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Abstract

In this paper, we design a new virtual queue-based back-pressure scheduling algorithm (VBR) for achieving significant
delay reduction in wireless sensor networks (WSN). Our algorithm design comes from an observation that classical
back-pressure scheduling algorithm usually needs a long period of time to form a queue backlog-based gradient in a
network, which decreases towards the sink in the network, before achieving stable packet delivery performance. To
address this issue, VBR is designed to pre-build proper virtual queue-based gradient at nodes in a WSN, which is
chosen to be a function of traffic arrival rate, link rate, and distance to sink, in order to be adaptive to different network
and application environments while achieving high network performance. Moreover, the queue backlog differential
between each pair of neighbor nodes is decided by their actual queue lengths and also their virtual queue lengths
(gradient values). We prove that VBR can maintain back-pressure scheduling’s throughput optimality. Simulation
result shows that VBR can obtain significant performance improvement in terms of packet delivery ratio, average
end-to-end delay, and average queue length as compared with existing work.
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1 Introduction
Back-pressure algorithm has been considered as an
efficient queue length-based scheduling and routing
paradigm since its appearance [1]. It has attracted a lot of
attention due to its remarkable advantages, e.g., through-
put optimality (i.e., it can stabilize a network when the
arrival rates lie within the capacity region of the net-
work), achievable adaptive resource allocation, support to
stateless and agile load-aware routing and scheduling, and
simplicity. Recently, a lot of work (e.g., [2-21]) has been
carried out, and much progress has been made to improve
the performance of back-pressure scheduling in different
network environments.
However, the poor delay performance of back-pressure

algorithm is one of the key problems hindering its wide
deployment in practice. To ease the understanding, in
here, we briefly introduce how back-pressure schedul-
ing works as follows. Back-pressure algorithm requires
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each network node to maintain a queue for each flow
traversing it (namely, per-flow queue). At each time slot,
it works to activate (select) a set of non-interference links
in the network (i.e., it selects a set of non-interference
links for transmitting packets), which leads to the maxi-
mum sum of link weights multiplying their corresponding
link rates, to transmit packets. The link weight associated
with a link is defined as the largest flow weight on the
link, where the flow weight on a link is the queue back-
log differential for the flow between the two endpoints of
the link. However, such a scheduling strategy can often
cause large latency, which is often attributed to the follow-
ing three reasons. First, back-pressure-based scheduling
typically suffers from slow startup phenomenon. That is,
when a flow starts, many packets of it have to be back-
logged on the way to destination to form stable queue
backlog-based gradient, which decreases towards the des-
tination, for supporting smooth packet delivery to the
destination. Such slow startup causes large initial end-to-
end (E2E) packet delay. Second, fluctuation of the queue
backlog-based gradient in the context of back-pressure
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scheduling often causes data packets to take unneces-
sarily long or even looped paths, which largely increases
the packet delay. Third, the so-called last-packet prob-
lem [13,14] can also cause large latency in networks with
short-lived or low-rate flows due to the absence of consis-
tent back-pressure towards the destination.
To address the above issues, in this paper, we design a

virtual queue-based back-pressure routing and schedul-
ing algorithm (called VBR) for wireless sensor networks
(WSN). VBR is designed to pre-establish a virtual queue-
based gradient for nodes in a WSN. In VBR, back-
pressure-based scheduling is performed according to the
queue length which is the sum of real queue length and
virtual queue length (i.e., gradient value) at each node.
The gradient associated with a node is a function of traffic
arrival rate, network link rate, and its distance to sink, in
order to be adaptive to different network and application
environments while achieving high packet delivery per-
formance. We prove that VBR maintains back-pressure’s
throughput optimality. Simulation result shows that VBR
can obtain significant performance improvement in terms
of packet delivery ratio, average E2E delay, and average
per-node queue length as compared with existing work.
The rest of the paper is organized as follows. Section 2

briefly reviews related work. Section 3 introduces the
system model. Section 4 proposes the VBR algorithm.
Section 5 presents detailed simulation results for perfor-
mance comparison. Section 6 concludes this paper.

