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Abstract

We analyze the local delay of cognitive radio ad hoc networks in which secondary nodes are overlaid with a pair of
primary nodes. Supposing slotted ALOHA multiple access is adopted by secondary nodes, we derive the closed-form
expression of the local delay by modeling the channel occupied by primary nodes as continuous-time Markov on-off
process. Furthermore, we obtain the asymptotic local delay for two special cases: large and small primary traffic. We
theoretically prove that the local delay increases with the increasing primary packet arrival rate and decreases with the
increasing primary packet departure rate. Numerical and simulation results show that the local delay could be
approximated to be the result obtained with significant primary traffic in most cases, which is the steady of the
channel idle state.
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Introduction
Delay is one of the important indicators to measure the
quality of service (QoS) of wireless network. Throughput,
reliability, and delay comprehensively measure the ability
of the network to transfer information. The local delay is
defined as the mean time (number of time slots) needed
for a packet being received successfully from a transmit-
ter to its nearest receiver. This also provides the base for
researching end-to-end delay. In [1], Baccelli et al. first
proposed the local delay in mobile ad hoc networks with
ALOHA medium access control (MAC) protocol. Based
on this framework, Martin [2] derived the local delay in
both static and high-mobility networks, in which all nodes
are assumed to be distributed as a Poisson point process
(PPP) for each time slot, and he also proved that the local
delay is always finite in highly mobile networks. Further-
more, Martin [3] obtained the closed-form expression of
the local delay for four types of transmission strategies. In
addition, the local delay [4] is regarded as the metric of
an opportunistic routing protocol formulti-hop context in
mobile ad hoc network, and then the opportunistic rout-
ing protocol is certified to be valuable through simulation.
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All the above-mentioned studies are focused on homo-
geneous network models but not involved in hetero-
geneous networks. A practical network usually consists
of interdependent, interactive, and hierarchical network
components which lead to a heterogeneous network
structure. Cognitive radio (CR) network is one type of
heterogeneous networks which can efficiently solve the
problem of spectrum shortage. Recently, many research
results have been developed for the performance of CR
network, for instance, 1) the scaling law of throughput and
delay for the density of nodes in overlaid networks [5] and
2) the transmission capacity of spectrum sharing networks
by employing stochastic geometry [6]. However, there is
little research of the local delay in CR networks despite its
importance for the analysis of end-to-end delay.
In this paper, we analyze the local delay of CR networks

in which secondary nodes are overlaid with primary nodes
and adopt slotted ALOHA MAC protocol to access the
channel. The closed-form expression of the local delay
is derived with furthest receiver routing protocol. The
relationship is analyzed finally between the local delay
and some important parameters of CR networks (such
as the packet arrival (departure) rate of the primary net-
work, the transmission probability and node density of the
secondary network).
The paper is organized as follows: the ‘System model’

section gives the system model and the definition of
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some symbols. ‘The analysis of the local delay’ section
analyzes the local delay of the secondary network. The
‘Numerical and simulation results’ section presents the
numerical and simulation results with some observa-
tions of them. Finally, the conclusions are given in the
‘Conclusions’ section.

Systemmodel
Considering a CR network, a secondary network is over-
laid with a primary network, i.e., the secondary nodes
could be allowed to occupy the channel when it is not
used by primary nodes. In order to analyze conveniently,
we suppose a single wireless channel shared by both pri-
mary and secondary networks. And the results could be
further extended to the scenario of multiple channels. In
this section, the systemmodel will be introduced first, and
then the local delay of secondary nodes will be defined.

Primary network model
The occupancy of the licensed channel by primary net-
work is modeled as a continuous-time Markov process
with two states: S (t) = 0 (idle) and S (t) = 1 (busy).
The states of the channel are dominated by the activ-
ity of primary network. Similar to that in [7], the packet
arrival and departure rate of primary network are λ and
μ, respectively. The holding times are exponentially dis-
tributed with parameters λ−1 for idle state and μ−1 for
busy state. The state transition rate matrix (Q-matrix)
under the continuous-time Markov process is given by:

Q =
(−λ λ

μ −μ

)
. (1)

The stationary distribution of the process can then be
determined as:

v (0) = lim
t→∞P (S (t) = 0) = μ

λ + μ
,

v (1) = lim
t→∞P (S (t) = 1) = λ

λ + μ
.

