA) or
spectrum overlay. To detect the spectrum opportunities,
spectrum sensing may be used. In [3-6], the authors con-
sider the OSA system in which an ad hoc CR network
operating with a primary network for which N frequency
channels are assigned. The channels are assumed to be
operating in a TDMA manner with synchronous time
slots of equal length and alternating between idle and busy
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states. The SUmay use themwhen they are idle by channel
sensing.
To effectively implement the concept of CR networking

and alleviate the processing delays, spectrum prediction
technique has been employed in the functions of spec-
trum sensing, spectrum decision, and spectrum mobility
[7-10]. With spectrum prediction, SUs may skip the sens-
ing duty on channels that are predicted to be busy or
directly access when channels are predicted to be idle. In
this way, sensing time and energy consumption may be
reduced.
CR networks can operate in either centralized or dis-

tributed mode [11]. In the centralized mode, a central
controller is implemented to perform spectrum decisions
and resource allocation. In contrast to the centralized
mode requiring a central controller, the distributed mode
does not rely on any central controller. In this mode,
SUs may cooperate by exchanging their own local infor-
mation to enhance the sensing performance or operate
independently to pursue their own benefits [12].
Many researchers have used partially observable

Markov decision process (POMDP) to model distributed
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OSA networks [3-6]. The idea to apply the POMDPmodel
arises from the considerations that states of the system
cannot be totally observed. Optimal action is determined
by using the partial information and the history of obser-
vations. Assuming that the channel statistics are the same
within T time periods, the optimal value functions for
each system state are solved for a T-finite horizon opti-
mal problem in a recursive manner. The problem is quite
involved because there are a total of 2N system states [4,5].
In a POMDP model, the actions taken by the agents con-
trol the state transitions of the hidden process. Different
actions taken in a time change the future behavior of the
process, so we have to solve the problem based on finite
or infinite horizon.
In this work, we consider the OSA system with dis-

tributed mode. We assume that channels are statistically
independent and focus on the treatment for a single chan-
nel. With imperfect sensing and by considering the fact
that actions taken by SUs do not affect the evolution of
the channel state, we thus model the system as a hid-
den Markov model (HMM) [13-20]. An HMM can be
considered as consisting two processes: the variation of
the hidden states is a Markov process and the observa-
tion under a specific hidden state is a random process.
This model is suitable for modeling Markov process with
imperfect sensing. Operating in this model, SUs try to
track the state of the hidden process and use the chan-
nel when idle state is detected. As actions do not control
the hidden process, the current action does not affect the
value function in the future. Thus, in finding optimal pol-
icy, no recursive procedures are required. Using the HMM
in conjunction with state prediction, we derive thresh-
olds on the probability space for the action policy, which
specifies the optimal action achieving maximum expected
utility based on the predicted probability.
The rest of this paper is organized as follows. In

Section 2, we give a description of the system. Section 3
describes actions and derives the decision rule. Simula-
tion results are given in Section 4 and finally we draw
conclusions in Section 5.

2 System description
The same OSA system as studied in [3-6] is considered
in this work. In the OSA system we assume that a ded-
icated control channel is available for SUs in the system
to exchange signaling messages, as suggested in [21]. We
also assume each primary channel is characterized by a
two-state Markov chain. As SUs cannot know the chan-
nel state exactly, we further model each channel as an
HMM, whichmay be viewed as a discrete-time bi-variable
random process {S(t), O(t)}, where t = 1, 2, · · · , is
the discrete time, S(t) is the hidden process, and O(t)
is the observable process having states as the hidden
process.

For the HMM under considerations, we make some
assumptions stating as follows [14]. The first one is the
Markov property, which means the next state depends
only on the current state and independent of previous
states. The second one is the stationary property, which
states that the transition probabilities are independent
of the actual time the transitions take places. The third
one is the observation independence assumption; that
is, the current observation is statistically independent of
previous observations.
The hidden process S(t) of a channel is characterized by

