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Abstract

An efficient wireless transmission schemewith the signal space diversity (SSD) is proposed to improve the performance
of multiple-input multiple-output (MIMO) systems in fading channels. By introducing the rotated modulation and
space-time component interleaver, the proposed scheme jointly optimizes channel coding, modulation, and MIMO
and can improve the link reliability and energy efficiency. An optimum spatial component interleaver is proposed to
maximize the MIMO achievable rate. Based on the average mutual information (AMI)-maximization criterion, the
optimal rotation angles of real-valued signal and complex-valued QAM signal are investigated for the MIMO scheme.
For the iterative demapping and decoding (ID) scheme, a simple genetic algorithm (GA) to search binary convolution
code (BCC) is also put forward to match the rotated modulation. Simulation results show that the optimized
BCC-coded MIMO scheme with SSD-ID outperforms the turbo-coded MIMO scheme with bit-interleaved coded
modulation (BICM)-ID by 1.4 dB signal-to-noise ratio (SNR) gain, while the new scheme has much lower complexity.
So, the proposed scheme is simple, efficient, and promising for future wireless communication systems.

Keywords: Quadrature amplitude modulation (QAM); Signal space diversity (SSD); Multiple-input multiple-output
(MIMO); Iterative demodulation and decoding (ID); Extrinsic information transfer chart (EXIT)

1 Introduction
Wireless communications have made a great progress in
the recent few years. By introducing more advanced tech-
nology, 5G will provide higher spectral efficiency, more
spectrum resources, and more reliability to meet the
growing demand for mobile traffic [1].
Bit-interleaved coded modulation (BICM) is a

bandwidth-efficient coded modulation scheme which
increases the time diversity in fading channels [2,3].
For its iterative version, BICM with iterative demapping
and decoding (BICM-ID), the extrinsic information is
transferred between the channel decoder and the soft-in-
soft-out demapper, which is like the serial turbo decoder.
Multiple-input multiple-output (MIMO) scheme is the
extension of the coding theory on the space domain, so
it is also named space-time coding (STC) [4]. Foschini
proposed a layered space-time (LST) architecture to pro-
cess multidimensional signals in the space domain [5].
The BICM-LST is a conventional spectral-efficient spatial
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multiplexing technology to deal with MIMO fading chan-
nels, and the BICM-threaded layered space-time (TLST)
with a cyclic-shift spiral spatial interleaver is regarded
as the most efficient method, because the cyclic-shift
spatial interleaver introduces effective space diversity for
the codeword on each layer [6]. In general, the BICM-
LST can be viewed as the serial concatenation of the
channel coding, modulation, and spatial layered multi-
plexing. Because BICM-LST exhibits a robust diversity
performance on fading channels, it is widely deployed by
wireless communication standards.
As for the bandwidth-efficient quadrature amplitude

modulation (QAM), uncoded rotated multidimensional
modulation schemes over independent Rayleigh fading
channels were studied in [7] for the single-input single-
output (SISO) scheme. Different from the other well-
known diversity (time, frequency, code, space), it has
an intrinsic modulation diversity, which is named sig-
nal space diversity (SSD). Through the combination of
constellation rotation and component interleaver, the
schemes can achieve very high modulation diversity, and
the error performance over fading channels can approach
that on the additive white Gaussian noise (AWGN)
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channels. SSD schemes for SISO system have been exten-
sively researched. In [8], SSD is introduced to the BICM
by the means of modifications to the QAM constellation
mapper and demapper so as to improve the BICM per-
formance of QAM constellations for broadcasting appli-
cations. In [9], a LDPC-coded SSD scheme for multi-level
modulation was presented. N.F. Kiyani and J.H. Weber
studied the rotated-MPSK SISO BICM-ID system [10,12],
which focused on two-dimensional multiphase shift key-
ing (MPSK) scheme. In [11], the performance analysis
of BICM-ID with SSD in fading channels is presented.
In [13], the extension of BICM-SSD schemes with a
non-binary code was proposed. We also proposed coded
orthogonal frequency division multiplexing (OFDM) sys-
tems with SSD in [14,15]. In [16], the schemes combin-
ing SSD with SISO-coded BICM and BICM-ID systems
were investigated. It provided a new criterion for deter-
mining the optimal rotation angle by maximizing the
average mutual information (AMI). For the optimization
of BICM-ID system, it proved that SSD can mitigate
the different-slope problem of the demapper’s extrinsic
information transfer (EXIT) curve under different chan-
nels. However, finding well-matched channel codes for
given labeling in BICM-ID system with SSD is still a big
challenge.
The combination of signal rotation and space-time