(2)

The transition matrix for the Markov process within con-
tinuous time τ is given by the following expression:

P (τ )=
⎛
⎜⎝
v (0)+v (1) e(−(λ+μ)τ), v (1)

(
1−e(−(λ+μ)τ)

)

v (0)
(
1−e(−(λ+μ)τ)

)
, v (1)+v (0) e(−(λ+μ)τ)

⎞
⎟⎠.

(3)

Secondary network model
The topology
Assume the secondary network is an ad hoc network and
the slotted ALOHA MAC protocol is adopted (T is the
time slot length). In each time slot, secondary nodes are
modeled as a marked PPP �̂S = {(

xi, txi
)} ⊂ R

2 × (0, 1)
[8], where �S = {xi} is a homogeneous PPP with density

λS. Mark txi as independent Bernoulli distributions with
parameter P (t = 1) = p = 1 − q.xi is supposed to be a
transmitting node when txi = 1 and a receiving node when
txi = 0. According to the displacement theorem, all trans-
mitting nodes in a time slot follow a PPP �t

S with density
λSp and all receiving nodes in a time slot follow another
PPP �r

S with density λS(1 − p), correspondingly.

The receivingmodel
Secondary nodes could opportunistically access the chan-
nel only when the channel state is idle, which is deter-
mined by primary network. That is to say, secondary
nodes are assumed to be able to acknowledge the primary
activity at the beginning of each time slot.
Considering an interference dominant network, we

ignore the noise in this paper. The wireless channel com-
bines large-scale path loss and small-scale Rayleigh fading.
A receiving node y can successfully receive the packets
from its transmitting node x at the nth slot if and only if:

SIRxy (n) = Sxy (n)

Ixy (n)
� β , (4)

where SIRxy(n) is the signal-to-interference ratio at node
y, Sxy (n) = tx (n) hxy (n)

∥∥x − y
∥∥−α , and Ixy (n) =∑

(z,tz(n))∈�̂S−{(x,tx(n))}
tz (n) hzy (n)

∥∥z − y
∥∥−α . In this paper,

the transmitting power of the secondary nodes are
assumed to be the same and normalized to 1, hxy is the
small-scale fading coefficient having exponential distribu-
tion with a mean of 1, α > 2 is the path loss factor, and
β � 1 is the successful decoding threshold. Supposing a
typical node u locates at the origin, the probability of node
v which can successfully accept the packets from u at time
slot n is:

Po (n) = Po (SIRuv (n) � β)

= Po (
tu (n) huv (n) r−α � βIuv (n)

)
.

(5)

where r is the link distance from node u to node v.

The selection strategy of receiving nodes
Based on (5), whether a typical node could successfully
transmit its packets mainly depends on the signal-to-
interference ratio of the corresponding receiving node. As
in [9], the interference of all receiving nodes in each time
slot could be characterized as the model of shot noise.
On the other hand, the signal power catched by a receiv-
ing node is determined by both path-loss function and
small-scale fading. So, the distance of the typical link, i.e.,
how to select a receiving node becomes the key factor
impacting the receiving signal power. In the following, the
distribution of the link distance will be analyzed.
Since the node location is varying from time slot to

time slot, the link distance Ł is a random variable whose
distribution is related to the selection strategy of receiv-
ing nodes. A nearest receiver strategy has been discussed
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in [1,2]. In this paper, considering one-hop transmission
in a multi-hop ad hoc networks, we choose the farthest
receiving node strategy for balancing the hop numbers
which is important for multi-hop performance. That is to
say, a transmitting node will send packets to the farthest
receiving node in its transmission radius. A realization of
secondary network in one slot is shown in Figure 1; RX is
the receiving node which is the farthest from the transmit-
ting node TX within the transmission radius R. And then
all signal power received from other transmitting nodes
are assumed to be the interference.
Since all receiving nodes follow a PPP with density λSq,

the probability distribution function of link distance L is:

P (L � x) = P
(
Bo (x,R) ∩ �r

S = ∅|Bo (0,R) ∩ �r
S �= ∅)

= P
(
Bo (x,R) ∩ �r

S = ∅)
P

(
Bo (0, x) ∩ �r

S �= ∅)
= e−λSqπ(R2−x2)

(
1 − e−λSqπx2

)
, 0 < x � R,

(6)

and the probability density function of L is

fL (x) = 2λSqπxe−λSqπ(R2−x2), 0 < x � R. (7)

The local delay
The local delayD of ad hoc network is defined in [1] as the
average number of time slots needed by a typical trans-
mitting node u = o successfully sending packets to its
receiving node v = y, and:

D = E {inf {n � 1 : δ0 (n) = 1}} , (8)

where δ0 (n) indicates that (4) holds in time slot n.
Let πc = Po (n), and πc is a variable which is irrelevant

to n and equal to the probability of successful transmis-
sion in the first time slot since the distribution of nodes
is independent from time slot to time slot. And the local
delay:

D = 1
E {πc} = 1

E {Po (SIRuv (1) � β)} . (9)

TX RXL

transmitting nodes
receiving nodes

R

Figure 1 The selection strategy of receiving node.

The analysis of the local delay
The local delay of CR network
Combining the definition of the local delay in (8) with the
CR network model in this paper, the local delay of CR
network is given in the following.
Let ∂n denote the event that the licensed channel is idle

in time slot n, and a packet being successfully sent in time
slot n is:

P1 (n) = P (∂n = 1)Po (n) , (10)

where Po (n) is given in (5). And then the number of trans-
mission K needed for a packet sent from a transmitting
node to the receiving node is valuable following a binomial
distribution with parameter P1 (n). DenoteD1 as the local
delay of CR network which is the expectation of K , and:

D1 = E (K) =
∞∑
n=1

nE (P1 (n))

n−1∏
l=1

(1 − E (P1 (l))).

(11)

Substituting (5) into (10), and based on (1), (11) can be
rewritten as

D1 =
∞∑
n=1

nP (S (nT) = 0) p̄S
n−1∏
l=1

(1 − P (S (nT) = 0) p̄S),

(12)

where p̄S = E [Po (n)] is the expectation of probability for
a successful transmission, which has nothing to do with
time slot n. According to lemma 1 in [9], we have

p̄S = E
{
E

[
Po (

tuhuvr−α � βIuv
)] |L = r

}
= E

{
pe−λSpCαr2 |L = r

}
.

(13)

where Cα = 2π2β2/α

α sin(2π/α)
.

Putting (7) into (13), we have

p̄S = E
{
pe−λSpCαr2

∣∣∣ L = r
}

=
∫ R

0
pe−λSpCαx2 fL (x) dx

=
pqπ

(
e−λSqπR2 − e−λSpCαR2

)
(pCα − qπ)

.

(14)

Comparing (11) with (9), the average probability of suc-
cessful transmission E (P1 (n)) at time slot n is a function
related to n because of the existence of primary network
(term P (∂n = 1)). D1 is derived by the law of total prob-
ability which is related to time slot n. Thus, we resort to
the computer to show the relationship between D1 and
network parameters.
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The local delay for two special cases
In some cases, the local delay can be approximated to be
a value unrelated to the time slot. In the following, we will
further analyze the local delay under two specifical cases
of primary traffic.
Case 1: λ < μ << 1. Put all terms into (1) and we get:

P (S (t) = 0) = P11 (kT) = μ

λ+ μ
+ λ

λ+ μ
e−(λ+ μ)kT → 1,

where P11 (•) is the value in the first row and first column
of matrix P in (3).
The existence of the above expression is on the hypoth-

esis of small amount of primary traffic, and time slot T is
in units of microseconds, i.e., (λ+μ)T << 1. In this case,
the channel is almost regarded as idle state. The number
of time slots needed by a successful transmission for a typ-
ical node obeys the binomial distribution. The local delay
of secondary network is

D̃1 = 1
E

[
Po (

tuhuvL−α � βIuv
)] = 1

p̄S
. (15)

Case 2: 1 << λ < μ and (λ + μ)T >> 1. It means
a large amount of primary traffic. Since the packet arrival
rate is always less than the departure rate which deduces
to a stationary state of primary network at last. So, we
have:

P (S (t)=0)=P11 (kT) = μ

λ+ μ
+ λ

λ+ μ
e−(λ+ μ)kT → μ

λ+ μ
.

