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Abstract

This paper studies the power allocation problem in energy harvesting systems with finite battery. We adopt the
discretized energy arrival and power allocation model. Hence, the service process can be modeled as a finite state
Markov chain. Based on the discretized model, we analyze the stationary distribution of the Markov chain and
formulate the utility maximization problem, which is then reformed as a linear programming problem. By analyzing
the linear programming problem, we provide some intuition on the structure of the optimal power allocation policy
and find the condition in which the greedy power allocation is optimal. Numerical simulations show the influence of
the energy arrival process on the optimal power allocation policy, and the results are consistent with our analysis.
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1 Introduction
With increasing CO2 emissions in communication net-
works, how to realize green communications in the future
has become an important and hot topic in the academic
society. Besides the energy-efficient protocol design to
reduce the energy consumption of the conventional wire-
less systems, utilizing renewable energy (e.g., solar or wind
energy) to power on communication devices, namely,
the energy harvesting technology, provides a new way
for green by exploiting sustainable energy sources and
hence is a promising solution to achieve environment-
friendly communications. Recent developments in hard-
ware have made the energy harvesting technology feasible
for modern communication systems. For instance, a
wind-powered tower for wireless base stations has been
designed by Ericsson [1]. However, due to the randomness
of the energy arrival process, how to optimally allocate the
harvested energy is a challenging issue.
In recent years, a lot of research efforts have been

focused on the energy harvesting systems. For the addi-
tive white Gaussian noise (AWGN) channel, the problem
of minimizing the transmission completion time with
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infinite battery capacity in non-fading channel is stud-
ied in [2] for two scenarios, i.e., all packets are ready
before transmission and packets arrive during transmis-
sion. Tutuncuoglu [3] finds the optimal transmission
policy to maximize the short-term throughput with lim-
ited energy storage capacity, and exploits the relation
between the throughput maximization and the trans-
mission completion time minimization. For the fading
channel, authors in [4] propose the directional water-
filling (WF) algorithm which is proved throughput opti-
mal for greedy source. Similar result is obtained in [5],
which further considers the optimal solution with causal
information. The algorithm is then extended to multi-
ple antennas scenario in [6], where the spatial-temporal
WF is proposed. Further, considering the dynamic data
arrival with hybrid energy harvesting and power grid
supplies, [7] proposes the optimal reverse multi-stage
WF policy. Considering the circuit power consumption,
a two-phase transmission policy is shown to be opti-
mal [8]. In [9], the authors study the throughput maxi-
mization problem for the orthogonal relay channel with
energy harvesting source and relay nodes under the
deterministic model and show the structure of the opti-
mal source and relay power allocation. Although the
above algorithms give some insights about the optimal
solution, they assume that all the energy arrival, the
channel fading, and the data arrival must be explicitly
known before transmission, which is called the offline
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condition. Since the solutions based on the offline con-
dition require accurate predictions for the system states,
they are not always applicable in real communication
systems.
Based on the online condition that only the past and

current system states can be known, researchers have
studied the optimal and sub-optimal power allocation
policies in some special scenarios. Sharma [10] identi-
fies throughput optimal and mean delay optimal energy
management policies and shows a greedy policy to be
optimal in low SNR regime with infinite battery capacity.
And a throughput maximization algorithm in point-to-
point communications with causal information based on
Markov decision process (MDP) [11] approach is pro-
posed in [12]. Recent work [13] studies the finite-horizon
scheduling problemwith discrete rates and proposes a low
complexity threshold-based policy. However, the proper-
ties of the optimal solution can not be directly obtained
via MDP approach. In addition, the MDP approach expe-
riences very high computational complexity due to the
curse of dimensionality, hencemay not be applicable when
the system state space grows large. From the informa-
tion theory perspective, [14] studies the channel capacity
of energy harvesting links with finite battery capacity
and proves that the Markovian energy management poli-
cies are sufficient to achieve the capacity. Besides the
throughput maximization problems, some other issues
on the energy harvesting systems, such as the quality
of service (QoS), the energy efficiency, and etc. are also
studied. Huang [15] studies the utility optimization prob-
lem in energy harvesting networks under limited average
network congestion constraint and develops a close-to-
optimal algorithm using the Lyapunov optimization the-
ory, which jointly manages the power allocation and the
data access control. As the renewable energy is usually dis-
tributed asymmetrically in space domain, there are some
papers considering the energy cooperation problem to
balance the harvested energy in different places, including
cellular network planning [16] and power grid energy sav-
ing [17], so that the overall system energy efficiency can
be improved. But still, under the dynamic property of the
energy harvesting process, how to allocate the energy to
achieve the optimal system performance in general case
is still an open question. It is desirable to explore the
closed-form analytical solution for the online condition
with some statistic characteristic of the energy harvesting
process.
In this paper, we consider the power allocation problem

in energy harvesting capacity to achieve the optimal sys-
tem utility. Specifically, we study a single link with renew-
able energy transmitter, which only has the casual state
information, including the distribution of the energy har-
vesting process, the past, and the current battery energy
state. We model the energy arrival, storage, and usage

as a discrete model and derive the optimal solution with
closed-form expressions. The main contributions of this
paper are presented as follows.

• We propose the discrete model for the energy
harvesting system analysis. On one hand, the digital
equipment has been widely used in modern
communication systems, and it is feasible to give a
discrete model for the energy harvesting process. On
the other hand, the discrete model enable us to give a
Markovian analysis and get some interesting
closed-form analytical solution.

• For the independent identically distributed (i.i.d.)
energy arrival process, we show the optimal solution
can be obtained by solving a linear programming
problem. Based on the linear programming
formulation, we get some properties of the optimal
power allocation policy and find the condition under
which the greedy policy is optimal.

• Through extensive numerical simulations, we discuss
the influence of the statistics of the energy arrival
process on the optimal power allocation policy, which
is shown consistent with our mathematical analysis.