coding in MIMO system can effectively improve the
diversity gain. In order to achieve full diversity, the
quasi-orthogonal space time block codes (QOSTBC) with
rotating the constellations of half of the complex sym-
bols has been widely discussed in [17-20]. Some specific
optimal rotation angles and corresponding optimization
criterions for QAM and phase shift keying (PSK) constel-
lations are provided. A rotation-based method that aims
at maximizing the minimum distance in the space-time
constellation is proposed in [17]. The proposed scheme
shows good improvement of the codes compared to their
non-rotated counterparts. In [18], the authors considered
the design of rotated QOSTBC for the MISO system. The
code designs are based mainly on the rank and the deter-
minant criteria, and the optimal rotation angle π/6 can
provide full diversity and the optimal coding gain. In [19],
the authors proposed to design the signal constellations
properly to ensure that the resulting quasi-orthogonal
STBCs can guarantee to achieve the full diversity. The
optimal rotation angles are determined by maximizing
the diversity product. A novel method to exactly derive
the coding gain of QSTBC as a function of the rota-
tion angle and the minimum Euclidean distance of two-
dimensional constellations is proposed in [20]. A coded
MIMO scheme for block-fading channels was proposed
in [21], which consists of a channel code and a space-
time code. The space-time code is designed based on SSD
technique, which allows full spatial multiplexing MIMO

transmission and achieves full space diversity. In [22], the
uncoded SSD scheme was extended to V-BLAST MIMO
systems in order to achieve the maximum diversity gain
without additional power or bandwidth consumption. An
improved turbo-coded SSD scheme was proposed for
MIMO-OFDM BICM system in [23], and the linear min-
imum mean square error (LMMSE) equalization is uti-
lized for the non-ID MIMO detection. In general, the
research of SSD technique in coded MIMO systems is
still on the original stage. There are still many open prob-
lems. For instance, the optimal rotation angles in current
research mainly depend on the maximum product dis-
tance introduced in [7]. Unfortunately, this criterion is
only valid for the SISO system in high signal-to-noise
ratio (SNR) region. As for the codedMIMO scheme, when
powerful forward error-correction codes (FECs) are con-
sidered, actual SNR can be quite low. Hence, the angle
values applied to uncoded SISO system do not lead to
the best error performance for the coded modulation
MIMO scheme. What is more, current research works
mainly focus on local optimizations. For example, most
proposed MIMO systems with SSD are only an extension
of SISO-SSD system, and all are based on the conven-
tional non-precoding transmitter. The channel coding,
QAM modulation, and STC are independent with each
other, which is just a straightforward serial concatena-
tion. Hence, the performance of the BICM-LST is still
rather far away from the MIMO fading channel capacity.
For example, a near-capacity BICM-LST scheme was pro-
posed in [24], which allows the iterative processing of the
list sphere detection (LSD) and turbo decoding, but simu-
lation results indicate that the gaps to the MIMO capacity
are still more than 2 dB. As each individual optimization
becomesmature so far, from the philosophy, it is high time
to optimize these key technical elements jointly so as to
improve the overall performance.
An improved coded MIMO system based on SSD is

