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Abstract

It is shown that the throughput capacity of wireless ad hoc networks using omni-directional antennas (OMN networks)
is significantly decreased with the increased number of nodes. One major reason lies in the interference caused by
using omni-directional antennas, which just broadcast radio signal in all directions. Thus, a communication with
multiple short-ranged hops is suggested in such networks to avoid interference and improve the throughput.
However, the multi-hop transmission can also significantly increase the end-to-end delay.
In this paper, we investigate the throughput improvement and the delay reduction by using directional antennas in
wireless ad hoc networks. We call such wireless ad hoc networks using directional antennas as DIR networks. In
particular, we investigate the effective transmission range of directional antennas with consideration of various
channel conditions, such as the large scale path loss and the shadow fading effect. We have found that directional
antennas can significantly increase the transmission range compared with omni-directional antennas even under the
same channel condition. Besides, we derive the throughput and the delay of a DIR network by constructing a routing
scheme and a time-division multi-access (TDMA) scheme. We have found that using directional antennas not only can
increase the throughput capacity but also can decrease the delay by reducing the number of hops.

1 Introduction
Wireless ad hoc networks typically consist of nodes that
are sharing the same medium to transmit. It is shown in
[1] that in an ad hoc network with n nodes under a ran-
dom networka, each node has a throughput capacity of
�(1/

√
n log n). Even under an optimal arbitrary networkb,

the network could only offer a per-node throughput of
�(1/

√
n). The per-node throughput is decreased when

the number of nodes increases. One of the major rea-
sons of the poor performance of wireless ad hoc networks
is that all the nodes within the network share the same
medium. When a node transmits, its neighboring nodes
are prohibited from transmitting due to the interference.
Thus, the network throughput is interference-limited. One
implication from [1] is that a small transmission range
is necessary to limit the interference and consequently
leads to a high throughput. However, a smaller trans-
mission range means that a packet needs to be trans-
mitted through more hops, which inevitably leads to
higher transmission delay. It is shown in [2] that the delay
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due to the multi-hop transmission is increased when the
throughput scales. We call such wireless ad hoc networks
using omni-directional antennas as OMN networks.
Other studies such as [3-11] concentrate on using

directional antennas to improve the network through-
put. In particular, it is shown in [3] that using directional
antenna in random networks achieves a capacity gain of
4π2/(θ1θ2) over OMN networks when both transmission
and reception are directional, where θ1 and θ2 are trans-
mitter and receiver antenna beamwidths, respectively. We
call such wireless ad hoc networks using directional anten-
nas as DIR networks. However, most of all these stud-
ies only consider the throughput improvement by using
directional antennas.
In this paper, we study the scaling rules of the delay due

to the multi-hop transmission in DIR networks. The pri-
mary research contributions of our paper are summarized
as follows.

• We have analyzed the effective transmission range of
DIR networks with consideration of various channels
conditions, such as the path loss effect as well as the
shadow fading effect.

© 2015 Dai and Zhao; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: hndai@ieee.org
http://creativecommons.org/licenses/by/2.0


Dai and Zhao EURASIP Journal onWireless Communications and Networking  (2015) 2015:16 Page 2 of 13

• We have derived the capacity and the delay in DIR
networks by constructing the routing scheme and the
transmission scheme.

• We have compared our results with those derived
under OMN networks. Compared with
omni-directional antennas, directional antennas not
only can significantly increase the network capacity
but also can reduce the transmission delay.

• We have also found that the capacity incremental
gain and the delay reduction gain of DIR networks
over OMN networks heavily depend on the antenna
beamwidth and the signal path loss factor.

Details of our major findings will be presented in
Section 1.2.

1.1 Definitions
To present the major results, we give some models and
definitions, which are necessary for presenting the major
results. We will give the detailed models and the complete
definitions in Section 3.
We consider a static wireless network consisting of n

nodes, which are randomly and uniformly distributed
in a plane of unit area. In such network, each node
can randomly choose its destination. We consider two
types of networks in this paper: (i) an OMN networks,
in which each node is equipped with a single omni-
directional antenna; (ii) a DIR networks, in which each
node is equipped with a single directional antenna with
the beamwidth θ . Details about the models of an omni-
directional antenna and a directional antenna can be
found in Section 3.1.
We have used the following asymptotic notations.

(1) f (n) = O(g(n)) means that there exists a constant k
and an integer N such that f (n) ≤ kg(n) for n > N .

(2) f (n) = o(g(n)) implies that limn→∞ f (n)

g(n)
= 0.

(3) f (n) = �(g(n)) means that g(n) = O(f (n)).
(4) f (n) = ω(g(n)) means that g(n) = o(f (n)).
(5) f (n) = �(g(n)) means that f (n) = O(g(n)) and

g(n) = O(f (n)).

We then define the feasible throughput and the delay of
a packet due to the multi-hop routing.

Definition 1. Feasible Throughput: A throughput of
λ(n) bits per second for each node is feasible if every node
can send λ(n) bits per second on average to its destina-
tion. The maximum feasible throughput is T(n) with high
probability (w.h.p.c).