The rest of the paper is organized as follows. Section 2
presents the system model. The problem is formulated
and analyzed in Sections 3 and 4, respectively. Some
numerical results are provided in Section 5 to evaluate
the performance analysis. Finally, Section 6 concludes the
paper.
Notations: Bold upper case and lower case letters denote

matrices and vectors, respectively. (·)T denotes the trans-
pose of a matrix or a vector. 0n×m and 1n×m represent the
n×mmatrices with all elements equal to 0 and 1, respec-
tively. If n = m, they can be simplified as 0n and 1n. In is
the n × n unit matrix. E is the expectation operation.

2 Systemmodel
We consider a single link time-slotted wireless commu-
nication system with slot length Tf . The transmitter is
powered by renewable energy, which is harvested from
the environment and stored in a battery with finite capac-
ity Bmax. The greedy data source is assumed to focus on
the utility maximization with efficient harvested energy
usage. The system model is illustrated in Figure 1. The
utility is assumed to be a strictly concave and increas-
ing function of allocated transmit power. As the slot
length is fixed, the utility can be equivalently viewed as a
function of used energy St , denoted by u(St). While the
transmit energy St depends on the system state, i.e., the
amount of energy stored in the battery in slot t, denoted
by Et .
The state transition happens between time slots as

shown in Figure 2. At the beginning of slot t, the power
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Figure 1 Single-link energy harvesting based wireless communication system.

allocation policy determines the amount of used energy
St based on the system state Et (red bar in the figure).
Considering the energy causality constraint, the allocated
energy cannot exceed the energy stored, i.e., St ≤ Et .
Denote Ẽt as the transition state after the power alloca-
tion process and before the energy harvesting process.
According to the power allocation result, the transitional
system state updates as Ẽt = Et − St . Then, the amount
of energy At is harvested during slot t is stored into the
battery at the end of the slot. Note that the battery energy
cannot exceed the battery capacity. Hence, the additional
energy will be wasted if the battery is full. As a result,
the system state is updated according to the following
equation:

Et+1 = min {Et − St + At ,Emax} . (1)

In this paper, we consider a discrete system model,
i.e., the energy is discretized with unit �E. In the dis-
crete model, the battery capacity can be expressed as
Bmax = N�E, where N is an integer. Hence, for the ease
of description, we omit �E and denote the system state
as Et = n, n = {0, 1, . . . ,N} which indicates that n�E
amount of energy is stored in the battery. Besides, the
energy arrival At and the power allocation St are also dis-
cretized with the unit energy �E, which will be detailed in
the following subsections.

2.1 Energy arrival model
The amount of energy arrived in each time slot is assumed
to be i.i.d. and takes non-negative integer values. The
distribution of the energy arrival is expressed as:

Pr [At = k] = hk , k = 0, 1, 2, . . . , (2)

where hk ≥ 0,
∑

k hk = 1.
After harvesting the arrived energy, the system state

transits from the transition state Ẽt to the state of the next
slot Et+1. The state transition probability matrix due to
energy arrival and harvesting process can be expressed as
an (N + 1)×(N + 1)matrixH, namely, harvestingmatrix,
with elementsHi,j denoting the transition probability from
Ẽt = i to Et+1 = j by harvesting (j − i)�E amount
of energy. As the amount of harvested energy is non-
negative,H is an upper triangular matrix. The elements of
H can be calculated as:

Hi,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, i > j,
hj−i, i ≤ j < N ,

1 −
N−i−1∑
k=0

hk , i < j = N ,

1, i = j = N .

(3)

Note that j = N represents that the battery is full. In this
case, the amount of arrived energy larger than N − i will
tend to the same state Et+1 = N . Hence, the probability

Figure 2 Discrete system state transition model. At the beginning of slot t, St is used to transmit. At the end of the slot, At is arrived and stored
into the battery. Hence, the battery energy state at the beginning of slot t + 1 is Et+1 = min {Et − St + At , Emax}.
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for j = N is a summation of energy arrival distribution
that satisfy At ≥ N − i.

2.2 Power allocation policies
Recall that the power allocation policies only depend on
the current system state. Similar as the energy arrival
model, we express the state transition probability matrix
between Et and Ẽt as a policy matrix P with elements
pi,j ∈ {0, 1},∀i, j denoting the event of using (i − j) unites
of energy in state Et = i. Then, the allocated power is
calculated as (i − j)�E/Tf . Since the allocated energy
is non-negative, all the non-zero elements of the policy
matrix P is on the left side of the diagonal elements, i.e.:

pi,j = 0, ∀i < j, (4)

Besides, the deterministic policy tells us that only one
action will be taken in each state. Hence, there is and only
is one non-zero element in each row, which is as follows:

∑i

j=0
pi,j = 1, ∀i. (5)

Note that pi,j is relaxed to take the value between 0 and
1 for the ease of mathematical formulation and theoreti-
cal analysis in the next section. However, a deterministic
optimal policy is ultimately obtained through our solu-
tion, which means that the relaxed problem is equivalent
with the original problem. We will discuss this issue in
detail later.

2.3 Utility model
For any amount of allocated energy St , there is a cor-
responding utility u(St). Since we consider the discrete
energy model, the utility also takes value from a finite
set {u0,u1, . . . ,uN }. Specifically, uk is the utility when the
amount of k�E energy is allocated in a slot, i.e., uk =
u(k�E). As mentioned before, it is assumed to be increas-
ing and strictly concave for k ≥ 0 and u0 = 0. For
instance, if the optimal channel coding scheme with ran-
domly generated codes is adopted, we can achieve the
channel capacity given by:

uk = 1
2
log2

(
1 + k�E

Tf σ 2

)
, (6)

where σ 2 is the noise power. It is the well-known Shan-
non’s equation [18]. Also, some other utility functions can
be used, as long as they satisfy the monotonicity and the
concavity properties.