proposed for the jointly optimization of constellation
rotation angle, spatial component interleaver, and the
matching of channel coding and labeling, which is named
joint coding and modulation diversity (JCMD), where the
terminology ‘coding’ refers to both the channel coding
and space-time coding. Firstly, in order to maximize the
MIMO achievable rate, an optimum spatial component
interleaver is proposed. Secondly, based on the AMI-
maximization criterion, the optimal rotation angles of
real-valued signal and complex-valued QAM signal are
investigated for MIMO schemes, which are different from
the SISO scheme. Thirdly, for the JCMD-ID scheme, a
simple genetic algorithm (GA) to search binary convolu-
tion code (BCC) is put forward to match the rotated QAM
modulation. Simulation results show that the optimized
BCC-coded JCMD-ID MIMO scheme outperforms the
turbo-coded BICM-ID MIMO scheme in [24] by 1.4 dB
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SNR gain, while the new scheme has much lower com-
plexity.
Throughout this paper, we use bold letters to represent

vectors or matrices. (·)T and (·)H represent transposition
and conjugate transposition, respectively. SNR = Es/N0,
where Es denotes the average symbol energy per receive
antenna and N0 = 2σ 2 denotes the variance of the
complex Gaussian noise.
The paper is organized as follows. An improved JCMD

MIMO scheme is proposed in Section 2. Theoretical anal-
ysis about the achievable rate of JCMD-MIMO for rotated
real-valued signals is given in Section 3. Based on the AMI
analysis, the optimal rotation angles for JCMD and JCMD-
ID MIMO systems are presented in Section 4. Section 5
introduces an outer convolutional code search method for
the optimization of JCMD-ID system with optimal rota-
tion angle. Simulation results are presented in Section 6
on fast fading channels. Concluding remarks are offered
in Section 7.

2 Systemmodel
Based on the BICM-TLST scheme, a system model of
NL-layer MIMO-JCMD-ID is shown in Figure 1. Perfect
channel state information (CSI) is assumed to be known
at both the transmitter and the receiver. In Figure 1, the
iterative feedback processing is depicted in dashed lines.
Without loss of generality, a rank-L NR × NT MIMO sys-
tem with L nonzero eigenvalues is assumed, where NR
and NT are the number of receive and transmit anten-
nas, respectively, and NL ≤ L ≤ min{NR,NT }. In the
transmitter, K information bits B = (b1, b2, . . . , bK )T are
encoded and interleaved to yield the coded bit sequence
C = (c1, c2, . . . , cN )T . Afterwards, m-tuple coded bits are
mapped to a complex symbol xk = xk(I)+ j · xk(Q), which

is chosen from a 2m-ary rotated QAM constellation set
χ = {

x̂1, x̂2, . . . , x̂2m
}
according to some optimal angle.

Each symbol xk has one Q-component xk(Q) and one I-
component xk(I). The rotated mapped symbol sequence
is first mapped onto NL layers in a round robin man-
ner. Afterwards, the conventional cyclic-shift spatial inter-
leaver of TLST is used for different symbols on NL layers
to exploit both the space and time diversity as the follow-
ing, because the cyclic-shift spatial interleaver allows the
codewords to be distributed on all layers:

wl
k = xik , l = (i + k − 2) mod NL + 1, (1)

where wl
k denotes the kth (k ∈ N+) symbol at the lth (l ∈

[1,NL] ) layer after the spatial interleaver, and xik denotes
the kth symbol at the ith (i ∈ [1,NL] ) layer before the
interleaver. Then, a spatial Q-component interleaver is
applied for the Q components of NL symbols at the same
instant as the following:

znk (Q) = wl
k(Q), n = NL − l + 1, (2)

where znk denotes the kth symbol at the nth (n ∈ [1,NL] )
layer after the spatial Q interleaver. Thus, I components
keep the same layer order as before, and just Q compo-
nents change the layer order. The spatial Q-component
interleaver is used to make the fading of I component and
that of the Q component as uncorrelated as possible in
the space domain. Thus, the modulation diversity of the
proposed scheme is further extended to the spatial dimen-
sion. Actually, the Q-component spatial interleaver can
be different from the reverse interleaver in Equation 2.
For example, it can be a cyclic-shift interleaver as the
following,

znk (Q) = wl
k(Q), n = (l mod NL) + 1. (3)