Definition 2. Delay: The delay of a packet in a network
is the time it takes the packet to get to the destination after
it leaves the source. In this paper, we just consider the delay

due to the routing. Thus, we ignore the queuing delay. We
denote D(n) as the average packet delay for a network with
n nodes.

In a static network, the delay depends on the sum of the
times spent at each relay. To counteract the dynamics of
the network, we take a similar assumption [2,12], i.e., the
service time (transmission delay) is always a constant.

1.2 Main results
We summarize our major results and compare our results
with OMN networks in Table 1. As shown in Table 1,
compared with an OMN network, a DIR network has
a capacity improvement 1(

θ
2π

)2·( 4
tan2 θ

2

) 4
α
, which is always

greater than one since the beamwidth θ usually < π
2 .

This implies that using directional antennas in wireless
networks can significantly improve the network capacity.
This capacity improvement mainly owes to the reduced
interference by using directional antennas. Details about
the analysis of the capacity improvement factor will be
presented in Section 5.2.
Table 1 also shows that a DIR network has a lower delay

than an OMN network since 1

4
tan2 θ

2

) 2
α
is always less than

1 since the beamwidth θ < π
2 . This is because using direc-

tional antennas in wireless ad hoc networks increases the
transmission range and consequently reduces the number
of hops, which leads to the lower delay. Details about the
analysis of the delay reduction factor will be presented in
Section 5.2.
The rest of the paper is organized as follows. We briefly

survey the related studies in Section 2. Section 3 presents
the models and notations which are used in this paper. In
Section 5, we describe the analytical results of the delay-
throughput trade-off by using directional antennas. In
Section 6, we summarize our study.

2 Related work
The capacity of wireless ad hoc networks has been exten-
sively studied. It is shown in [1] that the per node through-

Table 1 Performance comparison betweenOMN networks
andDIR networks

Throughput T(n) Delay D(n)

OMN networks
[1,2]

�

(
1√

n log n

)
�
(√

n
log n

)

DIR networks
(this paper)

�

⎛
⎜⎜⎝ 1(

θ
2π

)2·( 4
tan2 θ

2

) 4
α

· 1√
n log n

⎞
⎟⎟⎠ �

⎛
⎝ 1

4
tan2 θ

2
)
2
α

·
√

n
log n

⎞
⎠
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put in an ad hoc network with n nodes under a random
placement is �(W/

√
n log n) bits per second, whereW is

the total bandwidth of the network. The capacity of ad hoc
networks is limited due to interference among multiple
concurrent transmissions. Thus, Gupta and Kumar sug-
gest that a shorter transmission range should be chosen
in ad hoc networks in order to avoid interference. How-
ever, a shorter transmission range means that a packet
has to be transmitted through more hops. The multi-
hop transmission inevitably leads to higher transmission
delay [2]. Intuitively, increasing the transmission range
can reduce the number of hops and decrease the delay.
Thus, there exists a trade-off between reducing the delay
and improving the throughput.
There are a number of studies on optimizing the delay-

throughput trade-off of OMN networks [2,12-14]. In
particular, Gamal et al. [2,12] studied the throughput-
delay trade-off in both fixed and mobile wireless net-
works. Their results show that the average packet delay
for a network with n nodes, D(n), which has the rela-
tionship with the maximum delay-constrained through-
put T(n). The optimal throughput-and-delay trade-off
is given by D(n) = �(n(T(n))). Thus, the delay is
significantly increased with the increased throughput.
Besides, a similar result to [2] is presented in [14]. In
[13], Toumpis and Goldsmith [13] proposed a scheme that
has a per-node throughput of �

(
n(d−1)/2/ log5/2 n

)
when

the delay is bounded by O(nd). However, all those stud-
ies only consider OMN networks, in which each node
is equipped with only omni-directional antennas, which
can cause higher interference and a shorter transmission
range.
Recent studies such as [3-11] have found that using

directional antennas instead of omni-directional anten-
nas in wireless networks can greatly improve the net-
work capacity. For example, the analytical results in [3]
show that using directional antenna in arbitrary networks
achieves a capacity gain of 2π/

√
θ1θ2 when both trans-

mission and reception are directional, where θ1 and θ2
are transmitter and receiver antenna beamwidths, respec-
tively. Under random networks, the throughput improve-
ment factor is 4π2/(θ1θ2) for directional transmission and
directional reception. But, most of these studies have just
concentrated on the throughput improvement by using
directional antennas. There is no study considering using
directional antennas to reduce the delay. Hence, our goal
of this paper is to investigate the benefits of directional
antennas in improving the capacity and reducing the
delay.
In this paper, we investigate the scaling laws of the

throughput and the delay due to the multi-hop transmis-
sion in DIR networks. Part of the results on the delay
analysis for DIR networks with a simple channel model
(only considering the path loss effect) were presented in

[15]. However, our analysis on this paper differs from the
previous work in the following aspects:

• We consider various channel conditions in our
analysis. In particular, we consider the large scale
path loss and the shadow fading effect in our channel
models (details are presented in Section 3.2).