3 Problem formulation
In this section, we formulate the utility maximization
problem and transform the problem formulation into lin-

ear programming based on the Markovian property. We
also simply discuss the linear programming problem for-
mulation from the MDP point of view.

3.1 Utility maximization andMarkov chain-based
formulation

The objective of our problem is to maximize the average
utility over a long time period, i.e.:

max lim
T→+∞

E

[
1
T

T∑
t=1

u(St)
∣∣∣E1 = k0

]
, (7)

where k0 is the initial battery energy, and the allocated
energy St is determined by the battery energy state Et .
Notice that we can apply MDP approach [11] to solve the
infinite horizon average utility maximization with finite
number of states (the number of system states, i.e., the
battery energy states is N). However, the MDP approach
usually encounters the curse of dimensionality problem.
In addition, the structure of the optimal policy is not clear
as the MDP only outputs numerical results. To avoid the
drawbacks of the MDP approach and analyze the opti-
mal power allocation policy in detail, we consider to deal
with the problem using linear programming. Specifically,
for a given power allocation policy, the battery energy
state forms a Markov chain. Firstly, we have the following
lemma.

Lemma 1. The problem (7) is irrelevant with the initial
state k0.

Proof. The Markov chain with battery energy as state
satisfies the weak accessibility ([11], Def. 4.2.2), as for
a given energy arrival distribution {h0, h1, . . .} and for
any states i, j, we can always find a stationary policy so
that state i is accessible from state j. According to ([11],
Prop. 4.2.3), the optimal average utility is the same for all
initial states.

Actually, the conclusion of Lemma 1 is easy to be under-
stood as we consider the long-term average performance;
the influence of the state at some specific time is negligi-
ble. Based on Lemma 1, we only need to consider the sta-
tionary behavior of the Markov chain. For a given power
allocation policy P, there always exists a stationary sys-
tem state distribution π = [π0,π1, . . . ,πN ]T,

∑N
i=0 πi =

1,πi ≥ 0,∀i that satisfies:

πTPH = πT, (8)

where πi is the probability that the battery energy is i and
PH is the state transition probability matrix from state Et
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to state Et+1. With the stationary distribution, the original
problem (7) can be reformulated as:

P-1 : max
N∑
i=0

i∑
j=0

πipi,jui−j (9a)

s.t.
N∑
k=0

πk

min(k,i)∑
l=0

pk,lHl,i = πi, ∀i, (9b)

i∑
k=0

pi,k = 1, ∀i, (9c)

N∑
i=0

πi = 1, (9d)

pi,j ∈ {0, 1}, ∀i ≥ j, (9e)

πk ≥ 0, ∀k, (9f)

where the harvesting matrix H and the utility function
uk , k = 0, . . . ,N are predefined and (9b) is the expan-
sion of (8). Note that different power allocation policies
lead to different stationary distributions. On the contrary,
if the state distribution varies, the optimal power alloca-
tion policy also changes. Hence, the unknown variables
include both the power allocation policy

{
pi,j, i ≥ j

}
and

the stationary distribution {πi}, which need to be jointly
considered and optimized. As pi,j ∈ {0, 1}, it is a mixed
optimization problem combining both integer program-
ming and linear programming, which is difficult to be
solved. To make it tractable, we transform the problem
into a linear programming optimization problem in the
rest of this section.

3.2 Problem reformulation with linear programming
Firstly, we relax the constraint (9e) and reformulate the
problem as:

P-1R : max
N∑
i=0

i∑
j=0

πipi,jui−j

s.t. (9b) - (9d), and (9f)
pi,j ≥ 0, ∀i ≥ j, (10)

where pi,j becomes continuous variable, which can be con-
sidered as a probabilistic power allocation policy. In the
next section, we will prove that the relaxation does not
change the optimal solution. In other words, the optimal
policy p∗

i,j obtained by solving P-1R turns out to be of
integer value.
Obviously, the problem P-1R is not a convex optimiza-

tion problem since there is product πipi,j in the constraint

(9b). To solve this problem, we transform it by multiplying
πi on both sides of the constraints (9c):

i∑
k=0

πipi,k = πi,∀i. (11)

When πi 	= 0, Equation (11) is the same with
Equation (9c). On the other hand, if πi = 0, it means that
the stationary state i does not exist, leading to no influence
on the total utility. Hence, by denoting fi,j = πipi,j, we can
get the equivalent optimization problem of P-1 as:

P-2 : max
N∑
i=0

i∑
j=0

fi,jui−j (12a)

s.t.
N∑
k=0

min(k,i)∑
l=0

fk,lHl,i = πi, ∀i, (12b)

i∑
k=0

fi,k = πi, ∀i, (12c)

N∑
i=0

πi = 1, (12d)

0 ≤ fi,j ≤ πi, ∀i ≥ j, (12e)
πk ≥ 0, ∀k, (12f)

We can see that the optimization problem P-2 is a linear
optimization as the objective function and the constraints
are all linear functions. By solving the optimal fi,j and πi,
pi,j is also obtained by:

pi,j = fi,j
πi

,πi > 0. (13)

If πi = 0, any
{
pi,j :

∑N
j=0 pi,j = 1, 0 ≤ pi,j ≤ 1

}
is optimal

since the system state i has no influence on the total utility.
Actually, fi,j is the probability that the system state is i and
j − i units of energy is used.
In the objective function of problem P-2, the variable

πi is not presented. And if fi,j is known, πi can be calcu-
lated via (12b) or (12c). Substituting πi by

∑i
k=0 fi,k in P-2,

the optimal
{
fi,j
}
can be obtained by solving the following

problem:

P-3 : max
N∑
i=0

i∑
j=0

fi,jui−j (14a)

s.t.
i∑

k=0
fi,k =

N∑
k=0

min(k,i)∑
l=0

fk,lHl,i,∀i, (14b)

N∑
i=0

i∑
k=0

fi,k = 1, (14c)

fi,j ≥ 0,∀i ≥ j. (14d)
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Note that the right-side inequality of (12e) and the con-
straint (12f) is omitted in P-3 as they are guaranteed by
(14c) and (14d). Further, the problem P-3 can be expressed
in a matrix form as:

P-3M : max uTf (15a)
s.t. Ãf = [

01×(N+1), 1
]T , (15b)

f ≥ 0 1
2 (N+1)(N+2)×1, (15c)

where u= [uT0 ,uT1 , . . . ,uTN]T with ui = [u0,u1, . . . ,uN−i]T,
f = [

fT0 , f
T
1 , . . . , f

T
N
]T with fi = [

fi,i, fi+1,i, . . . , fN ,i
]T, and Ã

is expressed as:

Ã =
[
Ã0, Ã1, . . . , ÃN

]
, (16)

where

Ãi =
⎛
⎝ 0i×(N−i+1)

H̃i − I(N−i+1)
11×(N−i+1)

⎞
⎠ , (17)

with

H̃i = [
Hi,i, Hi,i+1, . . . , Hi,N

]T · 11×(N−i+1). (18)

Remark 1. The size of fi and ui are both (N − i + 1)×1. As
a result, the size of f and u are both 1

2 (N + 1) (N + 2)×1.

Remark 2. The size of Ã is (N + 2) × 1
2 (N + 1) (N + 2).

The problem can be further simplified based on the
following lemma.

Lemma 2. The constraint (15b) can be equivalently writ-
ten as:

Âf = h0, (19)

where h0 = [
H0,0, H0,1, . . . , H0,N

]T, and Â =[
IN+1, −Â1, , . . . , −ÂN

]
with

Âi =
(

0i×(N−i+1)
H̃i − I(N−i+1)

)
− h0 · 11×(N−i+1), i = 1, . . . ,N .

(20)

Proof. Multiplying the constraint (15b) by an (N + 2) ×
(N + 2) matrix:

B =
(
IN+1 −h0
01×(N+1) 1

)
, (21)

i.e., BÃf = B
[
01×(N+1), 1

]T, we have:
(
Â
11× 1

2 (N+1)(N+2)

)
f =

[
hT0 , 1

]T
. (22)

According to the fact that
∑N

j=i Hi,j = 1,∀i, we can easily
prove that the sum of each column of Â equals to 1. Con-
sequently, we have 11× 1

2 (N+1)(N+2)Âf = 11× 1
2 (N+1)(N+2)f,

which means that the last constraint in (22) can be
obtained by the summation of the first (N + 1) equal-
ity constraints, hence naturally holds as long as the other
constraints are satisfied. As a result, (19) is obtained by
removing the last constraint in (22). As the matrix B is
invertible, the constraint (19) is equivalent with (15b).

Based on Lemma 2, the number of the equality con-
straints is reduced from (N + 2) to (N + 1). Note that
the rank of Â is (N + 1) since the first (N + 1) columns
form an (N+1) unit matrix, whichmeans that the equality
constraints are irreducible. We re-write the problem as:

P-4 : max uTf (23a)

s.t. Âf = h0, (23b)

f ≥ 0 1
2 (N+1)(N+2)×1, (23c)

In the rest of the paper, we focus on the solution for the
problem P-4. As long as it is solved, the original problem
P-1R is also solved. Specifically, the stationary distribu-
tion π can be calculated by (12b) or (12c), and the power
allocation policy can be obtained by (13). In addition,
the optimality proof of deterministic solution given in the
next section guarantees the equivalence between prob-
lem P-4 and problem P-1. Hence, problem P-1 is also
solved.

Remark 3. The optimization problem P-4 can also be
derived based on the MDP theory [11]. Specifically, for
a given time index t, the system state xt ∈ {0, . . . ,N} is
the battery energy state, the action at(xt) ∈ {0, . . . , xt} is
the allocated energy. For the finite state problems, there
exists an optimal stationary policy. Hence, we can omit
the time index of at . Then, the cost function g(xt , a(xt)) =
−ua(xt) is the negative utility, and the state transition is
calculated as pij(a(i)) = Hi−a(i),j. We re-write the average
utility maximization problem as an average cost per-slot
minimization problem:

min lim sup
T→+∞

1
T
E

{ T∑
t=0

g(xt , a(xt))
}
. (24)
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The optimal policy satisfies the Bellman’s equation ([11],
Prop. 4.2.1), which in the problem (24) takes the form:

λ + s(i) = min
a(i)∈{0,...,i}

⎡
⎣g(i, a(i)) +

N∑
j=0

pij(a(i))s(j)

⎤
⎦ , i = 0, . . . ,N .

(25)

with a scalar λ anda vector s. The optimal cost λ∗ can be
determined by solving the following linear programming
problem ([11], Sec. 4.5):

max λ (26a)

s.t. λ +s(i) ≤ g(i, a(i)) +
N∑
j=0

pij(a(i))s
(
j
)
,

i = 0, . . . ,N , a(i) = 0, . . . , i. (26b)

Applying the duality theory of linear programming ([19],
Chap. 5), we can exactly get the linear program formula-
tion as P-3, and hence, P-4 is formulated. However, with
Markov chain analysis instead of MDP theory, we can get
the clear physical meaning of the variable fi,j.