Figure 1 System model for MIMO-JCMD-ID with perfect CSI. The iterative feedback processing is depicted in dashed lines.
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If perfect CSI is known, we prove that the reverse inter-
leaver is better than other interleavers through the later
theoretical analysis and computer simulations. If CSI is
unknown at the transmitter, the cyclic-shift interleaver in
Equation 3 can be used.
In order to make the fading of I component and that

of the Q component as uncorrelated as possible in the
time domain, after the spatial Q interleaving, Q compo-
nents of the mapped symbols in each layer are interleaved
through a time-domain pseudo S-random interleaver to

reconstruct a new symbol vector sk =
[
s1k · · · sNL

k

]T
, where

slk denotes the kth symbol at the lth layer after the com-
ponent interleaving. Afterwards, the symbols are mapped
onto NT transmit antennas via the spatial precoding and
then transmitted.
The ideal precoding matrix can be obtained by singu-

lar value decomposition (SVD), which can divide MIMO
channel into parallel independent SISO channels. Accord-
ing to the SVD criterion, the NR × NT MIMO channel
matrixHk can be decomposed as

Hk = UkDkVk
H , (4)

where theNR ×NR matrixUk and theNT ×NT matrix Vk
are unitary matrices. Dk is a NR × NT non-negative diag-
onal matrix with NL nonzero descending-order singular
values, √ρ1 ≥ √

ρ2 ≥ . . . ≥ √
ρNL > 0, where ρi is the

ith largest eigenvalue of Hk · Hk
H . Thus, the SVD-based

linear precoding is performed as the following:

pk = Vk · sk . (5)

In the receiver, the corresponding detection matrix
is UH

k . The precoding and detection process can be
expressed as linear transformations as shown in Equation
6.

rk = UH
k · (Hk · pk + nk)

= UH
k · Hk · Vk · sk + UH

k · nk
= Dk · sk + n′

k ,
(6)

where rk =
[
r1k · · · rNR

k

]T
denotes the received symbol

vector, nk and n′
k are column vectors of NR complex

Gaussian random variables with mean zero and variance
σ 2 = N0

2 . Thus, due to SVD, the MIMO channel can be
viewed as NL parallel fading channels, and for lth layer,
the kth received symbol that corresponds to slk in the
transmitter can be expressed as

rlk = √
ρl · slk + n′l

k . (7)

After the corresponding Q-component de-interleaving
in time domain for each layer and spatial Q-component
de-interleaving, the kth received symbol on lth layer is
reconstructed as ylk that corresponds to xlk in the trans-
mitter. For ylk , the fading coefficients of I-component

λk(I) and Q-component λk(Q) are different, which can be
expressed as

ylk(I) = λlk(I)x
l
k(I) + nlk(I)

ylk(Q) = λlk(Q)xlk(Q) + nlk(Q).
(8)

Assuming that the Q interleaver is long enough, each
coordinate of the symbol after the Q de-interleaving can
be regarded as suffering from independent fading coef-
ficients. The equivalent coded modulation (CM) channel
for JCMD system before sending to the soft demapper can
be modeled as

Y l
k(η) = �l

k(η)Xl
k(η) + Nl

k(η), η ∈ {I,Q}, l ∈ [1,NL] ,
(9)

where Nl
k(I) and Nl

k(Q) are identically independently dis-
tributed (i.i.d.) Gaussian noise random variables with zero
mean and variance of σ 2 = N0

2 . For MIMO fading
channels, �l

k(I) and �l
k(Q) are singular values of cor-

responding sub-channels. This is in net contrast with
respect to SISO scheme where the fading coefficients
are Rayleigh distributed. That means the modulation
diversity of proposed scheme is further extended to the
spatial dimension. By denoting X = [

X1, . . . ,XNL

]T ,
Y = [

Y1, . . . ,YNL

]T ,N = [
N1, . . . ,NNL

]T , and � =
diag

(
�1, . . . ,�NL

)
representing a (2NL × 2NL) diago-

nal matrix, the channel model in Equation 9 can be
written in the matrix form as Y = �X + N, where
Xl =

[
Xl
k(I),X

l
k(Q)

]
, Yl =

[
Y l
k(I),Y

l
k(Q)

]
, Nl =[

Nl
k(I),N

l
k(Q)

]
, and �l = diag

(
�l

k(I),�
l
k(Q)

)
.

