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Abstract

The packet error rate (PER) is a metric of choice to compute the practical performance of communication systems
experiencing block fading, e.g., fading processes whose coherence time is relatively slow when compared to the
symbol transmission rate. For these types of channels, we derive a closed-form asymptotic expression which
approximates the value of the PER for high signal-to-noise ratio (SNR). We also provide another approximation based
on a unit-step formulation of the symbol error rate (SER). We show that the two approximations are related and may
be derived from one another, thereby allowing us to obtain closed-form approximations of the block fading PER in
both coded and uncoded systems. We then show how these approximations may be used in practice, through the
derivation of a packet error outage (PEO) metric covering the case where the links experience shadowing on top of
block fading, as well as asymptotically optimal power allocations in relay channels under a block fading hypothesis.
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Introduction
Most of the existing literature on performance evaluation
of fading channels is concentrated on the symbol error
rate of the links. A good review of these results as well
as an interesting framework for the evaluation of symbol
error rates in fading channels is available in the book of
Simon and Alouini [1]. These results are focused on the
symbol error rate of fading channels; when the fading is
relatively fast compared to the symbol transmission dura-
tion, with proper interleaving, one can extend them to
packet error rates [2]. On the other hand, when the fad-
ing is much slower than the packet transmission time, one
has to consider that most symbols in the packet will expe-
rience the same fading state - a model known as block
fading or quasi-static fading. A metric of choice for per-
formance evaluation of this system models is the outage
capacity [3-5]. Being reliant on infinitely long random
codes, these results provide a theoretical bound on the
performance of transmission schemes over block fading
channels, but they fail to capture the behavior of practical
systems, which is the foremost motivation for the current
work.
The results presented here root themselves in the work

of Wang and Giannakis [6] who presented an asymptotic
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approximation of symbol error rates in fading channels
using a Taylor expansion limited to the first term. This
approach is well suited to channels whose probability den-
sity function is approximately polynomial near zero, but
fails for certain models of fading such as log-normal shad-
owing. Wang and Giannakis’ approach has been extended
recently by Xi et al. for the packet error rate of block
fading channels [7]. Alternatively, in the case of block
fading Rayleigh channels - a common model - Liu et al.
derived a tight approximation of the PER of uncoded
packet transmissions [8].
These asymptotic approximations have a number of

useful applications. They are in general well suited to the
study of relay networks and have been extended to gen-
eral amplify-and-forward relays by Ribeiro et al. [9], who
showed that in that case, the optimal selection criterion
for relays is tomaximize the harmonicmean of the source-
relay and relay-destination links. Liu et al. [10] further
extended these results and produced a comprehensive
treatment of the end-to-end symbol error rates in relay
channel for both amplify-and-forward and decode-and-
forward protocols, including asymptotic approximations,
and for a variety of modulation schemes (see in partic-
ular [10], Ch.5.). In a similar manner to the approach
we present here, Annavajjala et al. treated the asymptot-
ical outage probability of direct links as well as relayed
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amplify-and-forward and decode-and-forward protocols
[11]. A similar work has been treated by [12] in the context
of fully cooperative relay channels under a block fading
model.
The work presented in this paper extends the one of

Xi et al. in [7]. We strengthen their results by giving a
closed-form approximation of the asymptotic coding gain
rather than a numerical evaluation, for usual forms of
bit error rate (BER) expressions used in realistic cases.
We then express that a unit step approximation can be
derived for the packet error rate of block fading chan-
nels that closely matches the numerical computation of
the packet error rate in a tractable closed-form expression.
Such an approximation has been studied in the context
of long block codes [13,14] as well as [15]. We survey
these results and show in fact that both approximations
depend on the same parameters, thereby allowing to eas-
ily compute one given the other. We illustrate both these
approaches through the approximations of uncoded and
coded packet error rates in various fading channel models.
Using the fact that the asymptotic formulation is invert-
ible with respect to the mean SNR, we present a packet
error outage metric, with applications to channels where
links are subject to both fading and log-normal shadow-
ing effects simultaneously. We finally use the asymptotic
approximation to derive the optimal power allocation
for different relaying protocols, where we derive comple-
mentary results to [10-12] for relay channels where full
cooperation is not technically achievable.

Systemmodel
In communication systems, fading effects corrupt the
amplitude of the envelope of the received signals. We
consider the classical discrete baseband model from the
general continuous multipath fading channel model (see
[16], Ch.2). We use the notation of [16] here and consider
a single-tap discrete complex baseband channel model
where the signal y[m] received at time m depends on
the sent signal x[m], an additive white complex Gaussian
noise term w[m]∼ CN (0,N0) and an aggregate tap gain
h[m]:

y[m]= h[m] x[m]+w[m] (1)

In practice, most performance metrics for communi-
cation systems are based on the SNR of the received
symbols. Assuming that symbols are sent with an average
power P - and with the same power in the case of phase
shift keyed (PSK) modulations - the instantaneous SNR of
the received symbols is as follows:

γ [m]= |h[m] |2P
N0

(2)

Let E· denote the expectation operator. The mean SNR
may be computed as γ̄ = E|h[m] |2 P