• We analyze the effective transmission range of DIR
networks with consideration of various channel
conditions. We have found that directional antennas
can significantly increase the transmission range even
if the shadow fading effect is considered (details are
presented in Section 4).

• The technique that we use in this paper is also
different from the previous one. Specifically, we
derive the interference range and the number of
interfering cells with consideration of both the
effective transmission range of DIR networks and the
one of OMN networks. We then apply these results
to derive the throughput and the delay of DIR
networks (details are presented in Section 5).

3 Models
In this section, we present the antenna model in
Section 3.1, the channel model in Section 3.2 and the
interference model in Section 3.3. All the models will be
used to derive the results throughout the paper.

3.1 Antenna model
In general, an antenna is a device which is used for
radiating/collecting radio signals into/from space. Con-
ventional wireless networks are typically equipped with
omni-directional antennas, which radiate/collect radio
power uniformly in all directions in 2D plane. An
isotropic antenna, which is a point that radiates/collects
radio power uniformly in all directions in 3D space.
In this paper, we regard an isotropic antenna as being
equivalent to an omni-directional antenna since they
have the same projected radiation pattern - a circular
area in a 2D plane, in which we conduct simulations.
Thus, without loss of generality, we denote an isotropic
antenna as an omni-directional antenna interchangeably
throughout the paper. Different from an omni-directional
antenna, a directional antenna can radiate or receive
radio signals more effectively in some directions than
in others. Thus, using directional antennas in wireless
networks can significantly improve the network perfor-
mance [16], such as the higher throughput , the lower
interference, etc.
To measure the directivity of an antenna, we often

consider the three-dimensional spatial distribution of
antenna gains, which is called the radiation pattern of
an antenna. Figure 1 shows the radiation pattern of a
realistic directional antenna in 3D space, which typically
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Figure 1 Radiation pattern of a realistic directional antenna.

consists of themain lobe (or beam) with the largest radia-
tion intensity and the side lobes with the smaller radiation
intensity.
As shown in Figure 1, we use vector r representing the

direction of the radiation intensity in 3D space. In partic-
ular, we use ϑ to represent the angle between the vector r
and the z-axis (ϑ ∈ (0,π)), and ϕ to represent the angle
between the x-axis and the projection of the vector r into
the xy plane (ϕ ∈ (0, 2π)). We then define the gain of an
antenna as

G(ϑ ,ϕ) = η
U(ϑ ,ϕ)

Uo
, (1)

where η is the efficiency factor, which is set to be 1 since
all the antennas in this paper are assumed to be loss-
less, U(ϑ ,ϕ) is the radiation intensity, which is defined
as the power radiated from an antenna per unit solid
angle, and Uo denotes radiation intensity of an isotropic
antenna with the same radiation power Prad as a direc-
tional antenna.
We then analyze the antenna gain of an isotropic

antenna and a directional antenna.

3.1.1 Isotropic antenna
It is obvious that an isotropic antenna has antenna gain
Go = 1 since it radiates the power uniformly in all direc-
tions, i.e., U(ϑ ,ϕ) = Uo, as shown in Figure 2. Note that
we do not use the logarithmic unit dBi for an antenna
in this paper in order to maintain consistency with the
channel model (see Section 3.2).

Figure 2 The radiation pattern of an isotropic antenna (an
omni-directional antenna).

3.1.2 Directional antenna
Before the derivation of the antenna gain of directional
antennas, we first compute the radiation power Prad of an
antenna in 3D space, which is given by

Prad =
∫∫
©
�

U (ϑ ,ϕ) d� =
∫ 2π

0

∫ π

0
U (ϑ ,ϕ) sinϑdϑdϕ,

(2)

where � is the steradian used to measure the solid angle
subtended by a particular spherical surface S and the
element of solid angle d� of a sphere is d� = sinϑdϑdϕ.
Since an isotropic antenna radiate power to all direc-

tions with constant radiation intensity Uo, we have Prad =
4πUo after integration on Equation (2). In other words,
Uo = 1

4π Prad. After replacing Uo in Equation 1 by 1
4π Prad

and replacing Prad by RHS of Equation 2, we have

G(ϑ ,ϕ) = U(ϑ ,ϕ)

1
4π
∫ 2π
0
∫ π

0 U (ϑ ,ϕ) sinϑdϑdϕ
. (3)

Since modeling a real antenna with precise values for
main beam and side lobes/back lobes is difficult, we
employ a simplistic antenna model [3,8,9] in this paper. In
this model, the antenna gain is constant within the main
beam and both side-lobes and back-lobes are ignored (i.e.,
the gain outside the beamwidth is regarded as zero). The
reasons why we simplify the model are summarized as fol-
lows. First, even in a more realistic model, the side lobes
are too small to be ignored. For example, the main gain
is more than 100 times of the gain of side lobes when
the main beamwidth is less than 40° in the cone-sphere
model [4]. Secondly, smart antennas often have null capa-
bility that can almost eliminate the side lobes and back
lobes.
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We next calculate the antenna gain of a directional
antenna. The gain value Gm of a directional antenna
is evaluated by comparing with the isotropic antenna
with a gain Go, which uniformly distributes energy in
all directions. We assume that both directional anten-
nas and omni-directional antennas are using an identi-
cal emanated power P. For an omni-directional antenna
(isotropic antenna), as shown in Figure 2, the transmission
power is uniformly emanated in all directions. However, a
directional antenna concentrates the energy on a certain
direction, i.e., the cone as shown in Figure 3. Thus, by the
definition of the antenna gain, we have