After that, symbols on multiple layers are reassem-
bled as symbol streams y = [

y1, y2 · · · ]T through the
layer demapping. A serial concatenation of a soft-in-soft-
out rotated symbol demapper and a channel decoder
are employed to approach the maximum likelihood (ML)
receiver performance. For JCMD-ID, the iterative demap-
ping and decoding scheme is an application of the turbo
decoder principle. The soft demapper calculates the
extrinsic value E(ci,k) of bit ci,k which corresponds to the
ith (i = 1, 2, . . . ,m) bit of the received symbol yk as
follows:

E(ci,k) = L(ci,k) − A(ci,k), (10)

where L(ci,k)
	= ln P(ci,k=0|yk)

P(ci,k=1|yk) is the log-likelihood ratio

(LLR) and A(ci,k)
	= ln P(ci,k=0)

P(ci,k=1) is a priori L-value. Based
on Bayes’ theorem, we can write
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E(ci,k) = ln

∑
x̂∈χ ,
ĉi=0

P(yk|xk = x̂) exp

⎧⎨
⎩

m∑
j=1,
j �=i

[
(−1)ĉj A

(
cj,k

)
2

]⎫⎬
⎭

∑
x̂∈χ ,
ĉ=1

P(yk|xk = x̂) exp

⎧⎨
⎩

m∑
j=1,
j �=i

[
(−1)ĉj A

(
cj,k

)
2

]⎫⎬
⎭
,

(11)

where ĉi is the ith bit corresponding to symbol x̂. For the
fading channel, the conditional probability is given by

P(yk |xk = x̂)= 1
2πσ 2 exp

⎛
⎜⎝−

(
yIk − λIk x̂

I)2+(yQk −λ
Q
k x̂

Q
)2

2σ 2

⎞
⎟⎠ .

(12)

To the complexity, by applying Max-Log-MAP algo-
rithm, Equation 11 can be simplified as

E(ci,k) = max
x̂∈χ ,
ĉi,k=0

⎧⎨
⎩
k

(
x̂
)−

m∑
j=1,
j �=i

[
(−1)ĉj,k A

(
cj,k

)
2

]⎫⎬
⎭−

max
x̂∈χ ,
ĉi,k=1

⎧⎨
⎩
k

(
x̂
)−

m∑
j=1,
j �=i

[
(−1)ĉj,k A

(
cj,k

)
2

]⎫⎬
⎭ ,

(13)

where 
k
(
x̂
) = −

(
yIk−λIk x̂

I)2+(yQk −λ
Q
k x̂

Q
)2

2σ 2
For the JCMD system without the iterative demap-

ping and decoding, A(ci,k) = 0. Finally, the decoder
can utilize the extrinsic values to decode information
bits.
In the transmitter, compared with the conventional

BICM, the JCMD scheme introduces extra constella-
tion rotation and Q-component interleavers. Constella-
tion rotation does not increase the complexity, because
the rotated symbol mapping can be implemented through
look-up table operations as the same as the conventional
modulation without rotation. Q-component interleavers
also can be implemented by the low-complexity index-
based look-up table operations.
In the receiver, the soft rotated demapping operation of

JCMD system is the same as that of BICM system, which is
shown in Equation 11. Q-component de-interleavers also
can be implemented by the simple reverse index-based
look-up table operations.

3 Theoretical analysis of the achievable rate for
rotated real-valued signals

Firstly, since real-valued signals are elementary, we ana-
lyze the real-valued transmit signals in MIMO systems.

Lemma 1. For any constant rank-2 MIMO fading chan-
nel with real-valued transmit signals, the constant achiev-
able rate of JCMD-MIMO is not less than that of BICM-
MIMOwith the conventional uniform power allocation. If
and only if the constant eigenvalues are identical, both of
them are equal, otherwise the former is greater than the
latter.