2 Related work
In this section, we briefly review related work for improv-
ing delay performance of back-pressure scheduling, which
can be roughly divided into the following three categories
based on their design objectives:
The first category aims at avoiding unnecessarily long

or looped route which is often brought by back-pressure’s
pure queue length differential-based scheduling strategy.
For example, in [7], a routing-loop-punishment factor
is introduced into the routing decision-making process.
Similar idea but different factors can be seen in [6]. In
[20,21], explicit hop constraint is used to force packets to
be transmitted within a restricted area, with a worst-case
deviation away from the min-hop path. Further, in [15],
Ying et al. combined back-pressure scheduling and short-
est path routing with an expectation to shorten the path
length under back-pressure-based routing.
The second category is to reduce the complexity

of queue structure at nodes. Typically, in [9,17], per-
neighbor queue structure is used to replace the per-flow
queue in classical back-pressure algorithm, which can
significantly reduce the packet average delay. In [16],
cluster-based back-pressure scheduling allows each node
to maintain two types of queues, i.e., queues for gateways
to reach destined cluster and queues for nodes within the

current cluster. In this way, it largely reduces the total
number of queues needed to be maintained in the net-
work. In [7], a last-in-first-out (LIFO) queue is used, which
helps decrease the average packet delay.
The third category aims at relieving the last packet

problem which often causes large latency in networks
with dynamic short-lived or low-rate flows. For this pur-
pose, the delay-based back-pressure scheduling in [14]
assigns link weight based on packet delay instead of queue
length differential. Ref. [13] proposes an adaptive redun-
dancy technique for back-pressure routing, which gener-
ates copies of packets to artificially increase the length of a
queue when the queue’s occupancy is low, which dramat-
ically improves the delay performance of back-pressure
under light load condition. The idea in [13] is some-
what similar to our work in this paper in terms of using
artificially increasing the length of nodes’ queue lengths
when calculating link weights. However, in [13], a packet’s
duplicate copies in a queue need to be really transmit-
ted. In contrast, the VBR algorithm in this paper only
uses a virtual queue length (as a counter) for transmission
scheduling decision-making and causes no extra packet to
be transmitted.
It should be noted that the back-pressure-based routing

and scheduling are quite different from the potential-
based routing (gradient-based routing) proposed in some
previous work (e.g., [22,23]). Specifically, potential-based
routing (gradient-based routing) jointly considers dis-
tance to destination information (e.g., hop count), queue
length information, residual energy of wireless nodes,
etc., for route selection or next-hop decision-making. In
potential-based routing, ideal potentials are expected to
be constructed in a way such that paths taken by data
packets are loop free. Data packets are usually forwarded
to neighbors leading to the lowest (steepest) gradient.
Such behavior, although attractive, may cause certain loss
in network throughput. In contrast, in back-pressure-
based routing, all the routing and scheduling decisions are
made according to the queue length differences between
the two ends of links in the network. Furthermore, when
a packet can leave the current node where it stays and to
which neighbor it will depart depends only on the ranks
of the queue length differences between the two ends of
the outgoing links of the current node in the entire net-
work, which may change with time. Furthermore, in the
context of back-pressure scheduling, there is no guaran-
tee that paths taken by packets forwarded based only on
back-pressure are loop free unless we pre-select loop-free
paths for all flows and just use back-pressure algorithm for
scheduling the packet transmissions on such paths.

3 Systemmodel
In this paper, the WSN under study can be modeled by a
graph G = (V ,E), where V represents the set of nodes
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in the network, which consists of multiple sensor nodes
and one sink node, and E represents the set of links con-
necting the nodes in G. Each node is assumed to be
equipped with an omnidirectional antenna, and all nodes
are assumed to have the same transmission range, denoted
by R. A pair of nodes u and v,u, v ∈ V (G) has a link
between them if dij ≤ R, where dij represents the geo-
metrical distance between u and v. In VBR, no location
information of nodes is assumed to be known. A WSN is
often known as a converge-cast-based network, i.e., data
packets can be generated by any sensor node and are
reported to the sink node typically via multi-hop paths.
In this paper, the packet arrival process is assumed to fol-
low a Poisson process with arrival rate λ (packets/slot).
It is known that back-pressure scheduling can always sta-
bilize the network when the packet arrival rate is within
the network capacity region. Here, the network capacity
region is characterized by the maximum network sup-
portable flow arrival rate vectors for which the network is
stable (i.e., all queues in network are kept finite). In this
paper, we focus on studying flows with arrival rates within
the capacity region. Furthermore, from the viewpoint of
the sink node in the network, data packets from all nodes
can be seen as belonging to the same flow. This traffic
modeling strategy has also been used in some other exist-
ing work for WSNs (e.g., [7,20]). Assume time is slotted
and is denoted by t. Accordingly, in such a network, the
queue maintained by each node ∈ V (G) for performing
back-pressure-based scheduling and their queue dynam-
ics are as follows. Let Uf