Gm
Go

=
P
A
P
S

=
P

πr2 tan2 θ
2

P
4πr2

= 4
tan2 θ

2
(4)

where S denotes the surface area of the sphere of the
isotropic antenna, A denotes the surface area of a direc-
tional antenna, which can be approximated as a circle of
radius r tan θ

2 (the shade area in Figure 3). Without loss
of generality, the sphere has radius r. Note that the sub-
tended angle θ is also denoted as the antenna beamwidth.

3.2 Channel model
In this paper, we assume that the channel gain between
a transmitter Xi and a receiver Xj is affected by the
large-scale path loss and the shadow fading effect [17,18].
The transmitting power is assumed to be Pt , which is
identical to all the transmitters in the network (this
assumption is similar to [3]). The transmitter and the
receiver antenna gains are denoted by Gt and Gr , respec-
tively. The distance between the sender and the receiver

Figure 3 The radiation pattern of a directional antenna.

is Rd. Then the signal strength Pr at the receiver is
given by

Pr = Sh
Pt · Gt · Gr · k1

Rd
α

(5)

where k1 is a constant, and α denotes the path loss factor
(which usually ranges from 2 to 5 [17]) and Sh is a random
variable representing the shadow fading effect [18], which
is given by

Sh = 10
ω
10 (6)

where ω is a Gaussian random variable with zero mean
and standard deviation σ , which is typically chosen from
4 to 13 dB [18]. The shadow fading effect usually caused
by obstacles introduces a variation in the received signal
strength. We will discuss the impacts of shadow fading
effect on the effective transmission range in Section 4.

3.3 Interference model
We propose a receiver-based interference model with
extensions of directional antennas to analyze the interfer-
ence ofDIR networks. Note that our model only considers
directional transmission and directional reception, which
can maximize the benefits of directional antennas [16].
If node Xi transmits to node Xj, the transmission is suc-

cessfully completed by node Xj if no nodes within the
region covered by Xj’s antenna beam will interfere with
Xj’s reception. Therefore, for every other node Xk simul-
taneously transmitting, and the guard zone 
 > 0, the
following condition holds.{ ∣∣Xk − Xj

∣∣ ≥ (1 + 
)
∣∣Xi − Xj

∣∣
or Xk ’s beam does not cover node Xj

(7)

where Xi not only denotes the location of a node but refers
to the node itself. In this model, each node is equipped
with one single directional antenna. Figure 4 shows that
a transmission from node Xk will not cause interference
to Xi’s transmission since the antenna beam of Xk does
not cover receiver Xj. Note that our proposed interfer-
ence model is more general than the protocol of Gupta
and Kumar [1]. This is because our proposed interfer-
ence model will become the protocol model of Gupta
and Kumar when the second condition (i.e., the antenna
beams of the transmitter and the receiver cover each
other) is removed. Thus, our proposed interference can be
applied for both OMN networks and DIR networks.
Gupta and Kumar [1] established a physical model in

which the success probability of a transmission is related
to the signal-to-interference-noise ratio (SINR).When the
path loss factor α is no less than two (it is common in a real
world), the physical model is equivalent to the interference
model. Thus, we will only consider the interference model
in this paper.
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Figure 4 The receiver-based interference model.

For simplicity of our discussion, we denote the left-
hand side (LHS) of the first condition of the interference
model (Equation 7) as the interference range. As shown in
Equation 7, the interference range heavily depends on the
transmission range, i.e., the distance between the trans-
mitter Xi and Xj. Specifically, we denote the interference
range as I, which is equal to (1+
)R, where R is the trans-
mission range. We will analyze the transmission range in
Section 4 and the interference range in Section 5.1.

4 Analysis of effective transmission range
Without loss of generality, we can normalize Equation 5
with respect to k1 so that the power attenuation between
the transmitter and the receiver is given by the following
equation

β(Rd) = Pt
Pr

= 1
Sh

· Rd
α

GtGr
.

To correctly decode the information at the receiver,
the power attenuation is required to fulfill the following
condition

β(Rd) < βth, (8)

where βth is the threshold of the power attenuation and is
usually a constant.
We then define the probability that transmitter Xi and

receiver Xj can not establish a link as P(β ≥ βth), which is
given by

P (β ≥ βth) = P
(

1
Sh

· Rd
α

GtGr
≥ βth

)

= P
(
(βthShGtGr)

1
α ≤ Rd

)
.