two transition probabilities α and β , where α is the prob-
ability of transition from idle state (s0) to busy state (s1)
and β is the probability of transition from s1 to s0. The
observable process also has idle and busy states. However,
due to imperfect sensing, observations may be incorrect.
When a busy state is observed, denoted by o1, if the hid-
den process is actually idle, we say a false alarm occurs
and denote this probability by pfa; otherwise we have a
correct detection, denoting this probability by pd. Thus,
(1 − pd) is the miss detection probability. Perfect sens-
ing means pd = 1 and pfa = 0, but it is extremely hard
to achieve in practice. A spectrum opportunity detector
can be considered as performing a binary hypotheses test.
As can be seen from a receiver operating characteris-
tic curve, a smaller value of pfa implies a larger value of
(1 − pd). This results in more packet collisions. Contrar-
ily, a larger pfa implies a smaller (1 − pd) but a large part
of the unused channel resources will be wasted. In gen-
eral, we would like to make pd as large as possible and
pfa as small as possible. However, these are usually con-
flicting objectives. To solve the problem, we may resort
to Neyman-Pearson criterion [22]; that is, determining a
value of pfa which is acceptable and seeking a decision
strategy on the channel energy that constrains pfa to this
value while simultaneously maximizing pd.
Similar to [6,16], we assume energy detection is used

for spectrum sensing. Consider two binary hypothesesH0
andH1, whereH0 andH1 denote the absence and presence
of a primary user, respectively. A test statistic T is formu-
lated to distinguish between H0 and H1 by a predefined
threshold λ as follows:

T
H1
�
H0

λ. (1)

Spectrum sensing is equivalent to detecting channel
energy. The threshold λ is determined by the constraint
on pfa and reflects the effect of noise uncertainty on spec-
trum sensing. For the observable process, wemay first give
a constraint on pfa and then determine pd. Thus values of
pd and pfa can be known [8,19]. The state-transition dia-
gram of a hidden process is shown in Figure 1, in which
the observable process is also shown.
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Figure 1 The state-transition diagram of a hidden process.

3 Actions and decision rule
In the traditional scheme for the OSA system, at the
beginning of a time slot, the SU first senses the chan-
nel. If the outcome is idle, the SU then transmits over
the channel; otherwise it skips the rest of the slot. Thus,
no attempts are made to track the state of the chan-
nel. In this work, we propose to use state prediction in
conjunction with channel sensing. In contrast to the tradi-
tional scheme always performing sensing in each slot, the
prediction scheme may skip the slot or directly transmit
without sensing, so as to avoid sensing as much as possi-
ble. As the concept of Bayesian filters plays a vital role in
the proposed scheme, before going into further details, we
first describe the concept behind the Bayesian filter.

3.1 Bayesian filter
Let π(t) = [π0(t) π1(t)] be the belief probability vector of
a channel at time t, where πi(t) is the probability of the
hidden process staying in state si. A Bayesian filter may be
used to update current belief given previous belief π(t−1)
and current observation om, that is,

πj(t)|om,π(t − 1)=

1∑
i=0

p(om|sj)pijπi(t − 1)

1∑
k=0

1∑
i=0

p(om|sk)pikπi(t − 1)
, j = 0, 1,

(2)

where pij denotes the transition probability, from state
si to state sj, of the hidden process and p(om|sk) is the
probability of the occurrence of observation om, given the
process staying in state sk . Let π̂j(t) denote the one-step
ahead prediction probability of the hidden process being
in state sj, expressed by

π̂j(t) =
1∑

i=0
pijπi(t − 1). (3)

Therefore, we may rewrite (2) as

πj(t)|om,π(t − 1) = p(om|sj)π̂j(t)
1∑

k=0
p(om|sk)π̂j(t)

, j = 0, 1. (4)

These equations show that an update of the Bayesian fil-
ter may be viewed as composed of two major steps. The
first step is to predict the one-step ahead probability vec-
tor by the transition probabilities and the previous belief
vector, as in (3). The second step is to update current
belief by the predicted probability vector and the observa-
tion, as in (4). However, obtaining observations requires
channel sensing and doing so consumes energy. If the hid-
den process is predicted to be idle with high probability,
onemay avoid channel sensing and directly transmit. Sim-
ilarly, if the channel is predicted to be busy with high
probability, channel sensing may be avoided as well. These
considerations are the motivation of this work.