N0
, where the expec-

tation is taken over h[m]. The effect of fading channels
is captured through the probability distribution of the
squared aggregate tap gain |h[m] |2, and the usual models
we use in this paper may be found in ([16], Ch.2) or ([1],
Ch.3). The probability density functions (p.d.f.) for these
models are summarized in Table 1.
The metric of interest in this paper is based on the

instantaneous symbol error rate ps(γ ), which is depen-
dent on the modulation used and will represent the prob-
ability of a symbol detection error at the given SNR.
When the knowledge of the received instantaneous SNR is
known only statistically through the average SNR and the
probability distribution of |h[m] |2, we can compute the
average symbol error rate of the fading channel as follows,
as the expectation of the instantaneous symbol error rate
over the fading channel p.d.f. fγ (γ ) (Table 1):

p̄s(γ̄ ) = E
[
ps(γ )

] =
∫ ∞

0
ps(γ )fγ (γ )dγ (3)

We consider as a metric in our work the packet error
rate, where packets are formed with N transmitted sym-
bols. Without any coding on this packet, the probability of
a packet error at a given instantaneous SNR is given by:

pp(γ ) = 1 − (1 − ps(γ ))N (4)

In fast fading channels, we may use interleaving tech-
niques and hence the symbols of a single packet expe-
rience different fading states. On the other hand, when
the fading is slow, symbols in a packet will experience the
same or similar fading states. As with the average symbol
error rate (3), we thus have to integrate the instantaneous
packet error rate (4) over the probability distribution of

Table 1 Probability density functions for the fadingmodels considered in this paper

p.d.f. of γ = |h[m] |2 Parameters

Rayleigh model
1

γ̄
exp

(
−γ

γ̄

)
γ̄

Rice model
(1 + K)e−K

γ̄
exp

(
−γ (1 + K)

γ̄

)
I0

(
2
√
K(K + 1)

γ

γ̄

)
K , γ̄

Nakagami model
mmγm−1

(γ̄ )m �(m)
exp

(
−mγ

γ̄

)
m, γ̄

I0(·) is the Bessel function of type 1 and order 0, �(·) is the Gamma function.
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|h[m] |2 to get the block packet error rate, which is our
metric of interest in this paper:

p̄p,slow(γ̄ ) =
∫ ∞

0
pp(γ )fγ (γ )dγ

= 1 −
∫ ∞

0
(1 − ps(γ ))Nfγ (γ )dγ

(5)

Approximations of the PER in direct links
In this work, we restrict ourselves to symbol error rates
represented by the generic functions of the following
forms, where Q(x) is the tail probability of a standard
normal distribution:

ps,th(γ ) = νQ(
√
kγ ) (6)

ps,fit(γ ) = 1
2
exp(−γ β) (7)

The first function is the theoretical symbol error rate of
a binary PSK (BPSK) modulation when ν = 1 and k = 2
and an approximation for higher order PSK modulations
and quadrature amplitude modulations (QAM) [1]. Both
parameters depend on the constellation size, codeword
mapping and geometry; specific values for the parame-
ters may be found in [1]. The second function in (7) is
classically used to fit bit or symbol error rates in realistic
systems.

Asymptotic approximations
The main result by ([6], Prop.1) is to show that integrals of
the form of (3) may be approximated at high SNR, when
γ̄ → ∞ by:

p̄s(γ̄ ) ≈ a
∫ ∞

0
γ tps(γ )dγ · γ̄ −(t+1) (8)

This approximation requires some conditions on the
fading p.d.f., the main one being that this p.d.f. may be
expanded as a single polynomial term when γ → 0 (see
[6], Sec.II). The parameters a and t are dependent on the
fading channel model only and are listed in Table 2 for the
models we consider in the paper. This leads in many cases
to an approximation of the form:

p̄s(γ̄ ) ≈ Gcγ̄
−Gd (9)

where Gc is termed the coding gain and Gd is the diversity
gain. This result has been stated without proof in [12] to
the block PER (5), replacing the term ps(γ ) in (8) by pp(γ )

Table 2 Parameters a and t for channels of interest

Model t a

Rayleigh 0 1

Rice 0 (1 + K)e−K

Nakagami m − 1 mm/�(m)

from (4).We provide here a thorough statement and proof
of this extension.

Theorem 1. Using the notation of [6], let γ = βγ̄ . Assume
that the p.d.f. of the random variate β can be approxi-
mated by a single polynomial term as β → 0+, i.e., fβ(β) =
aβt + O

(
βt+ε

)
with t ≥ 0, a > 0 and ε > 0. Further,

assume that the packet error rate is a bounded, continuous,
and decreasing function pp(γ ) = pp(βγ̄ ) of the instanta-
neous SNR, with the property that pp(γ ) ∈ O

(
γ −(t+1+ε)

)
when γ → ∞. We have, as γ̄ → ∞:

p̄p(γ̄ ) =
∫ ∞

0
pp(γ )fγ (γ )dγ = Gcγ̄

−Gd + o
(
γ̄ −Gd

)
(10)

where:

Gc = a
∫ ∞

0
γ tpp(γ )dγ Gd = t + 1 (11)

and parameters a and t depend on the fading distribution
fγ (γ ) and are listed in Table 2 for common fading models.

