Wang EURASIP Journal on Wireless Communications and Networking (2015) 2015:51
DOI 10.1186/513638-015-0298-1

® EURASIP Journal on
Wireless Communications and Networking

a SpringerOpen Journal

RESEARCH Open Access

Linear least squares localization in sensor
networks

Yue Wang

Abstract

Localization in sensor networks is critical for search and rescue. Linear least squares (LLS) estimation is a sub-optimum but
low-complexity localization algorithm based on measurements of location-related parameters. Commonly, there are two
types of LLS localization algorithms using range measurements; one is based on introducing a dummy variable (called
LLS-)), and the other is based on the subtraction of the reference measured range (called LLS-l). Moreover, their respective
weighted LLS (WLLS) algorithms (called WLLS-I and WLLS-Il) can be adopted to further improve the localization accuracy.
In addition, hybridization of different types of measurements can fix the deficiencies of one type of measurements. In this
paper, we compare the localization performances of different LLS and WLLS algorithms in both non-hybrid time-of-arrival
(TOA) and hybrid TOA/received signal-strength (RSS) networks. Simulation results show that if the variances of measurements
are unavailable, the LLS-Il localization algorithm should be adopted in both non-hybrid and hybrid networks using their
respective reference selection criterions. If the variances of measurements are available, the two-step WLLS-/ algorithm
should be utilized to localize the agent in both non-hybrid and hybrid networks.

Keywords: Hybrid localization; Received-signal-strength (RSS); Reference selection; Time-of-arrival (TOA); Ultra-wideband

(UWB); Weighted linear least squares (WLLS)

1 Introduction

Determining the location of a target is one of the funda-
mental functions of sensor networks [1-5]. Real-time and
accurate position information plays a crucial role in a var-
iety of wireless applications [6,7], such as logistics, search-
and-rescue operations, and location-based services. In the
conventional two-step localization method [8], location-
related parameters, such as range and angle-of-arrival
(AOA) information, are estimated in the first step, and the
position of the agent is then estimated based on these
location-related parameters using geometric and statistical
algorithms. Specifically, range information is commonly
adopted in the first step of localization, which can be
measured using time-of-arrival (TOA) or received-signal-
strength (RSS) estimates [9]. Maximum likelihood (ML)
estimator can be adopted in the second step of range-
based localization if the variances of range measurements
are available. It is well known that ML estimator is an
optimum estimator since it can asymptotically achieve
the Cramér-Rao lower bound (CRLB) for high signal-to-
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noise ratios (SNRs) and/or large signal bandwidths [9]. If
the variance information about measured range is unavail-
able, a nonlinear least squares (NLS) estimator can be
adopted, which assumes all the variances are identical and
employs uniform weighting. Solving the NLS estimation
problem requires an explicit minimization of a nonlinear as
well as non-convex cost function, which cannot in general
be solved analytically. Therefore, numerical search algo-
rithms, such as the Newton-Newton, the Gauss-Raphson,
or the steepest descent algorithms, are usually employed to
approximate the NLS estimate [6]. However, the drawbacks
of these numerical search algorithms are intensive compu-
tation as well as good initialization requirement to avoid
erroneously converging to the local minima of the NLS
cost function [7].

In order to avoid the explicit minimization problem
and obtain a closed form solution, the nonlinear expres-
sions of observations can be linearized using the linear
least squares (LLS) algorithms. Commonly, there are
two types of LLS algorithms using range measurements.
One type of LLS algorithm is based on the utilization of a
dummy variable (called LLS-I) [10]. The other type of LLS
algorithm is based on the subtraction of the reference
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measured range (called LLS-II), which was initially pro-
posed in [11] and its reference selection method was dis-
cussed in [12] and [13] for non-hybrid networks and
hybrid TOA/RSS networks, respectively. For the line-of-
sight (LOS) and non-line-of-sight (NLOS) application
scenarios, the LLS localization performance was studied
in [12,14]. Compared with iterative algorithms (e.g., ML
and NLS approaches), LLS estimation is a sub-optimum
localization algorithm [15]. However, LLS estimation
usually has a reasonable positioning accuracy and lower
implementation complexity, which is essential to many
wireless applications, such as internet of things and
wireless sensor networks, due to their strict constraints
on energy consumption, signal processing capability, cost,
and so on. Moreover, the weighted LLS (WLLS) algo-
rithms can further improve the LLS localization accuracy.
The WLLS localization algorithms based on the utilization
of a dummy variable (called WLLS-I) were discussed in
[16-18], where the two-step WLLS-I localization technique
outperforms the conventional one-step WLLS-I localization
technique due to that the constraint of the dummy variable
is exploited, while the other one based on the subtraction
of the reference measured range (called WLLS-II) was
discussed in [12,13].