n(t) represent the per-flow queue
backlog of the only flow f in the network on node n ∈
V (G) at time t. The dynamics of Uf

n(t) at a node n is as
follows:

Uf
n(t + 1) = max

[
Uf
n(t) −

∑
b
μ
f
nb(t), 0

]
+

∑
a
μ
f
an(t) + Sfn(t), (1)

where Sfn(t) equals the number of packet(s) injected into
the network via n if node n generates packet(s) at time
t; otherwise, Sfn(t) = 0.μf

ab(t) represents the transmis-
sion rate of flow f on link (a, b) at time t, and μ

f
ab(t)

must satisfy the link rate constraint and also follow given
link interference model. The interference model used
in this paper is as follows. When a node is transmit-
ting, all the links whose receivers are located within the
transmitting node’s communication range will be seen as
interfered. This model was also used in [24] (known as
“unidirectional equal power” interference model therein).
Furthermore, in this paper, we assume that all links in
the network have the same link rate (capacity), denoted
by r.

4 VBR algorithm
In this section, we first introduce the scheduling mech-
anism in classical back-pressure algorithm. Then, we
present the observation which motivates this work.
Finally, we propose the algorithm design of VBR.

4.1 Classical back-pressure scheduling
The back-pressure scheduling algorithm was proposed in
[1], and it works as follows. Assume time is slotted. At the
beginning of a time slot t, for each link (m, n) in the net-
work, the weight associated with the link (i.e., link weight)
is assigned as the maximum flow weight (i.e., the maxi-
mum backlog differential of all the flows passing through
the link, ties broken arbitrarily):

Wmn(t) = maxf :(m,n)

[
Uf
m(t) − Uf

n(t)
]
. (2)

Packets belonging to flow f will be transmitted over link
(m, n) if the link (m, n) is to be activated under a schedule
π(t), which is derived based on the following optimization
function:

π(t) = argmaxπ∈�

∑
(m,n)

Wmn(t)r, (3)

where � represents the set of all feasible schedules accord-
ing to link interference model. Specially, since in this
paper, we assume that all links have the same rates, and
thus, the chosen schedule maximizes the sum of link
weights among all schedules.
In back-pressure routing, when a packet leaves the cur-

rent node where it stays and to which neighbor it will
depart depends on the following: a) ranks of the queue
length differences between the two ends of the outgoing
links of the current node in the entire network; b) link rate;
and c) whether there exists a link having been activated
by the scheduling process in the interference range of a
particular outgoing link. Moreover, all these factors may
change with time (slots).

4.2 Motivation
Before presenting our algorithm, let us first take a look at
an example. Consider a linear network constituent of 50
nodes, which is to be traversed by a flow whose packet
arrival follows a Poisson process with arrival rate λ = 0.1
and with the flow source and destination nodes as the two
opposite end nodes of the network. The link rate of all
links in the network is assumed to be one.
In such a linear network, a common routing proto-