Proof. The complete proof is detailed in Appendix 1. A
key difference between our hypotheses and the ones of [6]
is that they require the p.d.f. of β to have the asymptotic
form aβt+o

(
βt+ε

)
, whereas the above proof and the con-

ditions in [12] are looser and require aO
(
βt+ε

)
term. The

proof of [6] actually does not use the o
(
βt+ε

)
term but

rather a o
(
βt) term, which may mean that the o

(
βt+ε

)
is a typographic error. Some parts of the proof are actu-
ally made simpler by using a O(·) term since we can swap
the O(·) terms and integrations. The conclusions are the
same, since O

(
βt+ε

) ⊂ o
(
βt) for ε > 0. We added a con-

dition pp(γ ) ∈ O
(
γ −(t+1+ε)

)
compared to the statement

in [12], but as far as we could tell, it is needed for the proof
to be complete. In essence, it is close to the discussion
of [6]; it ensures that pp(βγ̄ ) tends to a dirac function as
γ̄ → ∞. The examples given by [6] all have an exponen-
tial decrease, as do most bit or error rates in practice, and
thus this additional condition is verified for packet error
rates in most cases of interest.

The integral of interest is thus, for a given packet size N
and a parameter t > −1:

I =
∫ ∞

0
γ t (1 − (1 − ps(γ ))N

)
dγ (12)

We may approximate at this point the instantaneous
PER by an upper bound. We know, by a probability union
bound, that for any γ ∈ (0,∞),

(
1 − (1 − ps(γ ))N

) ≤
Nps(γ ). The bound gets tighter as ps(γ ) decreases when
γ → ∞. We can thus construct a relatively close upper
bound on the instantaneous packet error rate:

pp(γ ) ≤ min
{
1,Nps(γ )

}
(13)
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Using this bound, we have:

I ≤ 1
t + 1

γ ∗(t+1) + N
∫ ∞

γ ∗
γ tps(γ )dγ (14)

In this expression, γ ∗ is the solution to the equation
Nps(γ ∗) = 1 and only depends on the block size andmod-
ulation. For the symbol error rates (6) and (7), it can be
expressed as:

γ ∗
th = 2

k

(
erfc−1

(
2

νN

))2
(15a)

γ ∗
fit =

(
− log

(
2
N

)) 1
β

(15b)

Using the relation between the Q function and the
incomplete gamma function ([17], Eq.7.11.2), we can
express (14) and thus an upper bound on the coding gain
G(block,th)
c of theoretical PSK modulations in block fading

channels using the following proposition, withN the block
size and a, t from Table 2.

Proposition 1. The coding gain G(block,th)
c for uncoded sys-

tems computed using theoretical PSKmodulations in block
fading channels is bounded above by:

G(bloc,th)
c ≤ ν

(
2
k

)t+1 aN
2(t + 1)

√
π

�

(
t + 3

2
,
kγ ∗

th
2

)

Proof. The proof is given in Appendix 2.

We compare the upper bound on the coding gain given
in Proposition 1 with a numerical computation of the cod-
ing gain on Figure 1. We consider for this application a
BPSK modulation scheme for which k = 2 and ν = 1

Figure 1 Asymptotic approximation of the PER. This simulation
considers a Nakagami channel model, BPSK modulation at the source
and a packet size of 312 bits.

in (6). The asymptotes on the PER given by a numerical
computation of the coding gain and the ones using the
bound of Proposition 1 are very close to one another. In
Figure 1, when m = 1, the bound is offset from the real
asymptote by less than that 0.3 dB, and by less than 0.1
dB when m = 4. We have further been able to assess
empirically that the bound gets tighter asN or t increases.
A similar bound for symbol error rates of the form (7)

may be derived in a simple way along the line of the proof
of Proposition 1, and we have the following proposition:

Proposition 2. The coding gain G(block,fit)
c for uncoded sys-

tems computed with empirical symbol error rates of the
form (7) in block fading channels is bounded above by:

G(block,fit)
c ≤ a

t + 1
(γ ∗

fit)
t+1 + aN

2β
�

(
t + 1

β
, (γ ∗

fit)
β

)

Unit step approximations
As mentioned in [6] and seen on Figure 2, block fading
channels represented by a Rician distribution are not well
approximated by asymptotes. In Figure 2, we represent
the equivalent Nakagami channel obtained by equating
the amount of fading (AF) defined in ([1], Sec. 2.2), a
metric computed from the mean and variance of fading
distributions.
We can see that both channels have a similar behavior

for low values of γ̄ , but the Rician fading model gen-
erates an asymptote in O(γ̄ −1), whereas the Nakagami
fading model’s asymptote is O(γ̄ −m) (see Tables 2 and
(8)). Using the simple asymptote formulations, it is pos-
sible to extract the crossing between the asymptotes and
therefore define a piecewise function approximation of
the PER of a Rician block fading channel better at medium
SNR. However, this method is not entirely satisfactory.We

Figure 2 Comparison between PER of a Rician and Nakagami
fading channel. PER of a Rician fading channel with its equivalent
Nakagami fading channel, by equating the first two moments.
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show in this section that another form of approximation
provides closer results in this case, and that this approxi-
mation is actually based on the exact same coefficients as
the asymptotic approximation described above.
In coded packet schemes, a common approach is to con-

sider the instantaneous SER or PER as a unit step function
whose value is 1 below some threshold SNR γ0 and 0
beyond:

p̃(γ ) =
{
1, if γ ≤ γ0

0, otherwise
(16)