Hybrid localization techniques [19,20], such as the hy-
brid TOA/RSS or AOA/RSS techniques, are proposed to
enhance localization accuracy as well as fix the deficiencies
of one type of measurements, such as the insufficiency of
measurements to uniquely localize the agent. The effect of
inaccurate measurements on hybrid AOA/RSS LLS
localization was discussed in [21].

In this paper, we compare the localization performances
of different LLS and WLLS algorithms in both non-hybrid
TOA and hybrid TOA/RSS networks, which gives guid-
ance to localization algorithm selection in different sensor
networks. Simulation results show that if the variances of
measurements are unavailable, the LLS-II localization al-
gorithm should be adopted in both non-hybrid and hybrid
networks using their respective reference selection criteri-
ons. If the variances of measurements are available, the
two-step WLLS-I algorithm should be utilized to localize
the agent in both non-hybrid and hybrid networks.

The rest of the paper is organized as follows. Section 2
introduces the system model. Section 3 briefly reviews the
two common LLS localization algorithms. The WLLS loca-
tion estimators are given in Section 4. Section 5 provides
simulation results, and the last section concludes the

paper.

2 System model

For the hybrid TOA/RSS network, we assume that the
agent is connected to different anchors, and these anchors
are able to measure the range between the agent and an-
chors via TOA or RSS parameters. Let N be the total
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number of all anchors in the localization network. Without
loss of generality, we assume that the agent can measure
TOA-based ranges from anchors with indexes i €{1,2,...,5}
and measure RSS-based ranges from anchors with indexes
i €S+1,5+2,...N} (S<N). For the non-hybrid TOA net-
work, we assume that the agent can measure TOA-based
ranges from all N anchors, ie,, S=N.

In the first localization step, the range measurement be-
tween the agent and the ith (i = 1,2,...,N) anchor is denoted
as d,;. Let p=[x y]T be the unknown two-dimensional (2-D)
coordinate of the agent, which is to be estimated, and let
p = [x: y]” be the known 2-D coordinate of the ith anchor.
The error-free range between the agent and the ith anchor
is calculated as

di =p-p; = \/ (x=x:)" + (y-3,)° (1)

The range measurement is modeled as

dl' :dﬁ-ni (2)

where #; is the ranging error in d;, which results from
TOA or RSS estimation disturbance. It is assumed that
{n;} are independent Gaussian processes with zero mean
and variances {07 }.

Obtaining all the range measurements in (2) leads to
the following inconsistent equations

(e=0)* + (y)* =d}, i=1,2, N )

For TOA-based range measurements, the two-way
TOA ranging protocol is adopted [9] and the range can
be calculated as

cAi — ¢ TRTT;TTAT (4)

where ¢ is the propagation speed of ranging signals,
Trrr is measured round trip time, and Tra7 is measured
turnaround time. In additive white Gaussian noise
(AWGN) channel, the CRLB of mean square ranging
error (MSRE) from the ith (i €{1,2,...,S}) anchor is [8]

C2

2 _
0} CRLB, TOA — W

(5)

where SNR; = &;/N is SNR from the ith anchor, ¢; de-
notes the received signal energy, Ny denotes the one-
side power spectral density of AWGN, and /3 denotes
the effective signal bandwidth defined by
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with K{(f) denoting the Fourier transform of the ranging sig-
nal. In harsh environments, such as in buildings or urban
canyons, ultra-wideband (UWB) signals can be adopted to
achieve high-accuracy range measurements [22].