col can successfully deliver a packet in 49 slots, one-
hop progress per slot, suppose that the inter-arrival time
between each pair of consecutive packets is ≥3 slots. That
is, in this case, the packet forwarding at different inter-
mediate nodes in the network will not interfere with each
other according to the interference model we assumed in
Section 2. However, in the context of back-pressure-based
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routing, the situation is different. To illustrate this, we per-
form extensive simulations and Table 1 shows the results.
In Table 1, it can be seen that the packet successful deliv-
ery ratio under back-pressure routing increases with the
simulation timea. The reason behind this phenomenon
is as follows. The back-pressure algorithm always needs
to form stable queue backlog-based gradient towards the
destination to act as back-pressure for pushing packets
forward, which is called slow startup phenomenon of
back-pressure scheduling in this paper; otherwise, pack-
ets may randomly walk in the network when no enough
back-pressure is accumulated. As a result, when back-
pressure algorithm starts to operate in a network, there
is no enough time to build the destination-oriented gra-
dient in the network, and thus, data packets can oscillate
between (some) intermediate nodes since there is no con-
sistent force to push them forward. As the network keeps
operating, such destination-oriented queue length-based
gradient will be gradually built, and the subsequent packet
delivery process then comes stable (see Table 1). The
forming of such destination-oriented queue length-based
gradient needs many packets to stay on paths to the desti-
nation, which can greatly increase the average-case packet
delivery delay. Consequently, one question arises, whether
such destination-oriented gradient can be pre-built before
actual packet delivery and how it is useful (and also to
which degree) for improving the network performance?
An intuitive way to solve the above question is to pre-

establish certain gradient at nodes in aWSN. In this paper,
we shall also treat such gradient associated with a sensor
node as the virtual queue length at the sensor node. With-
out causing confusion, we shall use the terms “gradient”
and “virtual queue length” interchangeably unless other-
wise stated. Accordingly, the queue backlog at a sensor
node will be the sum of actual queue length and virtual
queue length (gradient) at the node. Let Qf

m represent the
gradient pre-built at a node m ∈ V (G). Then, for a link
(m, n) ∈ E(G), the calculation of its link weight can be
re-written into the following form:

Wmn(t) = maxf :(m,n)

[(
Uf
m(t) + Qf

m
)

−
(
Uf
n(t) + Qf

n
)]

.

(4)

Table 1 Simulation results from a 50-node linear network

Time length of Delivery ratio (%) Number of packets
simulation (slots) delivered/generated

50 0 0/5

500 40 26/65

2,000 73.2 131/179

5,000 91.9 451/491

10,000 95.1 970/1,020

Now, the question becomes how to appropriately set
Qf
m, ∀m ∈ V (G), in order to achieve high network perfor-

mance. In [25,26], the authors had also studied this issue,
and they treated Qf as a shortest path bias such that its
introduction is to force (actually encourage) data packets
to take shortest paths. Accordingly, they suggested that
Qf at a node should be proportional to its distance to the
flow’s destination. More specifically, for a node x ∈ V (G),
its gradient Qf

x is calculated as follows.

Qf
x = kHf

x , (5)

where Hf
x is the distance (e.g., hop count) from node x to

the destination of flow f and k is a constant. When k = 1,
the gradient at each node equals its hop count distance
to the flow’s destination. In [25,26], the method in (4)
and (5) for gradient establishment and link weight calcu-
lation is called Enhanced Dynamic back-pressure Routing
algorithm (EDR).
Although simple, the method for the gradient establish-

ment in EDR has the following problems. First, it does
not consider the dynamics in traffic arrival rate, which
may change with time and applications. Setting a larger
k can better force data packets to go through shortest
paths. However, when traffic load is high, shortest paths
may have insufficient transportation capacity. In this case,
using larger k can make EDR take much longer time
(as compared with classical back-pressure algorithm) to
detour to alternate paths for packet delivery. In contrast,
setting a smaller k may result in frequent random walk of
many data packets in the network, which could be even
worse when the link rate (capacity) is high while the traf-
fic load is moderate. Second, it uses constant k value (i.e.,
constant gradient slope) such that different distances away
from the sink are equally treated without considering the
traffic converging characteristics of a WSN. Under such
a converging traffic pattern, in the region close to the
sink node, transportation capacity is desired to be fully
utilized; in contrast, in regions remote to the sink, fast
packet delivery is desirable. Owning to these concerns, in
this paper, we jointly consider link rate and path distance
for appropriately setting the gradient at sensor nodes for
achieving improved network performance.