This approach has been shown to be particularly effi-
cient in turbo-coded schemes that are iteratively decoded
[13,14], when the threshold is set to the waterfall thresh-
old of the decoding scheme - the SNR beyond which the
decoding algorithm provably converges. In the uncoded
case, we can arbitrarily set this threshold to the solution
of:

(1 − ps(γ0))N = 1
2

(17)

For the functions (6) and (7), closed-form solutions
may then be obtained for γ0. The obvious interest of this
approximation is that the resulting formulation is based
on the c.d.f. F(γ , γ̄ ) relative to the channel block fading
p.d.f. fγ (γ ). From (5) and using the unit step approxima-
tion p̃(γ ) for the instantaneous PER, the approximation is
derived as:

p̄p(γ̄ ) ≈
∫ γ0

0
fγ (γ )dγ = F (γ0, γ̄ ) (18)

This approximation is mathematically valid whenever
the c.d.f. exists and can thus provide a way to treat
cases where the asymptotic approximation is looser than
expected, e.g., for the Rician fading model. It can also be
of use when the asymptotic approximation does not exist,
which is the case for the log-normal fading model whose
p.d.f. behaves exponentially near 0 (recall the conditions
in [6], Sec. II).
As seen on Table 3, the closed form expressions are

more tractable than their integral counterparts, and
Figure 3 indicates that the approximation is quite close

Table 3 Unit step approximations of the block fading PER
for usual channel models

Model Block PER approximate

Rayleigh 1 − exp

(
−γth

γ̄

)

Rice 1 − Q1

(√
2K ,

√
2(K + 1)

γth

γ̄

)

Nakagami
1

�(m)
γ

(
m,

mγth

γ̄

)

Log-normal Q

(
γ̄ − 10 log10 (γth)

σS

)
Q1(·) is the first order Marcum Q-function.

Figure 3 Unit step approximations for the block PER. Unit step
approximations for the block PER of the fading channel models
presented in Table 3, with theoretical BSPK modulation (see (6) with
k = 1) and a packet size N = 312 bits.

for the channel parameters displayed. The approximation
loosens for lower packet sizes, i.e., for low values of N,
but gets tighter as N increases. An intuitive explanation
is that when N increases the slope of the instantaneous
PER, it also gets closer to a unit step function. The main
issue for these results is that, contrary to the asymp-
totic approximations, the unit step approximations are not
always invertible and thus do not yield closed-form power
allocations for a given target PER.
The quality of the approximation is heavily dependent

on the choice of γ0. Following the work of [13], the authors
of [14] proposed to use an absolute error criterion to
compute γ0. In mathematical form, the chosen threshold
verifies:

γ0 = arg min
γ

{∫ ∞

0

∣∣p̄p(γ̄ ) − F(γ , γ̄ )
∣∣ dγ̄

}
(19)

This criterion effectively minimizes the cumulative
absolute error over the whole SNR range but leads to
thresholds that may not be the best fit for the values of
interest of the packet error rate. This has been identified
by [15], who proposed a minimum relative error criterion:

γ0 = arg min
γ

{∫ ∞

0

∣∣∣∣ p̄p(γ̄ ) − F(γ , γ̄ )

p̄p(γ̄ )

∣∣∣∣ dγ̄

}
(20)

In [15], the authors argued that to have a bounded value
for the relative error, the chosen threshold would have to
verify:

lim
γ̄→∞ p̄p(γ̄ ) − F(γ0, γ̄ ) = 0 (21)

A similar argument may be extended to the criterion
of [14]; if (21) is not verified, then both integrals in (19)
and (20) are effectively unbounded. Equation (21) thus
provides a necessary condition for minimizing either the
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absolute or relative error over the SNR range, but a priori
not a sufficient one. For fading channels with an polyno-
mial asymptotic expansion in 0 [6], only one threshold will
verify (21).

Theorem 2. Using the notation of [6], let γ = βγ̄ . Assume
that the p.d.f. of the random variate β can be approxi-
mated by a single polynomial term as β → 0+, i.e., fβ(β) =
aβt+O(βt+ε)with t ≥ 0, a > 0 and ε > 0. Further assume
that the packet error rate is a bounded, continuous, and
decreasing function pp(γ ) = pp(βγ̄ ) of the instantaneous
SNR, with the property that pp(γ ) ∈ O

(
γ −(t+1+ε)

)
when

γ → ∞. With F(γ , γ̄ ) the c.d.f. of the fading channel, we
have, as γ̄ → ∞:∫ ∞

0
pp(γ ) fγ (γ )dγ = p̄p(γ̄ ) ∼ F(γ0, γ̄ ) (22)

where

γ0 =
(

(t + 1)
∫ ∞

0
pp(γ )γ tdγ

) 1
t+1

(23)

Remark 1. The threshold (23) is directly linked to the
coding gain of Theorem 1, through the relation:

γ0 =
(
t + 1
a

Gc

) 1
t+1

(24)

In a similar manner, we can derive the asymptotic cod-
ing gain in a block fading channel from the threshold
computed in Theorem 2:

Gc = a
t + 1

γ t+1
0 (25)

The following corollary derives from the proof of
Theorem 2 and indicates that the choice of threshold
for the unit-step approximation is the best choice when
considering the relative and absolute error criterions.