(9)

For analysis simplicity, we define the random variable R
as the LHS of Equation 9, which is given by

R = (βthShGtGr)
1
α . (10)

We then have P(β ≥ βth) = P(R ≤ Rd) after substi-
tuting Equation 10 into Equation 9. We next define the
random variable R as the transmission range. From this
definition, it is obvious that a transmitter Xi can success-
fully transmit with a receiver Xj only if Xj is within the
transmission range of Xi. Besides, we define the effective
transmission range as the expectation of the transmis-
sion range R, which is specifically defined by the following
equation

E[R]= βth · E
[
Sh

1
α

]
· E
[
(GtGr)

1
α

]
. (11)

From Equation 11, we can observe that the effective
transmission range E[R] consists of two components:
(1) the shadow fading component E

[
Sh

1
α

]
and (2) the

antenna factor component E
[
(GtGr)

1
α

]
. We next analyze

the two components, respectively.

4.1 Shadow fading component
With regard to the shadow fading component, we have

Theorem 1. The shadow fading component on the effec-
tive transmission range is given by

E
[
Sh

1
α

]
= exp

⎧⎪⎨
⎪⎩
(
ln 10
10α σ

)2
2

⎫⎪⎬
⎪⎭ (12)

Proof. To prove the above theorem, we borrow the
following results proved in [19]:
If a random variable Z = lnY has a normal distri-

bution with mean μZ and standard deviation σZ, then
the mean of the random variable Y is given by E[Y ]=
exp

{
μZ + σZ2

2

}
.

After taking the natural logarithm of Sh in Equation 6,
we then have

ln Sh
1
α = ln

(
10

ω
10α
)

= ω

10α
ln 10 (13)

Equation 13 has the zero mean since ω has the zero
mean and α 	= 0. Besides, Equation 13 has the standard
deviation ln 10

10α σ because ω has the standard deviation σ .
From the above given result, the expected value of Sh is
given by the following equation

E
[
Sh

1
α

]
= exp

⎧⎪⎨
⎪⎩
(
ln 10
10α σ

)2
2

⎫⎪⎬
⎪⎭
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Figure 5 Shadow fading component versus the shadowing lognormal standard deviation σ under different path loss factor α.

Theorem 1 shows that the shadow fading component
depends on both the path loss factor α and the log-
normal standard deviation σ . Besides, it is also shown
in Theorem 1 that the shadow fading component in
Equation 12 is always positive, which implies that the
shadow fading effect always leads to the increment of
the effective transmission range. Figure 5 shows that the
shadow fading component versus the shadowing lognor-
mal standard deviation σ under different values of the
path loss factor α. More specifically, as shown in Figure 5,
the shadow fading component is always greater than 1,
which confirms our observation that the shadowing effect
results in the increment of the effective transmission
range.
Besides, Figure 5 also shows that the shadow fading

component is increased with the increment of the shadow
fading variance σ . The increment of shadow fading com-
ponent mainly owes to the randomness of the shadow
fading effect. When the randomness of the shadow fad-
ing effect is increased (i.e., the higher fading variance σ ),
the shadow fading component E

[
Sh

1
α

]
is also increased,

implying that a node located further away can be con-
nected. Our findings have confirmed the previous study
[20]. However, it must be noticed that this phenomenon
only holds when the path loss factor α is fixed. When
the path loss factor α is increased, the shadow fading
component E

[
Sh

1
α

]
significantly decreases as shown in

Figure 5.

4.2 Antenna factor component
We next analyze the impacts of the antenna factor com-
ponent on the effective transmission range. In particular,
we consider two different cases corresponding to OMN
networks andDIR networks and have the following result.

Theorem 2. The antenna factor components of an OMN
network and a DIR network are summarized as follows:
Case I: In an OMN network, the antenna factor component
on the effective transmission range is given by

E
[
(GtGr)

1
α

]
= E

[
(GoGo)

1
α

]
= 1. (14)

Case II: In an DIR network, the antenna factor compo-
nent on the effective transmission range is given by

E
[
(GtGr)

1
α

]
= E

[
(GmGm)

1
α

]
=
(

4
tan2 θ

2

) 2
α

. (15)

Proof. First, we substitute both Gt and Gr in the
antenna factor component E

[
(GtGr)

1
α

]
by Go = 1 in an

OMN network and obtain the result in case I. We then
obtain the result in case II by substituting Gt and Gr in
E
[
(GtGr)

1
α

]
by Gm = 4

tan2 θ
2
given in Equation 4.

In order to evaluate the impacts of directional anten-
nas on the antenna factor component, we define the
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directional improvement factor BDIR as the ratio of the
antenna factor component of an DIR network to that
one of an OMN network. In particular, we have BDIR =
E
[
(GmGm)

1
α

]
E
[
(GoGo)

1
α

] =
(

4
tan2 θ

2

) 2
α

. It is obvious that BDIR depends

on the beamwidth θ and the path loss factor α. More
specifically, we have the following corollary

Corollary 1. When the beamwidth θ decreases, the
directional improvement factor BDIR increases. When the
path loss factor α increases, the directional improvement
factor BDIR decreases.

Figure 6 shows the antenna factor component versus the
antenna beamwidth under different values of the path loss
factor α, which confirms the results in Corollary 1.