For RSS-based range measurements, the log-normal
model is commonly used to calculate range from path
loss, which is given by

_ d
P,(d) = Py-10ylog,, (d_o) +V (7)

where P,(d) denotes the average received power in
decibels at a distance d, P, denotes the received power
in decibels at reference distance d, y is the path-loss ex-
ponent with typical value between 2 and 6, and V is
commonly modeled as a zero-mean Gaussian random
variable with variance o2 , which represents the large-
scale fading variations (i.e., shadowing) [9]. The CRLB of
MSRE from the ith (i €{S + 1,S + 2,...,N}) anchor is [8]

2

(lnlO)aShdl> . ()

2
0 CRLB,RSS — < 10y

Although there seems a simple relation between aver-
age received power and distance, it is quite challenging
to obtain the exact relation between them. Since RSS
can have significant fluctuations even over short dis-
tances and/or small time intervals in a practical wireless
environment due to complicated signal propagation
mechanisms, therefore, the accuracy of RSS-based ran-
ging is commonly low, which is also true for UWB sig-
nals. For example, according to the IEEE 802.15.4a
NLOS residential UWB channel model [23], the lower
bound 0;,criprss is about 1.76 m at d; = 10 m with y =4.58
and oy, = 3.51 dB [8].

3 LLS localization algorithms

In the second localization step, we adopt different LLS
localization algorithms to convert the nonlinear range
measurements in (3) into linear models in p and give a
close form location estimate p;;.

3.1 LLS-I localization algorithm
By reorganizing (3), we have

~2x-2yy + %"+ Y’ = di a7y, 9)

We introduce a dummy variable R = x* + y* and define
A 2 [x y R]”. Then, we can rewrite (9) in matrix form as
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AIA = by (10)
where
2% -2y, 1 di-x3—y?
_ _ 92,2 a2
A= 2:x2 2:y2 1 ,br = dz—afz—y 2
e o 1] L Bd

Given the linear model in (10), the LLS estimate of the
vector A is given by [10]

o -1
Aus = (AfA;) Afb (11)

The LLS-I location estimate of the agent is simply ex-
tracted from the first and second entries of ALLS, that is

Buis = Al Ausl,| 7 (12)

3.2 LLS-Il localization algorithm

We choose the rth anchor as the reference anchor for
example without loss of generality. By subtracting the
nonlinear expression of the rth anchor in (3) from the
rest of the expressions, we have

2(xi=%,)% + 20,9, )y = dy~di~k: + ki (13)
where we define kiéx% —I—yf, i=1,2,..,N.
Rewrite (13) in matrix form, we have
Anp = by (14)
where
X% Y, df—df—.kr +ky
S A P > e v
P yN;y, df—dlz\,—:k, +kn

Given the linear model in (14), the LLS-II location esti-
mate of the agent is given by [6]

~ -1
Pris-n1 = (AITIAH) AITIbH (15)

Random selection (called LLS-II-1) is the simplest way for
reference selection [11], which arbitrarily selects one anchor
as the reference anchor to realize LLS localization. The sec-
ond LLS approach (called LLS-1I-2) obtains Nx(N-1)/2 lin-
ear equations by selecting each anchor as the reference
anchor for the other N-1 measurements [14]. In the third
LLS method (called LLS-II-3), the average of all range mea-
surements is obtained as the reference range, thus resulting
in N linear equations [15]. For non-hybrid localization net-
work, the fourth LLS technique (called LLS-II-RS) selects
the reference anchor with the shortest measured range
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Figure 1 Hybrid TOA/RSS LLS localization network.

(L,L)

J

among all the range measurements [12], and the index of
the reference anchor is given by

r:argmljn{ﬂi}, i=1,2, N. (16)

For hybrid TOA/RSS localization network, if coarse
information of ranging variances is available, e.g., the
RSS-based ranging variances are considerably larger

than the TOA-based ranging variances, the fifth LLS
technique (called H-LLS-II-RS) selects the TOA-based
anchor with the shortest measured range as reference
[13], and the index of the reference anchor is given by

r= argmin{fl,}, i € Croa (17)

where Ctoa denotes the index set for all the TOA-
based anchors.
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Figure 2 Comparison of different LLS localization algorithms (n = 1).
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Figure 3 Comparison of different LLS localization algorithms (n = 2).