Proof. A simple rank-2 MIMO case with two eigen-
values ρ1 and ρ2 is illustrated in Figure 2. Due to the
well-known SVD, BICM-MIMO can be viewed as two
parallel fading channels with two eigenvalues ρ1 and ρ2
for spatial layer 1 and layer 2, respectively. Two fading
amplitude coefficients of layer 1 and layer 2 are the cor-
responding singular values √

ρ1 and
√

ρ2, respectively, as
shown in the left half of Figure 2. Thus, given the same
transmit power P

2 on each layer for one real-valued sym-
bol, the received symbol power of layer 1 and that of
layer 2 are ρ1P

2 and ρ2P
2 , respectively, where P is the total

transmit power for two layers. So, according to Shannon’s
theory, the achievable rate of BICM-MIMO is shown as
the following:

C1 = W
2

· log2
[(

1 + ρ1P
2σ 2

)(
1 + ρ2P

2σ 2

)]

= W
2

· log2
(
1 + ρ1 + ρ2

2σ 2 P + ρ1ρ2
4σ 4 P2

)
,

(14)

where W is the channel bandwidth, σ 2 is the variance of
AWGN. As we know, in order to achieve the capacity in
the Equation 14, the transmit signals should be Gaussian
distributed. Note that the rotation does not change the
achievable rate for the BICM-MIMO scheme without the
I/Q-component interleaver.
For the JCMD-MIMO scheme, we consider the π

4 -
rotated real-valued transmit signal, which is rotated by π

4
compared with the conventional real-valued signal. Due to
the orthogonal modulation, the transmit powers of I com-
ponent and that of Q component on each layer are both
P
4 . For JCMD-MIMO, after the spatial Q-component de-
interleaver at the receiver, the fading amplitude coefficient
of I component is different from that of Q component in
one symbol, that is to say, one is √

ρ1, and another is √
ρ2.

Thus, the received power of I component is also differ-
ent from that of Q component, that is to say, one is ρ1P

4 ,
and another is ρ2P

4 . So, the total received symbol power is
(ρ1+ρ2)P

4 both for layer 1 and layer 2. Thus, JCMD-MIMO
can be viewed as two parallel fading channels with iden-
tical fading amplitude coefficient

√
ρ1+ρ2

2 for both layer 1
and layer 2, as shown in the right half of Figure 2. In the
receiver, after the phase compensation, the received signal
also can be viewed as the real-valued signal with the power
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(a) (b)
Figure 2 Achievable rates of conventional BICM-MIMO and JCMD-MIMO system. (a) BICM-MIMO can be viewed as two parallel fading channels

with two eigenvalues ρ1 and ρ2. (b) JCMD-MIMO can be viewed as two parallel fading channels with identical fading amplitude coefficient
√

ρ1+ρ2
2

for both layers.

(ρ1+ρ2)P
4 . Therefore, the achievable rate of JCMD-MIMO

is shown as the following:

C2 = W
2

· log2
[
1 + (ρ1 + ρ2)

4σ 2 P
]2

= W
2

· log2
[
1 + ρ1 + ρ2

2σ 2 P + (ρ1 + ρ2)2

16σ 4 P2
]
.

(15)

So, comparing Equation 14 with 15, it is easy to come to
the conclusion: C2 ≥ C1
If and only if ρ2 = ρ1, C2 = C1.

Furthermore, we will prove that π
4 is the optimum rota-

tion angle for real-valued transmit signals in the JCMD-
MIMO scheme. Let us consider a general θ-rotated real-
valued transmit signal, which is rotated by θ compared
with the conventional real-valued signal. Thus, the trans-
mit power of I component and that of Q component on
layer 1 are P

2 cos
2 θ and P

2 sin
2 θ , respectively, and the

total transmit power on layer 1 is also P
2 . Therefore, the

received power of I component and that of Q component
are ρ2P

2 cos2 θ and ρ1P
2 sin2 θ , respectively. So, the total

received symbol power on layer 1 is (ρ1 sin2 θ+ρ2 cos2 θ)
2 P.

Likewise, the total received symbol power on layer 2 is

(ρ2 sin2 θ+ρ1 cos2 θ)
2 P. Thus, we can get the following achiev-

able rate:

C(θ)= W
2

·log2
{[
1+

(
ρ1sin2θ+ρ2cos2θ

)
2σ 2 P

]
·
[
1+

(
ρ1cos2θ+ρ2sin2θ

)
2σ 2 P

]}

= W
2

· log2
[
1+ ρ1+ ρ2

2σ 2 P+
(

ρ1ρ2 + sin2(2θ)(ρ1 − ρ2)
2

4

)
P2

4σ 4

]
.