4.3 Algorithm design and analysis
In this subsection, we propose VBR. In VBR, the calcula-
tion of virtual queue-based gradient considers flow arrival
rate, link capacity, and distance to sink. Furthermore, the
pre-established gradient is expected to have the following
property: The farther a network node is away from the
sink, the higher the gradient difference between neigh-
bor nodes with different distances to sink is. In this way,
packets remote to the sink are expected to take the direc-
tion of shortest paths while packets in the vicinity of the
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sink may take alternate paths due to the reduced gradient
difference.
Based on the above considerations, in VBR, the gradient

for a nodem ∈ V (G) is calculated as follows.

Qf
m = a × bλ/Hf

m × cH
f
m × r, (6)

where a, b, and c are network parameters and needed to
be tuned via experiments. Next, we explain each compo-
nent in (6) as follows: bλ/Hf

m is an indicator for measuring
the influence of packet arrival rate at a node m with Hf

m
hop distance to sink. Here, the main reason that we divide
the arrival rate by hop distance to sink is to increase
the impact of arrival rate at nodes closer to the sink and
especially increase the gradient difference between sink’s
one-hop neighbor nodes and the sink itself, for which the
reason is as follows, as we know, the vicinity of sink node
in a WSN is often the bottleneck of the entire network. A
large gradient difference between sink’s one-hop neighbor
nodes and the sink itself can encourage sink’s neighbors to
transmit to the sink so as to better use the limited capacity
in sink’s neighborhood. The item cH

f
m enables the gradi-

ents at nodes increases exponentially with hop distance to
sink. The item r is the link rate, and its introduction in (6)
is to enable good adaptability to networks with different
link rates. In addition, we have also tried many other func-
tions for the virtual queue-based gradient calculation. The
function given in (6) exhibits the best performance.
Next, we theoretically prove that VBR is throughput

optimal as do classical back-pressure algorithm and also
the EDR algorithm (proof for the latter can be found
in [26]). Since our algorithm shares the same scheduling
paradigm with EDR, i.e., (3) and (4), thus, the following
lemma is given for proving the throughput optimality of
VBR.

Lemma 1. Given finite constant ε and network size |V |,
the virtual queue length Qf

m (∀m ∈ V (G)) determined by
VBR associated with pre-determined constant parameters
a, b, and c can always be bounded by c|V |ε.

Proof. Recall that Qf
m = a × bλ/Hf

m × cH
f
m × r in VBR.

Here, a, b, and c are constants. r is link capacity, and its
value is always limited in realistic environments. Further-
more, regarding bλ/Hf

m , note that bλ/Hf
m ≤ bλ. Further,

only λ that is within the network capacity region is con-
sidered in the context of back-pressure scheduling. As a
result, bλ ≤ ∞ must hold. Thus, there always exists a
finite constant ε that makes the following equation holds,
i.e., ε ≥ a × bλ/Hf

m × r. Next, for the hop distance Hf
m

from m to the sink, if a limited network size |V | is given,
Hf
m < |V | will hold (for simple networks as we study in

this work). Thus, we can conclude that Qf
m ≤ c|V |ε.

Next, it is known that the network is strongly stable if for
each node n and flow f the following equation can hold:

lim sup
t→∞

1
t

t−1∑
τ=0

E
[
Uf
n(τ )

]
< ∞. (7)

In VBR, when virtual queue length is consid-
ered, this condition changes to lim supt→∞ 1

t
∑t−1

τ=0 E[
Uf
n(τ ) + Qf

n
]

< ∞. However, under Lemma 1, we

can know that limn∈V (G) Q
f
n = O(|V |) holds for VBR.

Thus, we can still prove the throughput optimality of
VBR by using condition (7) and Lyapunov function
L(U) = ∑

n

(
Uf
n
)2

as done in [26]. Specifically, since
the queue dynamics in network at each time slot satisfy
Uf
n(t + 1)≤ max

[
Uf
n(t) − ∑

b μ
f
nb(t), 0

]
+ ∑

a μ
f
an(t) +

Sfn(t)(recall Equation (1)), consider the Lyapunov function
L(U) = ∑

n

(
Uf
n
)2
, where U(t) = Uf

n(t)n∈V (G), which
denotes the vector process of backlog in each queue as
a function of time. Next, the Lyapunov drift is then as
follows:

�(U(t)) := E[L(U(t + 1)) − L(U(t))|U(t)] , (8)

�(U(t)) ≤ E
[∑

n

(
Uf
n(t + 1)

)2 −
∑
n

(
Uf
n(t)

)2 |U(t)
]
.