Corollary 1. For fading channels whose p.d.f. verify the
conditions in Theorem 2, choosing γ0 as (23) minimizes
both the absolute and relative error criterions (19) and
(20).

Proof. Both proofs are detailed in Appendix 3.

Theorem 2 has been stated in [15]; we provide a com-
plete proof using the O

(
γ −(t+1+ε)

)
condition, as well

as a proof of the corollary. Theorem 2 and its corol-
lary give great flexibility for PER approximations in block
fading channels. On one hand, for common fading mod-
els, the uncoded PER can be readily approximated by its
asymptotes for low target values of the PER or if compu-
tation allows by the much closer unit-step approximation
through the exact same coefficients. In some cases, such
as log-normal fading channels, the unit step approxima-
tion also provides a close candidate for evaluation on its

own, even though the asymptotic approximation does not
exist in this case. In coded systems, setting the thresh-
old in Theorem 2 to the waterfall threshold of the coding
scheme provides the coefficient for both the unit step
approximation and the asymptotic approximation. This
threshold may be computed analytically in feasible cases
or extracted once from simulation for more complex cod-
ing schemes. As an example, we consider in Figure 4 a sim-
ple random irregular LDPC code of rate 1/2 and block size
2,000 [18]. The waterfall threshold has been determined
through simulation of the behavior of the code in addi-
tive white Gaussian noise (AWGN) channels to be about
1.45 dB, and this value is used to compute the coding gain
associated with the asymptotic approximation.

Applications of the PER approximations
These approximations have a number of practical appli-
cations. They are easy to evaluate and, in some cases,
invertible with respect to γ̄ . In this section, we present
two of these applications; we define a packet error outage
metric for the case where γ̄ is only known at the trans-
mitter through its statistical distribution. In a second part,
we survey and illustrate how the asymptotic approxima-
tions may be used to compute optimal power allocations
in multi-user channels.

Packet error outage
In some cases, fading effects are not enough to model the
propagation environment of a system. In vehicular net-
works, cellular mobility models, or body area networks,
the mean SNR γ̄ may be subject to variation over time,
leading to a composite model. This effect is called a

Figure 4 Unit step approximation for long block codes. Unit step
and related asymptotic approximation for the block PER of a 1/2-rate
LDPC code with block size N = 2, 000 bits, over a Rayleigh block
fading channel model. The waterfall threshold for this code has been
determined to be γth ≈ 1.45 dB.
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shadowing effect and is due to the masking of line of sight
waves by buildings or more generally by a macroscopical
change in the propagation environment. In most appli-
cations, the shadowing effects are much slower than the
transmission duration of a packet and are modeled by
considering that the mean SNR is a log-normal random
variable and follows a LN (μ0, σS) probability distribu-
tion, where μ0 is the global mean SNR and σS the variance
of γ̄ around the mean when expressed in dB. When the
system knows, or can predict, the value of γ̄ at the time
of transmission, the block PER (5) is a metric of choice
for performance evaluation and parameter optimization.
On the other hand, if only the global mean μ0 is known,
not only is it difficult to express the combined probability
distribution of the instantaneous SNR but it does not also
give any useful information on the actual behavior of the
PER in the network. An approach to lift this limitation is to
consider the block packet error outage (PEO) as the proba-
bility that the block PER will rise beyond a given threshold
P∗, as may be done in similar cases for the capacity outage.
The PEO can thus be written as:

po(P∗) = Pr
{
p̄(γ̄ ) ≥ P∗} (26)

Using asymptotic approximations as presented in the
previous section, one can actually use invert p̄(γ̄ ). Since
we can reasonably assume that the mean PER is nonin-
creasing and continuous, we can write the PEO as follows:

po(P∗) = Pr
{
γ̄ ≤ p̄−1(P∗)

}
(27)

When the shadowing is modeled as a log-normal ran-
dom variable, expressing the mean SNR in decibels allows
to derive the PEO using the c.d.f. of a normal random vari-
able withmean 0 and variance 1	(·). Considering that the
global mean received SNR is μ0, and taking care of con-
verting γ̄ ∗ = p̄−1

p (P∗) in decibels, the PEO is thus written
as:

po(P∗) = 	

(
γ̄ ∗ − μ0

σS

)
(28)

Figure 5 represents the PEO for a Rayleigh fading chan-
nel using a threshold for the PER at 1%. The PEO curves
define the required mean received SNR to ensure a 1%
PER at the receiver in a given percentage of the shadowing
states. Intuitively, the higher the variance of the shadow-
ing effect, the higher the required received SNR to fill this
condition, which is in agreement with Figure 5. Further-
more, changing the required PER threshold P∗ will not
change the shape of the PEO curves, but only translate
them along the μ0 axis.