(16)

Obviously, when θ = 0, the achievable rate is minimum
as Equation 14; and when θ = π

4 , the achievable rate is
maximum as Equation 15.
According to Lemma 1, we can come to the following

theorem:

Theorem 1. For any actual rank-2 MIMO fading chan-
nel with real-valued transmit signals, the ergodic achiev-
able rate of JCMD-MIMO is greater than that of BICM-
MIMO with the conventional uniform power allocation.

Proof. For any actual rank-2 MIMO fading channel,
the ergodic achievable rate is the mathematical aver-
age expectation of the above constant achievable rate
over all possible channel eigenvalue realization. Gener-
ally speaking, the equal eigenvalue realization is only a
small probability event. The case that the channel eigen-
values are different must be existed. According to Lemma
1, the ergodic achievable rate of JCMD-MIMO is greater
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than that of BICM-MIMO with the conventional uniform
power allocation.

Generally speaking, assuming a rank-L MIMO with a
descending-order eigenvalue vector ρ̄ = {ρ1, ρ2, . . . , ρL},
Q-component interleaver only changes the order of Q
components on L layers to another eigenvalue vector ζ̄ =
{ζ1, ζ2, . . . , ζL}, where ζ̄ is just another arrangement order
of ρ̄ corresponding to the output order of Q-component
spatial interleaver. Hence, due to the orthogonal modu-
lation, JCMD-MIMO can be viewed as L parallel fading
channels with an eigenvalue vector ῡ = ρ̄+ζ̄

2 . So, the
achievable rate of rank-L JCMD-MIMO is shown as the
following:

CL(ζ̄ ) = W
2

·
L∑

i=1
log2

[
1 + (ρi + ξi)

2σ 2L
P
]

= W
2

· log2
[ L∏
i=1

(
1 + (ρi + ξi)

2σ 2L
P
)]

,

(17)

where P is the total transmit power for L layers. Hence, the
optimum problem of the achievable rate is to find the opti-
mum ζ̄ so as to maximize CL. We can reach the following
theorem:

Theorem 2. To maximize the achievable rate of rank-L
JCMD-MIMO with a descending-order eigenvalue vector
ρ̄ = {ρ1, ρ2, . . . , ρL}, the optimum Q-component inter-
leaver vector ω = {ρL, ρL−1, . . . , ρ1}, that is to say, ω

should be in ascending order, which is just in reverse order
of ρ̄.

Proof. Assuming someone claims to find a
non-increasing-order vector ρ̄′ other than ω to
have maximum achievable rate CL(ρ̄′), we must
can find a pair of

{
ρ′
i , ρ′

i+1
}

from ρ̄′ to satisfy
ρ′
i > ρ′

i+1. And then, we can construct a new vector
η = {

ρ′
1, ρ′

2, . . . , ρ′
i−1, ρ′

i+1, ρ′
i,ρ

′
i+2, . . . , ρ′

L
}
, which only

changes the order of
{
ρ′
i , ρ′

i+1
}

from ρ̄′. So, we can
compute the difference of CL(η)−CL(ρ̄′)

W/2 ,

CL(η)−CL(ρ̄′)
W/2

=
L∑

k=1
log2

[
1+ (ρk+ηk)

2σ 2L
P
]
−

L∑
k=1

log2

[
1+

(
ρk+ρ′

k
)

2σ 2L
P
]

= log2
[
1 + (ρi + ηi)

2σ 2L
P
]

+ log2
[
1 + (ρi+1 + ηi+1)

2σ 2L
P
]

− log2

[
1 +

(
ρi + ρ′

i
)

2σ 2L
P
]

− log2

[
1 +

(
ρi+1 + ρ′

i+1
)

2σ 2L
P
]

= log2

[
1+

(
ρi + ρ′

i+1
)

2σ 2L
P
]

+ log2

[
1 +

(
ρi+1 + ρ′

i
)

2σ 2L
P
]

− log2

[
1+

(
ρi + ρ′

i
)

2σ 2L
P
]

−log2

[
1 +

(
ρi+1 + ρ′

i+1
)

2σ 2L
P
]
.