3.2 Actions and probability update
In contrast to the traditional scheme relying only on chan-
nel sensing, the proposed prediction scheme takes advan-
tage of state prediction, channel sensing, and acknowl-
edgments (ACKs) from the receiver in an attempt to
maximize the utility. Consider a particular channel for an
SU. Let b(t) and b̂(t) denote the belief probability and the
prediction probability, respectively, of the channel being
in idle state at time slot t. As in (3), the SU may predict
b̂(t) by

b̂(t) = (1 − α)b(t − 1) + β[ 1 − b(t − 1)] . (5)

After the prediction, if b̂(t) is quite low, the SU directly
skips the time slot for energy savings and then sets
b(t) = b̂(t) as no observations are available. This action
is referred to as direct skip, denoted by a1. When b̂(t)
is quite high, the SU directly transmits over the channel.
This action is referred to as direct access, denoted by a3.
The belief update for this action depends on the trans-
mission result and will be discussed later. When b̂(t) is
moderate, the SU first performs channel sensing. If the
outcome is o1, the SU skips the rest of the slot and updates
current belief from b̂(t) by

b(t) = pfab̂(t)
pfab̂(t) + pd(1 − b̂(t))

. (6)

The update in (6) tends to lower the prediction proba-
bility in the next slot and in turn helps induce action a1 to
be chosen because when b̂(t) is moderate, in the denom-
inator, the first term may be quite small compared to the
second term. If the sensing outcome is o0, the SU then
transmits over the channel. This action is referred to as
sensing then conditional access, denoted by a2, which is
also the only action in the traditional scheme.
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In this work, as similar to [6], we assume that at the end
of each time slot, the corresponding receiver will send an
ACK, through the dedicated control channel, to inform
the SU whether the transmission is successful. Assume
also that packets involved in a collision are collapsed; that
is, capture effect is ignored. Upon receiving the ACK after
a transmission by action a2 or a3, the SU updates the
belief as follows. If a positive ACK is received, this means
the channel is definitely in idle state, so the SU sets cur-
rent belief to b(t) = 1. When a negative ACK (NACK)
is received (timeout is equivalent to NACK) after taking
action a2, as already having an observation o0, the SU first
updates the belief by

b(t) = (1 − pfa)b̂(t)
(1 − pfa)b̂(t) + (1 − pd)(1 − b̂(t))

, (7)

and then further updates b(t) by

b(t) = b(t)ε
b(t)ε + 1 − b(t)

, (8)

where ε is the channel error rate. When a NACK is
received after taking action a3, the SU updates b(t) by

b(t) = b̂(t)ε
b̂(t)ε + 1 − b̂(t)

. (9)

Note that if the channel is assumed to be error-free, the
SU sets b(t) = 0 when a NACK is received. In fact, both
updates in (8) and (9) may be as small as zero because
the error rate usually is quite small compared to the other
quantities.

3.3 Formulation of decision rule
Before we can formulate the decision rule, we have to
specify the utility for each action. In the OSA system, we
assume the SU can earn positive rewards only from suc-
cessful transmissions. Suppose the SU has to pay a cost for
a transmission, as doing so consuming energy. If the trans-
mission is successful, the SU receives a reward. When the
transmission collides with a PU’s transmission, the SU has
to pay a cost for the collision but no further cost is paid
when collapsed by the channel noise. As the transmission
cost itself is a constant quantity and the channel error rate
plays its role as a weighting factor on the utilities, both of
them may be incorporated into the reward for a success-
ful transmission, Rsucc, and the cost for a collision, Ccoll.
Channel sensing consumes energy, so each time the SU
senses a channel is assumed to be charged for a cost Csens.
In addition, we assume that Ccoll > Rsucc > Csens.
For clarity, in the following expressions, we may omit

the time variable t on b̂(t) and b(t) if no ambiguity in time
instants. After the prediction probability update described
in (5), if the SU takes action a1, we assume that the SU gets
no rewards and pays nothing. So the utility function is

Ua1(b̂) = 0. (10)

The utility function for action a3 may be expressed as

Ua3(b̂) = Rsuccb̂ − Ccoll(1 − b̂). (11)

When action a2 is taken and an o0 is observed, the utility
as a function of current belief b is

Ua2(b)|o0 = −Csens + Rsuccb − Ccoll(1 − b). (12)