End-to-end PER of relay channels
The elementary building block of cooperative networks is
the relay channel (Figure 6) where the source transmits

Figure 5 PEO of a Rayleigh fading channel. Packet error outage for
a Rayleigh block fading channel, with a PER threshold P∗ = 0.01.

towards the destination with the help of a relay. Asymp-
totic approximations of this form can provide closed-form
power allocations for relaying systems that are efficient
beyond the high-SNR regime. Such methods have been
used for the end-to-end bit error rate optimization of
relay systems (see e.g., [10,11]) and the packet error rate
optimization by [12].
We consider wireless relay nodes which cannot send

and receive information at the same time, leading to a
half-duplex mode of operation. We identify three possi-
ble behaviors for the relay channel (Figure 7), depending
on whether the destination listens to the transmission
of both the source and relay and tries to combine the
received signals. The total cooperation behavior has been
treated by [12], with the destination optimally combin-
ing signals from both the relay and source. In many
practical cases, however, due to hardware restrictions or
limited signal processing capabilities, the destination will
be unable to optimally combine the received signals and
obtain the gains mentioned in [12], thus justifying the
study of less capable cooperation models and the results
of this sections in models 1 and 2 of Figure 7.
As represented on Figure 6, the path loss is different for

the three links in the relay channel and captured through

Figure 6 Relay channel model. Relay channel represented with the
mean received SNR of each link.
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Figure 7 Cooperation and relaying models considered.Models are numbered from top to bottom, from the least cooperative to the most
demanding in terms of synchronization and information exchange.

the terms s1, s2, and s3.We aim at allocating a global power
Ptot between the source and the relay - or equivalently
a global normalized transmit SNR γ̄tot = Ptot/N0. With
δ ∈[0, 1], the power sharing term, we define γ̄1 = s1δγ̄tot,
γ̄2 = s2δγ̄tot, and γ̄3 = s3(1 − δ)γ̄tot as the SNR of
the source-destination, source-relay, and relay-destination
links, respectively.
For the first model of Figure 7, an end-to-end error

occurs if the S → R link fails, or if the R → D fails while
the S → R link succeeds. The end-to-end error probability
can thus be written:

P1 = p̄p(γ̄2) + (1 − p̄p(γ̄2))p̄p(γ̄3) (29)

For the second model of Figure 7, an error occurs if
both paths are in error, and we thus have the end-to-end
probability:

P2 = p̄p(γ̄1)
[
p̄p(γ̄2) + (

1 − p̄p(γ̄2)
)
p̄p(γ̄3)

]
(30)

We consider the asymptotic case where each γ̄i → ∞
for i ∈ {1, 2, 3}, and fading models where the diversity gain
coefficient of the asymptotic approximations will be 1 –
thus t = 0 in the models from Table 2. The packet error
rate of each link i can thus be written as Gi/γ̄i, and we
have:

P1 ≈ 1
γ̄tot

(
G2
δs2

+ G3
(1 − δ)s3

)
(31)

P2 ≈ 1
γ̄ 2
tot

G1
s1

(
G2
δ2s2

+ G3
(1 − δ)δs3

)
(32)

The derivation of the end-to-end PER of the third model
of Figure 7 is described in [12] and can be written as
follows, with GMRC the evaluation of (12) for t = 1:

P3 ≈ 1
γ̄ 2
tot

1
s1

(
G1G2
δs2

+ GMRC
(1 − δ)δs3

)
(33)

The asymptotically optimal power allocations δi for each
of these models can be deduced from these equations and
detailed in Appendix 4. We draw a comparison between
these asymptotically optimal power allocations and an
equal power allocation between the source and the relay
on Figure 8. As predicted by (32) and (33), the diversity
gain of the second and third model of Figure 7 is twice as
large as the first one. The first model may in fact provide
a coding gain only compared to a direct non-cooperative
transmission, if both the S → R and R → D links are bet-
ter than the S → D link. We can also validate that since
the diversity gain is not dependent on the power allocation
method, optimizing over the coding gain of the end-to-
end PER is a valid approach over the whole SNR range.
In fact, through power allocation, we can control the

Figure 8 Asymptotically optimal power allocation performance.
Comparison between the asymptotically optimal power allocation
and an equal power allocation between the source and relay node.
Here, s1 = s2 = −20 dB, and s3 = 0 dB.
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end-to-end-coding gain and the PER curve shifts entirely;
gains are thus seen at all SNR regimes. This asymp-
totic power allocation further gives optimal relay selec-
tion criterions for a system where multiple relays may be
available.
When all the links have a similar path loss, the asymp-

totically optimal allocation gives marginal benefits only
for the second cooperation mode. On the other hand, as
seen on Figure 8, when the S → D link is of lower qual-
ity, using a relay provides a large gain even if the S → R
link is also weak. Furthermore, if we compare the perfor-
mances of the second and third model, we can see a large
performance discrepancy when an equal power allocation
is used. However, when an asymptotically optimal power
allocation is used, bothmodels show similar performances
while the third model is more complex to implement in
practice. Further analyses have shown that this fact is con-
ditioned on the quality of the S → R link; when its quality
is low, as in Figure 8, the performance of both models
will be close, whereas the third model shows performance
gains when the S → R link is of superior quality.

Conclusions
In this paper, we studied the PER of communication sys-
tems subject to block fading effects. We derived a closed
form upper bound on the coding gain, leading to asymp-
totic approximations similar to those of [6] for fast fading
channels. We then studied unit-step approximations of
the PER and showed that the approximation can be quite
close on the whole SNR range if the threshold of the
unit step is chosen wisely. For fading models behaving
polynomially near 0, we showed that the optimal thresh-
old of the unit-step approximation, w.r.t. both absolute
and relative error criterions, and the coding gain of the
asymptotic approximation are directly related and may be
deduced from one another. This allows a simple treat-
ment of both coded and uncoded transmission schemes.
We then applied these results to two practical use cases.
By defining a packet error outage metric, we showed how
to use the asymptotic approximation to derive a perfor-
mance evaluation of systems subject to both fading and
shadowing effects simultaneously. Finally, in the context of
cooperative communications, we derived asymptotically
optimal power allocations for relay channels which were
showed to provide gains on the whole SNR range.