Remark 4. When solving the original problem P-1, it
requires an exhaustive search over all the possible values
of the parameters pi,j ∈ {0, 1},∀i ≥ j, which is of exponen-
tial complexity. While the complexity of solving the linear
programming problem P-4 depends on the numerical
algorithms which we apply. The most popular algorithms
for solving linear programming problem are the simplex
algorithm and the interior point algorithm [19]. It has been
analyzed that the simplex algorithm is of exponential com-
plexity in the worst case [20], while the complexity of
a specific problem is case by case. We will show in the
following section that in some cases, the optimal solu-
tion can be found without iteration. On the other hand,
the interior point algorithm is of polynomial complex-
ity. In summary, the complexity of the proposed linear
programming is lower than that of the exhaustive search
algorithm.

4 Optimal solution analysis
It is difficult to give an analytical solution for general con-
ditions of H and u. In this section, we try to find some
properties on the structure of the optimal power alloca-
tion policy and derive the condition in which some simple
policy is optimal. We firstly present some general results
about the optimal policy.

4.1 General properties
With a quick observation, we can firstly get the following
property.

Proposition 1. (Feasibility) The optimal solution f∗ for
the problem P-4 exists.

Proof. Firstly, the problem P-4 is feasible as we can at
least find one solution satisfying all the constraints. For
instance:

fg =
[
hT0 , 0, . . . , 0

]T
, (27)

is feasible for the problem.
Secondly, the feasible region for the linear programming

problem is finite according to the constraints f ≥ 0 and
11× 1

2 (N+1)(N+2) · f = 1. Hence, the optimal solution exists.

Proposition 1 tells us that the problem is feasible, and
the existence of the optimal solution is guaranteed by the
finite state constraint.

Lemma 3. The optimal solution f∗ for the problem P-4 can
be achieved by the vector with at most (N + 1) non-zero
elements.

Proof. The optimal solution for a linear programming
can be achieved by its basic feasible solution [19], of which
the number of non-zero elements is nomore than the rank
of Â. Since the rank of Â is (N + 1), its basic feasible
solution has at most (N + 1) non-zero elements.

The geographic explanation of Lemma 3 is that for a
linear programming problem, the optimal solution can
always be found at the vertex (corresponding to the basic
feasible solution) of the convex polyhedron defined by the
constraints (23b) and (23c) [19]. In this sense, we only
need to focus on the basic feasible solutions with relatively
small number of non-zero elements. However, it is not
guaranteed that the optimal solution must have no more
than (N + 1) non-zero elements. For instance, if there are
two vertexes to be optimal, all the linear combinations of
the two vertexes are also optimal.
Based on Lemma 3, we can guarantee the deterministic

optimal policy can be obtained.

Proposition 2. (Deterministic optimal solution) The
optimal solution of P-4 can be achieved by a deterministic
power allocation policy, i.e., p∗

i,j ∈ {0, 1}.

Proof. Firstly, consider the case that π∗
i > 0,∀i. That is,

all the (N + 1) elements of π are non-zero. As we can find
an optimal solution so that f∗ has at most (N+1) non-zero
elements, based on (12c), there is and only is one non-zero
element of

{
f ∗
i,0, . . . , f ∗

i,i
}
for a given i. Then, according to

(13), we have p∗
i,j ∈ {0, 1}.
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If for some k,π∗
k = 0, the state k is a transient state.

We can erase all the elements related with π∗
k in the prob-

lem formulation without changing the optimal solution.
Specifically, in the original problem, by removing the k-
th row and k-th column of the matrix PH in (8), the k-th
constraint in (9b), and the elements related with πk in (9a)
and (9d), the optimal solution is not changed. Through
the same deduction of the previous section, we can con-
clude the similar lemma that the optimal solution can
be achieved with at most N non-zero elements. Simi-
larly, we can prove p∗

i,j ∈ {0, 1},∀i 	= k. Then, by setting
p∗
i,0 = 1, a deterministic optimal policy is also obtained.

The proof can also be extended to the case that for several
ks, π∗

k = 0.

Proposition 2 guarantees that a deterministic optimal
power allocation policy can always be found. In fact, the
deterministic optimal policy corresponds to the optimal
basic feasible solution. Hence, in the sense of determin-
istic policy, the equivalence between P-4 and P-1, or in
other words, the equivalence between P-1R and P-1 is
guaranteed. By finding the optimal basic feasible solution
of P-4, we can obtain the deterministic optimal power
allocation policy for the original problem P-1. Again as
discussed in the paragraph below Lemma 3, if there are
two basic feasible solutions achieving optimal, the lin-
ear combination of the two solutions correspond to the
probabilistic optimal policy. In practice, the deterministic
optimal policy is desirable and also sufficient.

Theorem 1. (Structure of optimal policy) For the opti-
mal power allocation policy P∗, if p∗

i,j > 0 and π∗
i > 0, for

any m that satisfies π∗
m > 0 and m > i, we have:

p∗
m,n = 0,∀n < j. (28)

Proof. See Appendix 1.

Theorem 1 demonstrates that for the optimal policy,
if k units of energy is allocated in state i, the allocated
amount of energy k′ in the next state i+1 will not increase
drastically, i.e., k′ − k ≤ 1. The theorem can also be equiv-
alently described as p∗

m,n = 0,∀n > j, where π∗
m > 0

and m < i. Notice that the condition π∗
i > 0 indicates

that state i is not a transient state. For a transient state,
any power allocation policy is applicable as it does not
change the objective. Hence, the conclusion does not hold
for transient states.

4.2 Optimality of greedy policy
According to the feasible solution example (27), we can
get that pi,0 = 1,∀i, which turns out to be the greedy
policy, i.e., in each slot, all the available energy in the bat-
tery is used up. In general, the greedy policy is not optimal.

However, the following theorem provides the condition on
which it is optimal.

Theorem 2. (Greedy optimal policy) If

N−1∑
i=0

hi (ui − ui+1) + uN − uN−1 ≥ 0, (29)

the optimal solution for P-4 is f∗ = fg . The optimal power
allocation is the greedy algorithm, which means that we
use up all the available energy in every slot. The stationary
distribution of the system state is π = h0.