Since P (S (t) = 0) is a variable irrelated to t, the local
delay is a geometric variable with parameter μp̄S

λ+ μ
and

˜̃D1 = λ+ μ

μp̄S
= λ+ μ

μ
D̃1. (16)

The optimization of CR local delay
According to the definition, the local delay is determined
by both primary traffic and successful transmission prob-
ability of the secondary network. In the following, we will
give the optimization of the local delay about the three
network parameters.
Theorem 1. The local delay D1 increases with increas-
ing primary arrival rate λ and decreasing departure rate μ

when the other parameters are fixed.

Proof. The local delay is the expectation of a random
variable with parameterP1 (n). Observing (4), we find that
the term P (∂n = 1) indicates the influence of the primary
network. And:

P (∂n = 1) = P (S(nT) = 0) = P11(nT)

= μ

λ + μ
+ λ

λ + μ
e−(λ+μ)nT .

(17)

Taking the derivative of (13) with respect to λ and μ, we
have:

dP
dλ

=
(
e−(λ+μ)nT − 1

)
μ − (λ + μ)λnTe−(λ+μ)nT

(λ + μ)2
< 0,

dP
dμ

= λ
[
1−(1+nT)e−(λ+μ)nT ]

(λ+μ)2
≈ λ

[
1 − e−(λ+μ)nT ]

(λ+μ)2
>0.

It is obvious that P1 (n) increases monotonously with λ

and decreases monotonously with μ. We complete the
proof.

Theorem 2. When 0 < p < π
π+Cα

, the necessary and suf-
ficient condition for the local delay D1 being concave with
respect to the transmission probability of secondary nodes
p is:

λS <
2

(
p2Cα + q2π

)
pq (pCα − qπ) (π − Cα)R2 . (18)

And we could get an optimal transmission probability
in

(
0, π

π+Cα

)
to minimize the local delay by solving the

equation in the following:

pq (pc − qπ) (λ1e1 + λ2e2)−
(
p2Cα + q2π

)
(e1 − e2) = 0,

(19)

where λ1 = λSπR2, λ2 = λSCαR2, e1 = e−λSqπR2 ,
and e2 = e−λSpCαR2 .

Proof. Since secondary nodes are overlaid with primary
nodes, to prove the local delay is concave with respect to
the transmission probability of secondary nodes p, all we
have to do is to certify the second-order derivative of the
average probability of successful transmission p̄S in (13)
which is less than zero, i.e., d2p̄S

/
dp2 < 0. After calculat-

ing and classifying, we get d2p̄S
/
dp2 < 0 when λS meets

the requirements of (17) if 0 < p < π
π+Cα

. Derivation is
easy and omitted.
By solving the equation dp̄S

/
dp = 0, we derive the opti-

mal probability of successful transmission to minimize the
local delay as shown in (18).
The proof is completed.
Note that the probability p is always less than 1, and

thus, the optimization of local delay makes sense.

Theorem 3. When 0 < p < π
π+Cα

, the local delay D1 is
concave with respect to the density of secondary nodes λS.
And the optimal λS is:

λ
opt
S = 1

(πq − pc)R2 ln
πq
pc

. (20)

Proof. Since the method of proving is the same as that of
Theorem 2, it is omitted.
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Numerical and simulation results
In this section, some numerical results are shown based
on the theoretical analysis above. In order to verify the
correctness of our analysis, we further give some sim-
ulation results. Unless otherwise specified, the network
parameters are set as shown in Table 1.