If an o1 is observed, the utility is the sensing cost paid,
that is,

Ua2(b)|o1 = −Csens. (13)

In order to compare the utility of action a2 with oth-
ers, we have to transform the belief b in (12) and (13) into
b̂. Let b = T(b|b̂, oi) be the belief update given b̂ and
observation oi. Thus, as in (4), we have

T(b|b̂, oi) = p(oi|s0)b̂
p(oi|s0)b̂ + p(oi|s1)(1 − b̂)

, (14)

where p(o0|s0) = 1 − pfa and p(o1|s1) = pd.
With this transformation, the utility when action a2 is

performed may be computed by

Ua2(b̂) =
1∑

i=0
Ua2(T(b|b̂, oi))|oip(oi),

= −Csens + p(o0)
[
RsuccT(b|b̂, o0)

−Ccoll(1 − T(b|b̂, o0))
]
,

= −Csens + Rsucc(1 − pfa) b̂

− Ccoll[(p(o0) − (1 − pfa) b̂)] ,

= −Csens + Rsucc(1− pfa) b̂− Ccoll(1− pd) (1− b̂).
(15)

Having determined all the utility values as a function of
b̂, we now proceed with the formulation of the decision
rule.
From (15), Ua2(b̂) may be further expressed by

Ua2(b̂) =
[
Rsucc(1 − pfa) − Csens] b̂−[Ccoll(1 − pd)

+Csens] (1 − b̂).
(16)

By (10), (11), and (16), we make the following observa-
tions. The utility functions are all linear over the whole
probability space. For any given set of parameters, we
can specify a distinct interval in the probability space
for each action which maximizes the utility. However, for
real applications, we have the following concerns. At the
extreme point b̂ = 1, we have
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⎧⎨
⎩
Ua1(1) = 0,
Ua2(1) = Rsucc(1 − pfa) − Csens,
Ua3(1) = Rsucc.

(17)

Thus, Ua3(1) is definitely larger than both Ua2(1) and
Ua1(1). In addition, we desire that Ua2(1) > Ua1(1). To
meet this condition, we may set pfa < 1 − (Csens/Rsucc).
This constraint is reasonable because a smaller pfa is
desirable. At the other extreme point b̂ = 0, we find⎧⎨

⎩
Ua1(0) = 0,
Ua2(0) = −Ccoll(1 − pd) − Csens,
Ua3(0) = −Ccoll.

(18)

Clearly, Ua1(0) is the maximum one. In order to have
Ua3(0) < Ua2(0), we require Ccoll(1 − pd) + Csens <

Ccoll. A setting of pd > Csens/Ccoll satisfies the inequal-
ity. We find this constraint reasonable as a higher pd is
desirable. With the above treatments, at b̂ = 1, we have
Ua3(b̂) > Ua2(b̂) > Ua1(b̂) and at b̂ = 0, we have
Ua3(b̂) < Ua2(b̂) < Ua1(b̂). Therefore, Ua3(b̂),Ua2(b̂),
andUa1(b̂) are not parallel to each other and any two lines
intersect at one point. For illustrating purposes, we in the
rest of this paper focus on this scenario. However, the idea
applies to other scenarios as well.
Denote the prediction probability b̂ at whichUa3(b̂) and

Ua2(b̂) intersect by η1 and Ua2(b̂) and Ua1(b̂) intersect
by η0. Obviously, depending on the parameters, we have
either η1 > η0 or η1 ≤ η0. By equating (10) and (16) and
solving for b̂, we obtain

η0 = Ccoll(1 − pd) + Csens
Rsucc(1 − pfa) + Ccoll(1 − pd)

. (19)

Similarly, by equating (11) and (16), we get

η1 = Ccollpd − Csens
Rsuccpfa + Ccollpd

. (20)

If η1 > η0, we may formulate the decision rule for the
prediction scheme as:

A =

⎧⎪⎨
⎪⎩
a1, b̂ ≤ η0,
a2, η0 < b̂ < η1,
a3, b̂ ≥ η1.