4 WLLS localization algorithms

If the variances of measurements are available, the
WLLS localization algorithms can be adopted to further
improve the localization accuracy compared with LLS
localization algorithms discussed above.

4.1 WLLS-I localization algorithm

According to [6], the one-step WLLS-I location estimate
(called OS-WLLS-I) can be written as

Pos-wiLs-1 = UIA\WLLs} 1 [IA\WLLS} 2} T (18)

where

~ _ 1 _
Awiis = (AIT C/'Ay) A{C'by,
Ci=4x diag(afd%, a%d%, ey alzvdlz\[).

Symbol diag(a) denotes a diagonal matrix with its main
diagonal entries being vector a. Note that since the error-
free ranges {d;} are not available in practice, the noisy mea-

surements {d ,} are used to evaluate the weighted matrix
CI.

Moreover, the two-step WLLS-I localization algorithm
(called TS-WLLS-I) utilizes the constraint of the dummy
variable R =x”+9* to further enhance the localization
accuracy compared with the OS-WLLS-I algorithm.

o LS
1. LveoLs-l-1 |
- - - LLS-lI-2
14 + Ls--3 |
.0 LLS-II-RS
€ 1 0 H-LLS-II-RS|
= ’ A OS-WLLS-I
W —<- TS-WLLS! ||
O g eom T
=
2 058
g
(0]
2 0.64¢:
04
<
0.2
0
30

SNR, (dB)

Figure 4 Comparison of different LLS localization algorithms (n =5).




Wang EURASIP Journal on Wireless Communications and Networking (2015) 2015:51

According to [16], the TS-WLLS-I location estimate can
be written as

PTs-WLLS-1= [Sgn( [IA\WLLS] 1) \/ﬁ sgn( [K\X/LLS] 2) \/@} T

(19)
where sgn(-) represents the signum function,

7= (G'®'G)'G"®'h,
10

G=|0 1],
11

® = K(A/C'A)) 'K,

K= diag(2 x [T\WLLS} 2 [T\WLLS} g 1),

~ 2o 21 T
h = HAWLLS] . [AWLLS}z [AWLLS} 3} .

4.2 WLLS-II localization algorithm

According to [13], the reference selection has no effect
on the WLLS-II localization performance and the WLLS-
II location estimate can be written as

—~ _ -1 _
PwiLs-11 = (AITICIIIAH) AITICnlbIIa (20)

where Cj; is the weighted matrix and its elements can
be derived as [13]

[Cul, = 4d%0” + 30%-0” (a;.z + af) +0%0? +1(i,))
X (421520? + 20?)

with ij=12,.,Ni#nj=r and I(ij) is an indicator
function which is 1 for i = j, and is 0 otherwise.

5 Numerical simulation results

The simulation scenario is depicted in Figure 1, where a
hybrid network with N =4 anchors is used to localize
one agent. The area is a square of L x L m” and L is fixed
to 10 m. There are two sets of anchors (set I and set II)
in Figure 1. Set I contains S =2 TOA-based ranging an-
chors located at p; = (0,0) and p, = (L,0) respectively. Set
II contains N-S =2 RSS-based ranging anchors located
at p3 = (L,L) and p4=(0,L), respectively. The agent loca-
tion p is changed with 2 m intervals within [1,9] m both
in » and y directions, yielding a 5 x5 grid of possible
agent locations. The mean square position error (MSPE)
of different techniques are simulated at each location on
the grid, and then average over all the agent locations on
the grid. For LLS-II-1, the anchor-1 is selected as the ref-
erence anchor.
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According to (5) and [8], we simply assume that the
agent and anchors have the same configuration and let
TOA-based ranging error variance o7, ; be reversely
proportional to SNR;, which is

AY
0'2 :71 = = ! é ,iE{l,Z,“‘,S} (21)
TOAZ ™ GNR; ~ SNR, \do

where SNR; is the SNR at the reference distance d,,
and y is the path-loss exponent. According to (8) and
[24], we simply assume RSS-based ranging error vari-
ance oggg ; as

012185,1‘ = ’720 %OA,i (22)
where 7(7>1) controls the relation between the two
ranging error variances since TOA-based ranging usually
has higher accuracy than RSS-based ranging, especially
when adopting UWB signals. In the following simula-
tions, we assume d, = 1, SNR, €[20:30] dB with increas-
ing step A=2 dB, and y =2 unless otherwise specified.
For each simulation setting, 10° simulations are run to
get the average performance.