Appendices
Appendix 1 Proof of Theorem 1
We have that:

p̄p(γ̄ ) =
∫ ∞

0
pp(γ )fγ (γ )dγ

=
∫ ∞

0
pp(βγ̄ )fβ(β)dβ

Now for some small B > 0 and by ignoring O(βt+ε)

terms, we have:

p̄p(γ̄ ) = a
∫ ∞

0
pp(βγ̄ )βtdβ (34a)

− a
∫ ∞

B
pp(βγ̄ )βtdβ (34b)

+
∫ ∞

B
pp(βγ̄ )fβ(β)dβ (34c)

We can bound (34c) as follows, considering that pp(γ )

is decreasing and pp(γ ) ∈ O
(
γ −(t+1+ε)

)
when γ → ∞:∫ ∞

B
pp(βγ̄ )fβ(β)dβ ≤ pp(Bγ̄ )

∫ ∞

B
fβ(β)dβ

≤ pp(Bγ̄ )

∈ O
(
γ̄ −(t+1+ε)

)
∈ o

(
γ̄ −(t+1)

)
The term (34b) can be developed as follows, using the

variable substitution βγ̄ = γ :

a
∫ ∞

B
pp(βγ̄ )βtdβ = a

γ̄ t+1

∫ ∞

Bγ̄

pp(γ )γ tdγ

As γ̄ → ∞, we can write:

a
γ̄ t+1

∫ ∞

Bγ̄

pp(γ )γ tdγ = a
γ̄ t+1

∫ ∞

Bγ̄

O
(
γ −(1+ε)

)
dγ

= a
γ̄ t+1O

(
1

ε(Bγ̄ )ε

)

∈ o
(
γ̄ −(t+1)

)
Finally, through a similar variable change on (34a), we

have, as γ̄ → ∞:

p̄p(γ̄ ) = a
γ̄ t+1

∫ ∞

0
pp(γ )γ tdγ + o

(
γ̄ −(t+1)

)
(35)

To complete the proof, we have to show that∫ ∞
0 pp(γ )γ tdγ exists. LetG > 0 be large enough such that
for all γ > G, p(γ ) ∈ O

(
γ −(t+1+ε)

)
. Then, there exists

M > 0 such that p(γ ) ≤ Mγ −(t+1+ε). We can write:∫ ∞

0
pp(γ )γ tdγ ≤

∫ G

0
pp(γ )γ tdγ +

∫ ∞

G
Mγ −(1+ε)dγ

≤
∫ G

0
pp(γ )γ tdγ + M

εGε

Now since pp(γ ) is bounded and continuous, the inte-
gral on the right-hand side is well defined. The origi-
nal integral thus has a bounded value, and the proof is
complete.
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Appendix 2 Proof of Proposition 1
To integrate the second term in (14), we will make use of
the following lemma.

Lemma 1. Let �(s, x) be the incomplete upper gamma
function (See [17], Ch.8). We have the relation:∫

xt� (s, x) dx = xt+1

t + 1
� (s, x) − 1

t + 1
� (t + s + 1, x)

Proof. We proceed using integration by parts. We have:∫
xt� (s, x) dx = xt+1

t + 1
� (s, x)− 1

t + 1

∫
xt+1�′(s, x)dx

From ([17], Eq.8.8.14), we know that�′(s, x)=−xs−1e−x.
Thus:

1
t + 1

∫
xt+1�′(s, x)dx = 1

t + 1

∫
−xt+se−xdx

Identifying −xt+se−x = �′(t + s + 1, x) completes the
proof.

Using ([17], Eq.7.11.2), we can write:∫ ∞

γ ∗
γ tps(γ )dγ = ν

2
√

π

∫ ∞

γ ∗
γ t�

(
1
2
,
kγ
2

)
dγ

From Lemma.1, with a variable change u = kγ /2, we
have:

ν

2
√

π

∫ ∞

γ ∗
γ t�

(
1
2
,
kγ
2

)
dγ

=
(
2
k

)t+1
ν

2
√

π

∫ ∞
kγ ∗
2

ut�
(
1
2
,u

)
du

=
(
2
k

)t+1
ν

2(t + 1)
√

π[
ut+1�

(
1
2
,u

)
− �

(
t + 3

2
,u

)]∞

kγ ∗
2

The asymptotic expansion of �(s, x) is [17]:

�(s, x) ∼ xs−1e−x
∑ �(s)

�(s − k)
x−k

The exponential will dominate any polynomial term
when x → ∞. We thus have:

lim
u→∞u(t+1)�

(
1
2
,u

)
− �

(
t + 3

2
,u

)
= 0

The integral I from (12) can be bounded above by:

I ≤ ν

t + 1
γ ∗(t+1)

−
(
2
k

)t+1 (
k
2

)t+1
νN

2(t + 1)
√

π
γ ∗(t+1)�

(
1
2
,
kγ ∗

2

)

+
(
2
k

)t+1
νN

2(t + 1)
√

π
�

(
t + 3

2
,
kγ ∗

2

)

Since (2
√

π)−1�(1/2, kγ ∗/2) = 1/N by definition of
γ ∗, the first two terms cancel out. Reinjecting the remain-
ing term in (8) gives the proposition.