5 Throughput and delay
In this section, we derive the throughput and the delay
of DIR networks. In particular, we analyze the delay-
throughput trade-off and compare our results of DIR
networks with the previous results derived under OMN
networks. The main idea of our analysis is summarized as
follows. First, we construct a routing scheme and a time-
division multi-access scheme in DIR networks. We then
show that our schemes can achieve the throughput and
the delay as presented in Theorem 3. We next show that

DIR networks have the higher throughput and the lower
delay compared with the existing OMN networks.

5.1 The throughput and the delay of DIR networks
To derive the throughput and the delay of anDIR network,
we begin to construct a network and then design a routing
scheme and a transmission scheduling scheme as follows.
Step 1 (Torus Division): we divide the unit-area plane into
even-sized squares. The size of each square suffices the
necessary condition (see Lemma 1) to ensure the net-
work connectivity. Step 2 (Routing Scheme): we construct
a simple routing scheme that chooses a route with the
shortest distance to forwards packets. Step 3 (Transmis-
sion Scheduling): we design a time-division multi-access
(TDMA) transmission scheme to ensure a collision-free
transmission.
These steps in details are depicted as follows.

5.1.1 Step 1 (Torus division)
We consider a random network in which n nodes are ran-
domly placed in a plane of unit area as shown in Figure 7.
We then divide the unit-area plane into a lot of even-sized
square cells as shown in Figure 7. Each of them has iden-
tical area of a(n), which is similar to [2]. The size of the
cell, a(n) should be greater enough to ensure that there
is at least one node in each cell, which is the necessary
condition to ensure that the network is connected.

Figure 6 Antenna factor component versus the antenna beamwidth under different path loss factors α.
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Figure 7 The interfering neighbors.

Lemma 1. If a(n) is greater than 2 log n
n , then each cell

contains at least one node w.h.p..

Proof. We present the proof of this lemma in
Appendix 1.

Then we need to calculate the number of cells that can
be affected by a transmission from a cell. We also adopt
the definition of interfering neighbors introduced byGupta
and Kumar [1] to represent these cells.

Definition 3. Two cells are said to be interfering neigh-
bors if there is a point in one cell which is within a distance
(2 + 
)r(n), where r(n) denotes the transmission range
of a node (in random networks, the transmission range is
identical to all nodes).

This definition implies that if two cells are not interfer-
ing neighbors, then a transmission from one cell cannot
interfere with the transmission from another cell (see
Section 3.3). We then show that each cell in aDIR network
has a constant number of interfering neighbors, which is
independent of the number of nodes n.

Lemma 2. Each cell has no more than k2 interfering
neighbors, where k2 is a constant that depends on θ , 
 and
α, but it is independent of n.

Proof. The detailed proof is presented in Appendix 2.

5.1.2 Step 2 (Routing scheme)
We construct a simple routing scheme that chooses a
route with the shortest distance to forward packets. First,
we assign the source and the destination node. For any
flow that originates from a cell, source node S is assigned
to the flow. Similarly, for any flow that terminates in a cell,
destination node D is assigned to the flow. Then we bound
the number of such S-D lines passing through a cell.
A source node S sends data packets to its destination

D by multi-hop forwarding those packets along the adja-
cent cells lying on its S-D line. Figure 8 shows an example
of S-D lines, where the green line indicates a transmis-
sion from source S to destination D. From this example,
we have found that using directional antennas can signifi-
cantly reduce the number of hops. For example, only three
hops is needed from S to D, compared with the omni-
directional antenna case, which requires nine hops from S
to D.
Next we derive the bound on the maximum number of

S-D lines passing through any cell, which is presented by
the following result.

Lemma 3. The maximum number of S-D lines passing
through any cell is O(n

√
a(n)) w.h.p.

Proof. The result derived in [2] also holds for the case
using directional antennas. Since the proof is presented in
[2], we omit the proof here.

Figure 8 Using directional antennas can reduce the number of
hops.
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5.1.3 Step 3 (Transmission scheduling)
We propose a TDMA scheme to schedule transmissions.
In this scheme, a second is divided into a number of cell
slots and at most one transmission/reception is scheduled
at every cell during each cell slot. Each cell slot can be fur-
ther splitted into smaller mini-slots. In each mini-slot, a
S-D hopping is scheduled.
Figure 9 depicts a schedule of transmission on the net-

work. Now we describe the process in details.

(i) Cell slot : since the number interfering neighbors of a
cell is a constant, each cell can be active for a
guaranteed fraction of time. Then, we divide one

second into k2 = 8 · ( θ
2π
)2

(1 + 
)2 ·
(

4
tan2 θ

2

) 4
α

cell

time slots. Each cell time slot has the length of 1
k2 .

(ii) Mini-slot : since Lemma 3 suggests that there are at
most �(n

√
a(n)) S-D lines passing through one cell,

we further divide each cell slot into �(n
√
a(n))

mini-slots. So, each S-D pair hopping through it can
use one mini-slot.

With the conflict-free transmissions by schedule our
TDMA scheme, we can derive the achievable throughput
and the delay. In particular, we have the following result.