Proof. See Appendix 2.

For the ease of understanding the greedy optimal condi-
tion, we rewrite (29) as:

N−1∑
i=0

hi�ui ≤ 1, (30)

where

�ui = ui+1 − ui
uN − uN−1

, i = 0, . . . ,N − 1 (31)

is the relative utility gain by increasing one unit energy in
power allocation state i. Thus, given the utility function,
the condition can be viewed as the case that the weighted
sum of energy arrival distribution up toN−1 weighted by
relative utility gain is no more than 1. Since�ui ≥ 1 and is
decreasing function of i, the condition holds when the tail
probability of energy arrival 1 −∑N−1

i=0 hi is large enough,
and the value of hi is relatively small when i is small. Intu-
itively, such kind of energy arrival distribution shows the
property that the amount of energy arrival is quite large
relative to the battery capacity. Hence, the optimal policy
tends to use up all the available energy in the battery in
every time slot (i.e., greedy policy). In this case, the battery
can store as many energy as it can, and hence, the energy
wasted due to the battery overflow is reduced.
On the other hand, with a fixed energy arrival distribu-

tion {hi}, we can find the influence of the utility function
on the optimality of greedy policy. Specifically, we adopt
the Shannon’s capacity as the utility function as expressed
in (6). At low signal-to-noise ratio (SNR) regime, i.e., k�E

Tf σ 2

is very small, we have the following approximation:

ui ≈ i�E
2Tf σ 2 , (32)

which results in �ui ≈ 1,∀i. Since {hi} is a probability dis-
tribution, (30) naturally holds in this low SNR case. It can
be explained as when the channel condition is poor, the
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capacity gain is linearly proportional to the power alloca-
tion. Consequently, the greedy policy is optimal as it not
only can obtain the same capacity with the same available
energy, but also reduces the amount of wasted energy due
to battery overflow.
A quick conclusion based on the Theorem 2 can be

obtained as follows:

Corollary 1. If the energy arrival is uniformly distributed
between 0 and 2h̄ with average arrival rate h̄, the greedy
policy is optimal when:

h̄ ≥ uN − u0
2(uN − uN−1)

. (33)

Proof. The energy arrival probability of uniform distri-
bution is expressed as:

hi = 1
2h̄

, i = 0, . . . , 2h̄. (34)

By substituting hi in (29) with (34) and some derivation,
we can get the condition on the average arrival rate.

5 Numerical results
We calculate some numerical examples of the optimal
power allocation to demonstrate the structure and the
properties of the optimal policies. We define:

γ = �E
Tf σ 2 (35)

as the reference SNR with one unit of energy, and adopt
the Shannon’s equation to calculate the utility, i.e.:

uk = 1
2
log2(1 + kγ ). (36)

Set N = 10 and γ = 1 as an example, we examine
the influence of the random energy arrival process on the
optimal power allocation. Specifically, we consider some
widely used distributions, including discrete uniform dis-
tribution, geometric distribution, Poisson distribution,
and binomial distribution. Denote Unif (h̄) as the uniform
distribution that takes values in {0, 1, . . . , 2h̄} with mean
h̄. Denote Poiss(h̄) as the Poisson distribution with mean
h̄. Denote Geom(p) as the geometric distribution with
parameter p; thus, we have:

hi = (1 − p)ip, i ≥ 0 (37)

withmean h̄ = (1−p)/p. And denote Bin(n, p) as the bino-
mial distribution with parameters n, p. The probability
density function is as follows:

hi = n!
i! (n − i)!

pi(1 − p)n−i, 0 ≤ i ≤ n, (38)

and the mean value is h̄ = np. Since 0 < p < 1, we have
n > h̄. Notice that except for binomial distribution, all the
studied distributions have only one parameter.

Tables 1, 2, and 3 provides the optimal power allocation
policies for uniform distribution, Poisson distribution,
and geometric distribution with different mean values. It
can be seen that the minimum average arrival rates with
which the greedy policy is optimal are different for dif-
ferent distributions (h̄ = 13 for uniform distribution,
h̄ = 8 for Poisson distribution, h̄ = 23 for geometric
distribution). The result is consistent with our observa-
tion. Specifically, if hi is an increasing function of i, it is
easier for the greedy policy to be optimal than the case
that hi is decreasing. As Poisson distribution increases
before the average value, while geometric distribution is
strictly decreasing, consequently higher average energy
arrival rate is needed so that greedy policy is optimal for
geometric distribution.
Another observation from these results is that differ-

ent from infinite battery capacity case where the optimal
power will not exceed the average energy arrival rate
[[10] Theorem 1], the optimal power exceeds the average
energy arrival rate at some cases. As the battery capac-
ity is finite, the harvested energy may be wasted when the
battery is full. Hence, more energy will be used when the
battery energy is close to its limit in order to reduce the
wastage of energy.
As the binomial distribution has two parameters, we

provide the detailed numerical results in Tables 4, 5, and 6.
It can be seen that when the average arrival rate h̄ ≤ 7, the
greedy policy will never be optimal. While for h̄ = 8, the
greedy policy is shown optimal when n ≥ 11. In addition,
when h̄ ≥ 9, the greedy policy is always optimal for any
feasible values of n > h̄. Since in the binomial distribution,
hi also follows the same feature of Poisson distribution
that it firstly increases and then decreases, the threshold
of h̄ for the greedy policy to be optimal is relatively low.