(9)

Based on the fact that (max(V−b, 0)+A)2 ≤ V2+A2+
b2+2V(A−b) [8,26], we can have the following deduction:

�(U(t)) ≤ E

⎡
⎣∑

n

⎛
⎝Uf

n(t)2 +
(∑

a
μ
f
an(t) + Sfn(t)

)2

+
∑
b

μ
f
nb(t)

2 + 2Vf
n (t)

×
(∑

a
μ
f
an(t) −

∑
b

μ
f
nb(t) + Sfn(t)

)

−
∑
n

Uf
n(t)2|U(t)

]
.

(10)

�(U(t)) ≤ E

⎡
⎣∑

n

∑
b

μ
f
nb(t)

2 +
∑
n

(∑
a

μ
f
an(t) + Sfn(t)

)2

+
∑
n

2Uf
n(t)

(∑
a

μ
f
an(t) −

∑
b

μ
f
nb(t)

)

+
∑
n

2Uf
n(t)S

f
n(t)|U(t)

]
.

(11)



Jiao et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:35 Page 6 of 9

Here, since there always exists a finite constant B

such that B ≥ E
[∑

n
∑

b

(
μ
f
nb

)2 + b
∑

n

(∑
a μ

f
an(t) +

Sfn(t)
)2 |U(t)

]
, we can have:

�(U(t)) ≤ B + 2E
[∑

n
Uf
n(t)

(
μ
f
an(t) − μ

f
nb(t)

)

+
∑
n

Uf
n(t)S

f
n(t)|U(t)

]
.

(12)

�(U(t)) ≤ B − 2E
[∑

n
Uf
n(t)

(
μ
f
nb(t) − μ

f
an(t)

)
|U(t)

]

+ 2E
[∑

n
Uf
n(t)S

f
n(t)|U(t)

]
.

(13)

For this equation, since the arrival rates we con-
sidered are below the network capacity region, thus,
there always exists a constant θ > 0 such that
E

[∑
n

(∑
a μ

f
an(t) − ∑

b μ
f
nb(t)

)
|U(t)

]
≤ −

(
Sfn(t) + θ

)
.

By substituting this into (13), we have:

�(U(t)) ≤ B − 2
∑
n

Uf
n(t)

(
Sfn(t) + θ

)

+ 2
∑
n

Uf
n(t)S

f
n(t),

(14)

�(U(t)) ≤ B − 2
∑
n

Uf
n(t)θ , (15)

The time average of (15) yields:

lim sup
t→∞

1
t

t−1∑
τ=0

E
[
Uf
n(τ )

]
<

B
θ
. (16)

Thus, recall the condition (7), we can conclude that
VBR can always stabilize the network when arrival rates
lie within the capacity region of the network, i.e., it is
throughput optimal.

5 Simulation results
In this section, we evaluate the performance of VBR.
We compare VBR with classical back-pressure algorithm
(called BP for short) and EDR, on a random-generated
network. Specifically, the network consists of 100 nodes
randomly distributed within a 500 × 500 m2 area, among
which 99 nodes are sensor nodes and one is the sink,
which is located close to the square center. The commu-
nication range of all nodes is 100 m. In the network, the
destination of all packets is the only sink node in theWSN.
The packet arrival follows a Poisson process with arrival
rate λ. For each packet generated, a random sensor node
is picked as the packet source. In our simulations of VBR,

we chose a = 6, b = 1.2, and c = 1.6, whose values were
tuned via extensive simulations. We compared VBR with
EDR with different values of k, i.e., k = 1, 5, and 10 (called
EDR-1, EDR-5, and EDR-10, respectively). Via extensive
simulations, we found that EDR can achieve its best per-
formance in most cases when k = 10. Each simulation
lasts 1,000 slots. The metrics used for performance eval-
uation are packet delivery ratio, average E2E delay, and
average queue length per node.
In our simulations, the commonly used greedy maximal

scheduling (GMS) method was used for schedulable link
set generation for each algorithm under comparison. This
method is widely used for implementing back-pressure-
based centralized algorithms under sophisticated net-
works (e.g., [2,17,19]). When generating non-interference
link schedule under GMS, at each time slot, a link (m, n)