Theorem 3. For a random DIR network with n nodes,
the achievable throughput is T(n) = �

(
1

k2
√

n log n

)
and

the average delay is D(n) = �

⎛
⎜⎜⎝ 1(

4
tan2 θ

2

) 2
α
√

log n
n

⎞
⎟⎟⎠.

Proof. From the above the transmission scheduling
scheme, each S-D pair can successfully transmit for
�
(

1
k2n

√
a(n)

)
fraction of time. That is, the achievable

throughput per S-D pair is T(n) = �
(

1
k2n

√
a(n)

)
.

Then we calculate the average packet delay D(n). As
defined before, the packet delay is the sum of the amount

of time spent in each hop. First, we derive the bound on
the average number of hops.
Since each hop covers a distance of rd(n), the num-

ber of hops per packet for S-D pair i is �
(

di
rd(n)

)
,

where di is the length of S-D line i and rd(n) denotes
the directional transmission range. Thus, the number of
hops taken by a packet averages over all S-D pairs is
�
(
1
n
∑n

i=1
di

rd(n)

)
. Since for large n, the average distance

between S-D pairs is 1
n
∑n

i=1 di = �(1), the average
number of hops is �

(
1

rd(n)

)
. As mentioned before, using

directional antennas can extend the transmission range,

i.e, rd(n) =
(

4
tan2 θ

2

) 2
α

r(n), where r(n) is the transmis-

sion range by using omni-directional antennas. On the
other hand, r(n) is bounded by the edge size of a cell,√
a(n). Thus, the average number of hops is bounded by

�

⎛
⎜⎜⎝ 1(

4
tan2 θ

2

) 2
α √

a(n)

⎞
⎟⎟⎠.

We then have the above result.

From Theorem 3, since a(n) needs to be greater than
2 log n

n to ensure the network connectivity, T(n) is still

�

(
1√

n log n

)
. But there is a capacity improvement factor

1
k2 , which is brought by directional antennas. Meanwhile,
it is shown in Theorem 3 that D(n) = k2n(

4
tan2 θ

2

) 2
α
T(n).

We will show as follows that using directional antennas
can also significantly reduce the delay compared with
omni-directional antennas.

5.2 Discussions
We compare our results with those derived under OMN
networks. First, we define the capacity gain factor to quan-
tify the throughput capacity improvement induced by
directional antennas.

Figure 9 The TDMA transmission schedule.
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Definition 4. Throughput capacity gain factor. The
capacity gain factor FT of a DIR network is the ratio of the
maximum throughput of such network to that an OMN
network, i.e., FT = Td(n)/To(n), where Td(n) represents
the achievable throughput of a DIR network consisting of n
nodes, and To(n) denotes the achievable throughput of an
OMN network with the same number of nodes.

It is shown in [1,2,12], that the throughput of an OMN

network is at most To(n) = �

(
1√

n log n

)
. Thus, com-

pared our derived result with that of an OMN network,
the capacity gain can be calculated as follows.

FT = Td(n)/To(n)

=
1

k2
√

n log n
1√

n log n

= 1
k2

= 1

8 · ( θ
2π
)2 ·

(
4

tan2 θ
2

) 4
α

. (16)

Note that we ignore a factor depending on 
 during the
above calculation since there is also a factor in To(n) (refer
to [1,2,12]).
When the path loss factor α = 2, FT = 1

8·
(

θ
2π

)2·( 4
tan2 θ

2

)2 .

When the antenna beam is quite narrow, i.e., beamwidth
θ is quite small, tan( θ

2 ) ≈ θ
2 . Thus, the capacity gain

depends on θ2, using directional antennas can signifi-
cantly increase the network throughput. This result also
conformed the previous finding in [3].
When α is larger, e.g., α = 4, FT = 1(

θ
2π

)2·( 4
tan2 θ

2

) .
When the antenna beam is quite narrow, tan

(
θ
2
) ≈ θ

2 . In
this case, there is a constant capacity improvement, which
does not depend on the beamwidth θ . Thus, there is no
significant capacity gain with directional antennas.
Our results imply that the improvement on the capacity

by using directional antennas is also affected by the envi-
ronmental factors such as the path loss factor α but not
affected by the shadow fading effect.
We next analyze the delay reduction due to using direc-

tional antennas. Similarly, we define the delay reduction
factor as follows.

Definition 5. Delay reduction factor. The delay reduc-
tion factor FD of a DIR network is the ratio of the delay of
such network to that one of an OMN network, i.e., FD =
Dd(n)/Do(n), where Dd(n) represents the delay of a DIR
network consisting of n nodes, and Do(n) denotes that of an
OMN network with the same number of nodes.

It is shown in [2] that the delay an OMN network is
at most Do(n) = 1√

a(n)
. Compared our result with that

of an OMN network, the delay reduction factor can be
calculated as follows.