Appendix 3 Proofs of Theorem 2 and Corollary 1
We first derive the asymptotic approximation of the c.d.f.
of the fading channel:

F(γ0, γ̄ ) =
∫ γ0

0
fγ (γ )dγ =

∫ γ0

0
fγ (βγ̄ )γ̄dβ

=
∫ γ0

γ̄

0
fβ(β)dβ

The second part of the derivation follows from the
relations between the random variables γ and β and sub-
sequent variable changes. Since we assume γ̄ → ∞, γ0/γ̄
will tend to 0 for any fixed constant γ0. Therefore, we can
expand fβ(β) as a polynomial, and as γ̄ → ∞:

∫ γ0
γ̄

0
fβ(β)dβ =

∫ γ0
γ̄

0

(
aβt + O

(
βt+ε

))
dβ

= a
t + 1

γ t+1
0

γ̄ t+1 + O
(

1
γ̄ t+1+ε

)

= a
t + 1

(
γ0
γ̄

)t+1
+ o

(
1

γ̄ t+1

)
(36)

On the other hand, from Theorem 1, we know the
asymptotic expansion of the left-hand side of (22). Iden-
tifying the value of γ0 in (35) and (36) completes the
proof.
The proof of Corollary 1 is as follows. Let the integrands

of (19) and (20) be written:

εabs(γ̄ ) = ∣∣p̄(γ̄ ) − F(γ0, γ̄ )
∣∣

εrel(γ̄ ) =
∣∣∣∣ p̄(γ̄ ) − F(γ0, γ̄ )

p̄(γ̄ )

∣∣∣∣
We can show that we need to have γ0 such that

limγ̄→∞ εabs(γ̄ ) = 0. Suppose that there exists δ > 0 such
that for all T > 0 there exists a γ̄ > T where εabs(γ̄ ) ≥ δ.
Then:∫ ∞

0
εabs(γ̄ )dγ̄ ≥

∫ ∞

0
δdγ̄

The integral on the right-hand side is improper and
diverges. Therefore, by negating the above assertion, the
condition:∫ ∞

0
εabs(γ̄ )dγ̄ < ∞

requires:

∀δ > 0 ∃T > 0 ∀γ̄ > T εabs(γ̄ ) < δ (37)

From the definition of the limit, the above assertion is
true if and only if limγ̄→∞ εabs(γ̄ ) = 0, leading to a nec-
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essary condition on γ0. A similar derivation can be made
for εrel(γ̄ ). To complete the proof, we can notice that since
F(γ0, γ̄ ) is a c.d.f., it is bounded in [0, 1] and increasing on
its support. Therefore, for any T > 0, we can rewrite the
assertion as:

∀δ > 0 ∃T > 0 ∀γ̄ > T εabs(γ̄ ) < δF(γ0, γ̄ )

This is equivalent, by definition of the limit:

lim
γ̄→∞

∣∣∣∣ p̄p(γ̄ ) − F(γ0, γ̄ )

F(γ0, γ̄ )

∣∣∣∣ = 0

The above assertion is verified if and only if p̄p(γ̄ ) ∼
F(γ0, γ̄ ). Through the proof of Proposition 2, we can see
that for fading channels verifying the conditions, there is
only one choice of γ0 for the functions to be asymptotically
equivalent, and the necessary condition is thus sufficient
in that case. For the relative error criterion, the derivation
is even more direct since (37) is readily verified if p̄p(γ̄ ) ∼
F(γ0, γ̄ ) without changing the assertion.

Appendix 4 Asymptotically optimal power allocation for
the relay channel
Let:

β1 = s1
G1

β2 = s2
G2

β3 = s3
G3

β ′
2 = s2

G1G2
β ′
3 = s3

GMRC

For the first model, deriving the Equation (31) w.r.t. δ

leads to the conclusion that the asymptotically optimal δ1
is a solution of the following polynomial:

δ2β2 − (1 − δ)2β3 = 0

This polynomial has two real roots, of which a single one
is located in (0, 1):

δ1 =
√

β2√
β2 + √

β3

In a similar manner, when β2 �= β3, the asymptotically
optimal δ2 is a solution of:

2(1 − δ)2β3 − β2δ(2δ − 1) = 0

The derivation is a bit more involved, but after some cal-
culus it can be shown that this polynomial has a single root
located in (0, 1):

δ2 =

⎧⎪⎨
⎪⎩

β2 − 4β3 + √
β2(β2 + 8β3)

4(β2 − β3)
, if β2 �= β3

2
3 , otherwise

(38)

The third model follows along the same lines and is
treated in details in [12] and given as:

δ3 = 1 + β ′
2

β ′
3

−
√(

β ′
2

β ′
3

)2
+ β ′

2
β ′
3

(39)

For every model considered, we can readily see that the
asymptotically optimal power allocation is only a function
of s2 and s3 and the coding gains, but is not related to the
quality of the S → D link, nor is it related to the power to
allocate γ̄tot. The actual end-to-end performance is in fact
dependent on both s1 and γ̄tot, but not the asymptotically
optimal power allocation.
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