(21)

We show an illustrating example of the utility functions
under this condition in Figure 2. If η1 ≤ η0, we have
to specify another threshold η2, denoting the b̂ at which
Ua1(b̂) and Ua3(b̂) intersect, that is,

η2 = Ccoll
Rsucc + Ccoll

. (22)

Based on η2, the decision rule may be formulated as

A =
{
a1, b̂ ≤ η2,
a3, b̂ > η2.

(23)

Figure 2 Illustrating the utility functions for the case η1 > η0.

Figure 3 shows an illustrating example of the utility
functions of which η1 < η0. Note that if η1 ≤ η0, action a2
is excluded because Ua2(b̂) is dominated by either Ua3(b̂)
or Ua1(b̂).
If channels are statistically independent, then extension

to the case of multiple channels is straightforward. Sup-
pose the SU is capable of treating a number of channels
up to l. If l ≥ N , all the N channels can be treated simul-
taneously; otherwise the first l channels having the largest
utility values are chosen with potential ties being broken
randomly.

3.4 Effects of transition probabilities
For the prediction scheme, when updating from a given
b(t) = 0, we prefer that the SU first chooses action a1

Figure 3 Illustrating the utility functions for the case η1 < η0.
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a number of times and then chooses action a2. On the
other hand, when updating from a given b(t) = 1, we
prefer the SU performs action a3 consecutively before
receiving a NACK. In each update, the prediction proba-
bility b̂(t) depends heavily on the transition probabilities.
We thus examine the effects of the latter on the pro-
posed scheme to see under what conditions would the
preferences be satisfied. Suppose action a1 is consecu-
tively taken n times starting with a given b(t). With some
algebra manipulations, we may express the n-step ahead
prediction probability b̂(t + n) as

b̂(t+n) = β

α + β
− β

α + β
(1−α−β)n+(1−α−β)nb(t).

(24)

From this equation we make some observations, distin-
guished by different cases, as follows.

• Case α + β < 1: For this case, if b(t) < β/(α + β),
the last two terms on the right-hand side of (24) sum
to a negative value, which increases toward zero as n
increases; that is, b̂(t + n) approaches the
steady-state probability β/(α + β) as n increases. As
a consequence, if η0 > β/(α + β), action a1 will be
taken forever. Thus, we desire η0 < β/(α+β). On the
other hand, if b(t) > β/(α + β), the two mentioned
terms sum to a positive value, which approaches zero
as n increases. In addition, b̂(t + 1) = β if b(t) = 0
and b̂(t + 1) = 1 − α if b(t) = 1. Clearly, for any
given b(t), values of b̂(t + n) are limited to [β , 1 − α].
Hence, for action a1 (resp. action a3) to be active, we
require η0 > β (resp. η1 < 1 − α).

• Case α + β = 1: For this case, b̂(t + n) = β/(α + β),
for n = 1, 2, · · · , irrespective of b(t). Thus, the
prediction scheme degenerates, as only one action is
available. If the action for this case happens to be
action a2, the prediction scheme degenerates into the
traditional scheme.

• Case α + β > 1 : For this case, if b(t) is below
β/(α + β), b̂(t + 1) achieves the maximum value,
which is above β/(α + β), in the sequence of
b̂(t + n). Contrarily, if b(t) is above β/(α + β),
b̂(t + 1) reaches the minimum value, which is below
β/(α + β), in the sequence of b̂(t + n). As the rate of
change of the state is fast, the actions in adjacent time
slots tend to be different so as to follow the channel
state. Performing the same action a1 (or a3) in
consecutive time slots is seldom.

From these observations, we recognize that the case α+
β < 1 with

β < η0 < β/(α + β) < η1 < 1 − α (25)

may fit the preferences described above. Under this con-
dition, the prediction scheme definitely outperforms the
traditional scheme. However, values of α and β are given
by PUs and the SU has no choices. But it is clear that the
prediction scheme does at least as well as the traditional
scheme as long as utilities are of concerns.