Table 1 Optimal power allocation policy for uniform
distribution with parameter γ = 1

Battery state h̄ = 4 h̄ = 8 h̄ = 12 h̄ = 13

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

3 2 3 3 3

4 3 4 4 4

5 3 5 5 5

6 4 6 6 6

7 4 6 7 7

8 5 7 8 8

9 5 8 9 9

10 6 9 9 10

The numbers in the table indicate the amount of energy units used in
corresponding state. The samemeaning holds in the rest tables.
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Table 2 Optimal power allocation policy for Poisson
distribution with parameter γ = 1

Battery state h̄ = 4 h̄ = 5 h̄ = 7 h̄ = 8

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 3 4 4 4

5 4 4 5 5

6 4 5 6 6

7 4 5 7 7

8 5 6 7 8

9 5 6 8 9

10 6 7 9 10

Finally, Tables 7 and 8 compare the optimal policies for
the considered distributions at high and low SNR regimes,
respectively. It can be seen that at low SNR regime, the
optimal policy for any distribution turns out to be the
greedy policy. On the other hand, when the SNR is high,
it is not true. Besides, the policies for Poisson distribution
and binomial distribution are closer to the greedy policy
at high SNR regime, which is consistent with the previous
analysis.
Another interesting property can be seen from all the

results, i.e., the optimal power allocation policy is a non-
decreasing function of the battery energy state. Besides,
the increasing step is no more than 1, which coin-
cides to Theorem 1. The non-decreasing property can be
explained as follows. The more the available energy is, the
more allocated power is used in order to not only achieve
higher data rate but also reduce the energy wastage due
to battery overflow. As the battery capacity tends to

Table 3 Optimal power allocation policy for geometric
distribution with parameter γ = 1

Battery state h̄ = 4 h̄ = 13 h̄ = 22 h̄ = 23

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

3 2 3 3 3

4 2 4 4 4

5 3 5 5 5

6 3 5 6 6

7 3 6 7 7

8 4 7 8 8

9 4 8 9 9

10 5 8 9 10

Table 4 Optimal power allocation policy for binomial
distribution with parameters γ = 1, h̄ = 4

Battery state n = 5 n = 6 n = 8 n = +∞
0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 3 3 3 3

5 4 4 4 4

6 4 4 4 4

7 4 4 4 4

8 4 4 5 5

9 4 5 5 5

10 5 5 6 6

infinity, the non-decreasing property still holds as shown
in [10].
We also run some simulations to evaluate the perfor-

mance of the optimal power allocation policy. For compar-
ison, we consider the following two policies as baselines:
(1) Greedy power allocation policy, which allocates all

the available energy to transmit data.
(2) Constant power allocation policy, which allocates the

amount of energy equal to the average energy arrival rate.
When the required constant energy is not available, the
transmitter will allocate all the available energy.
The simulation results are shown in Figures 3, 4, 5,

and 6. Specifically, under the uniform distributed energy
arrival, it can be seen in Figure 3 that the constant power
policy performs close to the optimal at two extreme cases,
i.e., h̄ = 1 and h̄ ≥ 8. While as was shown before,
the greedy policy performs close to the optimal when
h̄ ≥ 13. In addition, the constant policy always performs

Table 5 Optimal power allocation policy for binomial
distribution with parameters γ = 1, h̄ = 7

Battery state n = 8 n = 9 n = 10 n = +∞
0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

8 7 7 7 7

9 7 8 8 8

10 8 8 9 9
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Table 6 Optimal power allocation policy for binomial
distribution with parameters γ = 1, h̄ = 8 or h̄ = 9

Battery h̄ = 8, n = 9 h̄ = 8, n = 10 h̄ = 8, n = 11 h̄ = 9, n = 10
state

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

8 8 8 8 8

9 8 9 9 9

10 9 9 10 10

better than the greedy policy. For the Poisson distributed
energy arrival (Figure 4), the greedy policy performs worse
than the constant policy at low energy arrival rate regime
(h̄ < 6), but better at high energy arrival rate regime
(6 ≤ h̄ < 10). The performance converge to the optimal
when h̄ ≥ 10. In Figure 5, the behavior of these policies
under Geometric distributed energy arrival is similar with
the uniform distributed scenario. However, the two base-
line policies in this scenario converge to the optimal much
slower than in the uniform distributed scenario. At last,
the performance under the binomial distributed energy
arrival is illustrated in Figure 6, which is similar with the
Poisson distributed case. To sum up, all the simulations
show that the constant policy shows higher performance
than the greedy policy in low energy arrival rate regime.
However, there are still gaps to the optimal solution

Table 7 Policy comparison under different energy arrival
distribution in high SNR regime with parameters
γ = 10, h̄ = 6,n = 15

Battery state Unif. Poiss. Geom. Bin.

0 0 0 0 0

1 1 1 1 1

2 2 2 1 2

3 3 3 2 3

4 3 4 3 4

5 4 5 3 5

6 5 5 3 5

7 5 6 4 6

8 6 6 5 6

9 7 7 5 7

10 7 8 5 8

Table 8 Policy comparison under different energy arrival
distribution in low SNR regime with parameters
γ = 0.01, h̄ = 6,n = 15

Battery state Unif. Poiss. Geom. Bin.

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

8 8 8 8 8

9 9 9 9 9

10 10 10 10 10

(maximum of 10% gap under geometric distribution and
maximum of 2% to 3% under the rest distributions).

6 Conclusions
In this paper, we analyzed the optimal power allocation
policy under a discrete system model using the Markov
chain analysis. We proved that the problem can be solved
via linear programming approach and analyzed the prop-
erties of the optimal policy. And for the greedy power
allocation policy, we found the condition to guarantee
its optimality. Numerical results show that under finite
battery capacity condition, the optimal policy is quite
different from that under infinite battery capacity con-
dition. Specifically, different from the infinite battery
case, the energy allocated in each slot might be larger
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Figure 3 The performance of the proposed optimal power
allocation policy under uniform distributed energy arrival with
parameter γ = 1.
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Figure 4 The performance of the proposed optimal power
allocation policy under Poisson distributed energy arrival with
parameter γ = 1.

than the average arrival rate. Also, extensive simulations
showed the consistent results with the analysis for the
greedy optimal condition. Based on the intuition provided
through the analysis of discrete model, future work will
extend our results to the continuous energy model sce-
nario and the extensive wireless systems with multiple
antennas/subcarriers.