FD = Dd(n)/Do(n)

=

1(
4

tan2 θ
2

) 2
α
√

log n
n

1√
log n
n

= 1(
4

tan2 θ
2

) 2
α

(17)

As shown in Equation 17, when the path loss factor α =
2, the delay reduction factor is 1

4
tan2 θ

2

= 1
4 tan

2 θ
2 . When

the beamwidth θ is small, the delay reduction factor is also
quite small, whichmeans that a narrow-beam antenna can
significantly reduce the delay.When α is larger, e.g., α = 4,
the delay reduction factor is 1(

4
tan2 θ

2

) 1
2

= 1
2 tan

(
θ
2
)
. When

the antenna beam is quite narrow, the delay reduction fac-
tor also decreases although it does not decrease that much
as the case with the lower path loss factor (e.g., α = 2).
The delay reduction of a DIR network mainly owes to the
reduced number of hops in an ad hoc network.

6 Conclusions
In this paper, we investigate the throughput and the delay
of wireless ad hoc networks using directional antennas
(i.e., DIR networks). We have found that using direc-
tional antennas in wireless networks not only can improve
the network throughput capacity but also can reduce the
transmission delay induced by the multi-hop communica-
tions. The improvement on the network throughput of a
DIR network mainly owes to the reduced interference by
using directional antennas, which concentrate the signals
in some directions. Besides, using directional antennas
can significantly increase the transmission range, which
results in the reduced number of hops and consequently
leads to the reduction on the end-to-end delay.
Although directional antennas can significantly improve

the network performance of wireless ad hoc networks,
they also have a number of limitations which restrict the
wide application of directional antennas in wireless ad
hoc networks. For example, using directional antennas in
wireless networks can lead to (1) the new carrier-sensing
problems in MAC layer and (2) the node-localization
problem [16]. So far as we know, there still lack of per-
fect solutions to the above issues. Besides, there are also
a number of interesting problems implied by our results.
For example, what is the scaling law with directional
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antennas when the mobility of nodes are considered?
What is the impact of the side and back lobes of direc-
tional antennas on the transmission delay?

Endnotes
aIn a random network, n nodes are randomly placed,

and the destination of a flow is also randomly chosen. We
only consider the random network in this paper.

bIn an arbitrary network, the location of nodes, the
antenna directions, and traffic pattern can be optimally
controlled.

cIn this paper, w.h.p.means that an event e happens
with a high probability if P(e) → 1 when n → ∞.

Appendix 1
Proof of Lemma 1
Let Ai be the event that cell i has at least one node and

letm = 1/a(n) be the number of cells. Then we have

P(Ai) = 1 − (1 − 1/m)n → 1 − e−n/m

Sincem ≤ n
2 log n , we then have P(Ai) ≥ 1− 1/n2, which

approaches 1 when n → ∞. �

Appendix 2
Proof of Lemma 2
First, we consider an OMN network, in which a node

in a cell transmitting omni-directionally to another node
within the same cell or in one of its eight neighboring
cells. Since each cell has area a(n), the distance between
the transmitting and receiving nodes cannot be more than
ro = √

8a(n) as shown in [2]. Thus, we require that
Ro ≤ ro, where Ro is the omni-directional transmis-
sion range. With the analysis of the effective transmission
range in Section 4, we have the effective omni-directional
transmission range, which is bounded by

E[Ro]= βth · exp

⎧⎪⎨
⎪⎩
(
ln 10
10α σ

)2
2

⎫⎪⎬
⎪⎭ (18)

We then extend this analysis to a DIR network and
analyze the directional transmission range Rd. As ana-
lyzed in Section 4, we can derive the effective directional
transmission range E[Rd] as follows

E[Rd]= βth · exp

⎧⎪⎨
⎪⎩
(
ln 10
10α σ

)2
2

⎫⎪⎬
⎪⎭ ·

(
4

tan2 θ
2

) 2
α

(19)

Compared with the effective omni-directional transmis-
sion range E[Ro], the effective directional transmission

range E[Rd] is
(

4
tan2 θ

2

) 2
α

times longer. Specifically, we

have

E[Rd]=
(

4
tan2 θ

2

) 2
α

· E[Ro] , (20)

Under the interference model, a packet is successfully
received if no node within distance Id of the receiver
transmits at the same time, where Id is the directional
interference range. It follows the interference model that
the effective directional interference range E[Id] is

E[Id]= (1 + 
) · E[Rd] .

We next bound the number of interfering cells. In a
DIR network, a node equipped with a directional antenna
just concentrates its transmission to a certain direction, as
shown in Figure 7. Thus, only cells covered by the antenna
beam of the directional antenna can be interfered (the blue
squares in Figure 7). Hence only the proportion of θ

2π of
cells can be interfered. Besides, since each receiver is also
equipped with a directional antenna, it is interfered only
when its antenna beam is pointed to the interferer. On
average, the probability that a receiver is interfered is θ

2π .
After applying the above analysis to the effective direc-
tional interference range, there are nearly

(
θ
2π
)2 times

(E[Id] )2/a(n) cells. More specifically, we have

k2 ≤
(

θ

2π

)2
· (E[Id] )2

a(n)

=
(

θ

2π

)2
(1 + 
)2 ·

(
4

tan2 θ
2

) 4
α

· (E[Ro] )2

a(n)

≤ 8 ·
(

θ

2π

)2
(1 + 
)2 ·

(
4

tan2 θ
2

) 4
α

(21)

Therefore, we have the above result. �
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