4 Simulation results
In this section, we compare the performance of the pre-
diction scheme to that of the traditional scheme by sim-
ulations. Before conducting simulations, we have to set
system parameters appropriately so that the imposed con-
straints are met. With this consideration in mind, we first
set Ccoll = 4, Csucc = 3, and Csens = 0.4. For the given
values, the constraints imposed in (17) and (18) are pfa <

0.866 and pd > 0.1, respectively. These constraints are not
stringent.
First, we numerically computed the thresholds. In

Figure 4, we show the effects of pd on η0 and η1 for
pfa = 0.1 and 0.2. From this figure, we observe that for
all parameters considered, η1 is larger than η0. This figure
also shows that as pd increases, η1 slightly increases and
η0 decreases. This change gives the SU more chances to
perform action a2 as the channel sensing becomes more
reliable. In addition, we can also examine the effects of
the transition probabilities on the prediction scheme. For
example, when pd = 0.9 and pfa = 0.1, we find η0 = 0.25
and η1 = 0.82. Suppose α = β = 0.1. It is easy to
check that the condition in (25) is met. In Figure 5, we
show the threshold values as a function of pfa. As can be
seen from the figure that we have η1 > η0 again for all
parameters considered. In addition, as pfa increases, η0
increases while η1 decreases. This tendency is opposite to
that shown in Figure 4. Thus, the probability of perform-
ing action a2 decreases as the channel sensing becomes
more unreliable.

Figure 4 Values of η0 and η1 as a function of pd.
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Figure 5 Values of η0 and η1 as a function of pfa.

With the thresholds numerically determined, we then
conducted simulations to evaluate the utilities of the pro-
posed prediction scheme and the traditional scheme. In
each run, a total of 106 time slots were simulated for
each scheme and the utilities obtained were averaged. In
Figure 6, we depict the utility values achieved in error-free
channels as a function of pd, where Up denotes utility of
the prediction scheme and Ut the traditional scheme. We
see from this figure that when pd ≤ 0.6, Up is zero and Ut
is negative. Indeed, when the environment is too hostile,
Ut may become negative, but Up ≥ 0 for all situations.
When pd ≥ 0.65, both utilities are larger than zero and the
proposed scheme has a gain roughly a magnitude of Csens
relative to the traditional scheme. In addition, we also sim-
ulated both schemes with channel errors. However, for
reasonable error rates, such as 10−4 or less, the degrada-
tion due to channel errors is not significant, several orders
less than the utilities achieved by either scheme. Thus, we
show the results for error-free channels only.

Figure 6 Utility values as a function of pd with pfa = 0.2 and
α = β = 0.1.

Figure 7 Utility values as a function of pfa with pd = 0.9,α = 0.1,
and β = 0.5.

Figure 7 depicts the utility values as a function of pfa. We
observe from this figure that the effects of pfa on the pro-
posed scheme is not significant, but it is on the traditional
scheme. This dissimilarity is mainly due to the fact that
when b̂ is high, the proposed scheme may perform action
a3 without sensing while the traditional scheme always
senses. A higher pfa may cause the traditional scheme to
waste more idle slots. Finally, we show the effects of β

on utility values in Figure 8. As β increases, the channel
will stay in idle state more often so that the SU has more
chances to utilize the channel. Thus, we can see from this
figure that as β increases, bothUp andUt increase. More-
over, the superiority of the prediction scheme can also be
observed.

5 Conclusions
Weproposed a study using HMMwith state prediction for
spectrum sensing in OSA networks. The SU may exercise

Figure 8 Utility values as a function of β with α = 0.1, pfa = 0.1,
and pd = 0.9.
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one of the three distinct actions: direct skip, sense then
conditional access, or direct access. We imposed some
constraints on the system parameters and derived thresh-
olds by which we can specify the optimal action which
maximizes the utility. We compared the performance of
the prediction scheme to that of the traditional scheme.
Simulation results show that as trying to avoid sensing as
much as possible, the prediction scheme may earn a gain
roughly a magnitude of the sensing cost relative to the tra-
ditional scheme. Simulation results also show that when
the false alarm probability is high, the performance gain
can be significant. This suggests that using the prediction
scheme instead of relying only on sensing results can alle-
viate the detriment arising from unreliable sensing, as pre-
diction results become more reliable. With channel errors
taken into account, we observe from the simulation results
that the effect of channel errors on the superiority of the
proposed scheme over the traditional scheme is not sig-
nificant. This means that superiority exists equally in any
kind of channels. Thus, we believe the proposed scheme
is suitable for OSA systems using spectrum sensing.
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