Simulation scenario settings
The primary network is modeled as the Markov pro-
cess described in the ‘System model’ section. The arrival
rate λ and departure rate μ are given in the figures. The
original state of primary network is idle. The secondary
nodes are uniformly distributed on a finite plane with area
[0, 2, 000]m × [0, 2, 000]m. In each time slot, the num-
ber of transmitting and receiving nodes follow a Poisson
distribution with parameter λSp nodes/m2 and λS (1 − p)
nodes/m2, respectively. Put a typical node on the center of
the plane, the axis of which is [1, 000, 1, 000]. Consider the
typical node begin to transmit packets with probability p
once the channel state is detected to be idle in each slot.
Regarding the number of time slots needed for a packet
to be sent successfully as an example, the final simulation
results are the mean value of 10,000 examples.
In Figure 2, we show the approximate (App.), numer-

ical (Num.), and simulation (Sim.) results for the local
delay with the transmission probability p varying from
0 to 0.1. We see that 1) the local delay is concave with
respect to the transmission probability p when p and λS
meet Theorem 2. In addition, an optimal p can be found to
minimize the local delay. Putting the parameters into (19),
we solve the optimal transmission probability as popt =
0.0405, which is the same as that in Figure 2. 2) The
numerical result of the local delay with λ = 3,μ = 5)
has a great difference between the approximate result of
the local delay with λ = 0.003,μ = 0.005, while nearly
equal to the approximate result of the local delay with
λ = 3 × 106,μ = 5 × 106 and very near the approximate
solution of Equation 16. The local delay increases with
the increasing primary traffic. But the increase of it slows
down when the primary traffic reaches a certain value. 3)
The simulation result is almost the same as the numerical
result when λ = 3 × 106,μ = 5 × 106. The simulation
result is slight larger than the approximate result when the

Table 1 Parameter settings

Parameters Setting

Path loss factor α 4

Transmission radius R 20 m

Time slot T 125 μs

Decoding threshold β 10 dB

The density of secondary network λS 0.005 nodes/m2

Transmission probability p 0.02
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Num. (λ=3,μ=5)

Sim. (λ=3*10−3,μ=5*10−3)

Sim. (λ=3*106,μ=5*106)

Figure 2 The local delay versus transmission probability p.

primary traffic is zero. The simulation results prove the
correctness of the theoretical analysis.
In Figure 3, we illustrate the approximate, numerical,

and simulation results for the local delay with the den-
sity of secondary nodes λS varying from 0 to 0.01 when p
meets the requirement of Theorem 3. And we also could
solve the optimal λS as λ

opt
S = 0.0021 which agrees with

the numerical results. Similar to Figure 2, the numerical
result of the local delay with λ = 3,μ = 5 is almost the
same as that with λ = 3 × 106,μ = 5 × 106 and equal to
that in case 2 in the section ‘The local delay for two special
cases’. This explains that the reciprocal of the local delay
could be approximated to the product of the probability
for idle channel state and success transmission probability
for the secondary network without the primary network.
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Figure 3 The local delay versus density of secondary nodes λS .
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Figure 4 The local delay versus density of secondary nodes λS
with varying transmission radius R.

Similarly, the simulation result proves the correctness of
the theoretical analysis.
In Figure 4, we give the local delay versus λS with three

different transmission radii: R = 15,R = 18, and R = 21.
It is shown that the local delay increases with the increas-
ing Rwhen λS is small, while the opposite is the case when
λS is larger. This is because when λS is small, whether
a transmitting node could find a receiving node in its
transmission radius affects the local delay greater than the
interference coming from other transmitting nodes. Since
the likelihood of existing receiving node is greater when
R gets larger and the probability of successful transmis-
sion is larger, the local delay is smaller. The situation is on
the contrary when the density of secondary nodes is larger
and will not be covered here.

Conclusions
We conducted an analytical study of the local delay in
cognitive radio ad hoc networks. We modeled the occu-
pancy of the licensed channel by the primary network as
a Markov process, and the secondary nodes opportunisti-
cally accessed the channel with the ALOHA protocol. The
local delay is analyzed by employing the property of PPP
in stochastic geometry.
We derived the analytical expression of the local delay

and discussed the relationship between the local delay
and some important network parameters which conclude
the following: primary traffic (arrival and departure rates),
transmission probability, and node density of the sec-
ondary network. Both numerical and simulation results
are obtained for different primary traffic. We drew a
conclusion that the local delay in most cases could be
approximated to that for significant primary traffic which
is important for further research of end-to-end delay.
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