leading to the global maximum link weight is added to
the link activation set, whose initial value is null. Further,
remove the links which interfere with (m, n) and repeat
the greedy selection until no link left. The GMS-based
method can obtain schedule only with imperfect schedul-
ing performance but has much lower computational com-
plexity (i.e., O(|E|lg|E|) than the optimal solution whose
complexity is O(|V |3) under one-hop interference model
and in general NP-hard under K-hop interference mod-
els (K ≥ 2) [27], where |E| is the number of links and
|V | represents the number of nodes. Furthermore, it has
been proven in [28] that the performance by GMS can
achieve at least 1/2 of the optimal one for many net-
work topologies and interference models, i.e., the capacity
region supportable by GMSwill be at least half of the opti-
mal one. This result is further enhanced in [29] wherein
the authors proven that in most networks, the scheduling
performance under GMS is much better than the lower
bound.
Figure 1 shows the simulation results by different algo-

rithms when the network-wide packet arrival rate λ =
1 packet/slot, with various link rates. In Figure 1a, we
can see that BP achieves the lowest packet delivery ratio
due to lack of enough back-pressure for pushing packets
to be forwarded to the sink. In contrast, with the pre-
established gradients in EDR and VBR, data packets can
be easily transmitted in a gradient-decreasing direction
towards the sink, which reduces the chance of routing
loop or being detained at somewhere in the network and
brings significant improvement on packet delivery ratio
performance. Furthermore, we can see in Figure 1a that,
owing to the more proper gradient built, VBR always out-
performs EDRwith different k values. In Figure 1b, we can
find that the average E2E delay under VBR is significantly
lower than BP and EDR under different link rates. More-
over, as shown in Figure 1c, VBR has the lowest per-node
average (actual) queue length due to its best packet deliv-
ery performance, which is also another evidence for the
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Figure 1 Comparison of performance by different algorithms under λ = 1. Link rate (packets/slot) versus (a) packet delivery ratio, (b) average
E2E delay (slots), (c) average queue length, and (d) CDF of packet delivery ratio.
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Figure 2 Comparison of performance by different algorithms under λ = 5. Link rate (packets/slot) versus (a) packet delivery ratio, (b) average
E2E delay (slots), (c) average queue length, and (d) CDF of packet delivery ratio.
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stablity of VBR. Figure 1d shows that cumulative distribu-
tion function (CDF) of packet delivery ratio by different
algorithms. We can see that VBR achieves the best CDF
performance in terms of packet delivery ratio.
Figure 2 shows the simulation results versus link rates

when λ = 5. From the results in Figure 2, we can see
that as the link rate increases, the gap between VBR and
the other two algorithms increases. One key reason for
this is because VBR considers link rate in gradient setting
while EDR does not. The results in Figure 2 again ver-
ify the superiority of VBR by pre-establishing appropriate
gradient at nodes in a network.
We have also repeated our simulations on linear net-

works consisting of 30 to 50 nodes, a 4 × 4 mesh grid
network, and other randomnetworks. Similar results were
observed. Thus, we can conclude that VBR outperforms
EDR and BP in terms of packet delivery ratio, average E2E
delay, and average queue length under various network
scenarios.

6 Conclusions
In this paper, we proposed a new virtual queue-based
back-pressure scheduling algorithm VBR, which pre-
establishes gradient at each node in a WSN and inte-
grates this gradient when calculating the queue back-
log differential between neighboring nodes when making
back-pressure-based scheduling decision. We proved the
throughput optimality of VBR. Simulation results show
that VBR can significantly improve network performance
in terms of packet delivery ratio, average E2E delay, and
average queue length at each node as compared with
existing work.

Endnote
aIn Table 1, when the simulation comes to the 50th slot,

the packet delivery ratio performance is 0%. We repeated
this test multiple times, and the same result was always
seen. However, in practice, the probability of having a
packet to reach the destination at the 50th slot based on
our network settings is not zero (although extremely
low). For example, suppose at the 50th slot, only one
packet was generated, then the probability for the packet
to reach the destination will be (1/2)49 based on the
back-pressure based scheduling in (3).
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