For the non-hybrid TOA-based localization scenario
or the hybrid TOA/RSS localization scenario that the
variances of both RRS-based and TOA-based ranging
are the same, ie, 7 =1, simulation results are depicted
in Figure 2. The LLS-II-1 algorithm performs the worst
among all the algorithms and the CRLB provides the
lower bound for them. The localization accuracy of the
LLS-I algorithm is the same as that of both LLS-/I-2 and
LLS-1I-3 algorithms, which is slightly lower than the ac-
curacy of the H-LLS-II-RS algorithm. The LLS-RS algo-
rithm beats all the other LLS algorithms. The reason is
that LLS-I, LLS-II-2, and LLS-II-3 algorithms equally
utilize all the range measurements (also their errors),
while H-LLS-II-RS and LLS-II-RS algorithms suppress
the influence of ranging errors on the localization accur-
acy through reference selection. For the non-hybrid
TOA-based localization scenario, it is obvious that H-
LLS-II-RS and LLS-II-RS algorithms are the same, thus
having the same performance. However, for the hybrid
TOA/RSS localization scenario that the variances of
both RRS-based and TOA-based ranging are the same,
the LLS-II-RS algorithm outperforms the H-LLS-II-RS al-
gorithm, since the H-LLS-II-RS algorithm never selects a
RSS-based anchor as the reference even if its range meas-
urement is the shortest. Moreover, the WLLS algorithms
outperform the LLS algorithms since all measurements
are weighted according to their reliability. The OS-WLLS-I
algorithm has almost identical localization accuracy to the
WLLS-II algorithm, since they both utilize the variances of
the measurements. Furthermore, the TS-WLLS-I algo-
rithm beats all the other WLLS algorithms and attains the
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CRLB in high SNR regions, since it further exploit the
constraint of the dummy variable.

For the hybrid TOA/RSS localization scenario, if the
RSS-based ranging variances are slightly larger than the
TOA-based ranging variances, e.g., 77 =2, simulation re-
sults are depicted in Figure 3. Different from Figure 2,
the LLS-II-1 algorithm outperforms LLS-I, LLS-1I-2, and
LLS-1I-3 algorithms. The reason is that the LLS-II-1 al-
gorithm selects a TOA-based anchor with small ranging
variance as the reference, which can more effectively
suppress the ranging errors on the localization accuracy
than those three LLS algorithms, since they equally
utilize the inaccurate RSS-based range measurements
and the accurate TOA-based range measurements.
Moreover, LLS-II-RS and H-LLS-II-RS algorithms have
nearly identical localization accuracy, since the effect of
larger RSS-based ranging variances plays an almost iden-
tical role as that of range measurements on the final
localization performance.

For the hybrid TOA/RSS localization scenario, if the
RSS-based ranging variances are considerably larger than
the TOA-based ranging variances, e.g., # =5, simulation
results are depicted in Figure 4. Since the variances of
RSS-based ranging become larger, the SNR range is chan-
ged to [30:40] dB to get reasonable localization results.
The localization performances of both LLS-II-1 and LLS-
II-RS techniques are nearly identical and the H-LLS-II-RS
technique beats all the other LLS techniques, since the ef-
fect of larger RSS-based ranging variances plays a more
important role than that of range measurements on the
final localization performance.

6 Conclusions

If the variances of range measurements are unavailable,
the LLS-II localization algorithm should be adopted in
both non-hybrid and hybrid networks using their re-
spective reference selection criterions. If the variances of
range measurements are available, the two-step WLLS-I
algorithm should be utilized to localize the agent in both
non-hybrid and hybrid networks. Although only LOS
scenarios are considered in the paper, the idea can be
extended to NLOS scenarios.
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