Appendices
Appendix 1
Proof of Theorem 1
We prove the theorem by contradiction. Notice that π∗

i >

0 means that state i is not a transient state. Suppose for
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Figure 5 The performance of the proposed optimal power
allocation policy under geometric distributed energy arrival
with parameter γ = 1.
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Figure 6 The performance of the proposed optimal power
allocation policy under binomial distributed energy arrival with
parameter γ = 1, n = 10.

non-transient states i,m, p∗
i,j > 0, p∗

m,n > 0, where m >

i, n < j. We provide the proof in the following two cases
separately.
1) If:

p∗
m,n
p∗
i,j

≥ π∗
i

π∗
m
, (39)

we construct a power allocation policy matrix P′ by
setting:

p′
i,n = p∗

i,n + p∗
i,j, (40)

p′
i,j = 0, (41)

p′
m,n = p∗

m,n − π∗
i

π∗
m
p∗
i,j, (42)

p′
m,j = p∗

m,j +
π∗
i

π∗
m
p∗
i,j, (43)

and p′
k,l = p∗

k,l for the other elements. We have:

(
π∗)T P′ = (

π∗)T P∗, (44)
i∑

k=0
p′
i,k = 1, ∀i (45)

p′
i,j ≥ 0, ∀i ≥ j (46)

i.e., the power allocation policy P′ still satisfies all the con-
straints (9b), (9c), and (10), and the stationary distribution
π∗ does not change under the new policy. Hence, all the
constraints are satisfied with the new power allocation
policy. Then, we compare the objective functions. The dif-
ference is only related with elements of P with indexes
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(i, n), (i, j), (m, n), (m, j). For the clarity of comparison, we
only calculate:

D = π∗
i p

∗
i,nui−n +π∗

i p
∗
i,jui−j +π∗

mp
∗
m,num−n +π∗

mp
∗
m,jum−j,

(47)

and

D′ = π∗
i p′

i,nui−n + π∗
i p′

i,jui−j + π∗
mp′

m,num−n + π∗
mp′

m,jum−j.
(48)

Joint with (40)-(43), we can get:

D − D′ = π∗
i p

∗
i,j
[
(um−n − um−j) − (ui−n − ui−j)

] (a)
< 0,

(49)

where (a) is due to the concavity of utility function. As a
result, with the revised policy P′, a larger average utility is
obtained, which contradicts the optimality of P∗.
2) If:

p∗
m,n
p∗
i,j

<
π∗
i

π∗
m
, (50)

similarly by setting:

p′
i,n = p∗

i,n + π∗
m

π∗
i
p∗
m,n, (51)

p′
i,j = p∗

i,j −
π∗
m

π∗
i
p∗
m,n, (52)

p′
m,n = 0, (53)
p′
m,j = p∗

m,j + p∗
m,n, (54)

and following the same deduction procedure of case 1), we
can obtain the same contradiction.
To sum up, with the assumption that for non-transient

states i,m, p∗
i,j > 0 and p∗

m,n > 0,m > i, n < j, it ends up
that P∗ is not optimal. Hence, the theorem is proved with
the contradiction.

Appendix 2
Proof of Theorem 2
The theorem can be proved according to the simplex
method [19]. Specifically, fg = [

hT0 , 0, . . . , 0
]T is a basic

feasible solution, and the resulting objective function is
uT0 h0.
Consider a feasible solution f = [

fT0 , f
T
1 , . . . , f

T
N
]T as

initially defined in P-3M. From (19), we can get:

f0 = h0 +
N∑
i=1

Âifi. (55)

Then, the objective value can be written as:

uTf = uT0 f0 +
N∑
i=1

uTi fi

= uT0

(
h0 +

N∑
i=1

Âifi

)
+

N∑
i=1

uTi fi

= uT0 h0 +
N∑
i=1

(
uT0 Âi + uTi

)
fi (56)

Denote ci = uT0 Âi + uTi . To guarantee the optimality of
uT0 h0, as fi ≥ 0, all the elements of ci, i = 1, . . . ,N should
be no more than zero. The k-th element of ci is as follows:

ci,k =
N∑
j=i

ujHi,j −
N∑
j=0

ujH0,j − uk+i + uk

= −
i−1∑
j=0

ujhj −
N−1∑
j=i

uj(hj − hj−i) + uN
N−1∑
j=N−i

hj − (uk+i − uk),

(57)

where i = 1, . . . ,N , k = 0, . . . ,N − i. Due to the concavity
of the utility function uj, we have:

ci,k −ci,k−1 = (uk −uk−1)− (uk+i−uk+i−1) ≥ 0, ∀k.
(58)

As a result, ci,N−i is the largest element for a given i. In
addition, we have:

ci,N−i − ci−1,N−i+1 =
N−i∑
j=0

hj
(
uj+i − uj+i−1

)− (uN−i+1 − uN−i)

(a)≤
N−i∑
j=0

hj
(
uj+1 − uj

)− (uN − uN−1)

(b)≤
N−1∑

j=N−i+1
hj
(
uj − uj+1

)
(c)≤0, i = 2, . . . ,N ,

(59)

where inequality (a) holds due to the concavity of uj, (b)
is derived from (29), and (c) holds since hj ≥ 0 and
uj is increasing. Combining (58) and (59), we can con-
clude that c1,N−1 is the largest element. Since c1,N−1 =∑N−1

i=0 hi (ui+1 − ui) − uN − uN−1 ≤ 0, all the elements of
ci, i = 1, . . . ,N is non-positive, and hence the optimality
of the greedy solution is proved.
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