(18)

Let a constant c = P
2σ 2L , and then,

CL(η) − CL(ρ̄′)
W/2

= log2
M1
M2

, (19)

where
M1 = 1 + c

(
ρi + ρ′

i + ρi+1 + ρ′
i+1

)
+ c2

(
ρi + ρ′

i+1
) (

ρi+1 + ρ′
i
)

> 0,
(20)

M2 = 1 + c
(
ρi + ρ′

i + ρi+1 + ρ′
i+1

)
+ c2

(
ρi + ρ′

i
) (

ρi+1 + ρ′
i+1

)
> 0.

(21)

So, the difference

M1 − M2 = c2(ρi − ρi+1)(ρ
′
i − ρ′

i+1). (22)

Because ρi > ρi+1 and ρ′
i > ρ′

i+1.
So, M1 − M2 > 0; Thus, M1

M2
> 1; and then, CL(η) −

CL(ρ̄′) > 0.
That is to say, we find a counter-example η to have

more achievable rate than CL(ρ̄′), which contradicts the
assumption of maximum achievable rate CL(ρ̄′). There-
fore, ω should be in ascending order, which is just in
reverse order of ρ̄.

So, in Section 2, the reverse Q-component spatial inter-
leaver is applied as Equation 2 so as to have the maximum
achievable rate. In fact, if L is an even number, the rank-
L JCMD-MIMO with the reverse Q-component spatial
interleaver can be viewed as L

2 parallel pairs of rank-2
JCMD-MIMO with eigenvalues {ρi, ρL+1−i}, where i ∈[
1, L2

]
. Likewise, if L is an odd number, it can be viewed

as the parallel combination of one SISO fading channel
with eigenvalue

{
ρ L+1

2

}
and L−1

2 pairs of rank-2 JCMD-
MIMO with eigenvalues {ρi, ρL+1−i}, where i ∈ [

1, L−1
2
]
.

Thus, the largest eigenvalue layer couples with the small-
est eigenvalue layer, the second largest eigenvalue layer
couples with the second smallest eigenvalue layer, and
so on. Actually, BICM-MIMO is also one special case of
JCMD-MIMO when ζ̄ = ρ̄.

Theorem 3. As for the achievable rate of a rank-L
JCMD-MIMO with a descending-order eigenvalue vector
ρ̄ = {ρ1, ρ2, . . . , ρL}, the upper bound is CL(ω), where
ω is in reverse order of ρ̄, and the lower bound is the
BICM-MIMO achievable rate CL(ρ̄).

Proof. According to Theorem 2, the maximum achiev-
able rate is CL(ω̄), we can get C ≤ CL(ω̄). In addition,
CL(ρ̄) is the minimum achievable rate, which can be
proved by the similar math skill as follows.
Assuming someone claims to find a non-descending-

order vector ρ̄′ other than ρ to have minimum achievable
rate CL(ρ̄′), we must can find a pair of

{
ρ′
i , ρ′

i+1
}
from ρ̄′

to satisfy ρ′
i < ρ′

i+1. And then, we can construct a new
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vector η = {
ρ′
1, ρ′

2, . . . , ρ′
i−1, ρ′

i+1, ρ′
i,ρ

′
i+2, . . . , ρ′

L
}
, which

only changes the order of
{
ρ′
i , ρ′

i+1
}
from ρ̄′. So, we can

compute the difference of CL(η)−CL(ρ̄′)
W/2 ,

CL(η)−CL(ρ̄′)
W/2

=
L∑

k=1
log2

[
1+ (ρk+ηk)

2σ 2L
P
]
−

L∑
k=1

log2

[
1+

(
ρk+ρ′

k
)

2σ 2L
P
]

= log2
[
1 + (ρi + ηi)

2σ 2L
P
]
+log2

[
1 + (ρi+1 + ηi+1)

2σ 2L
P
]

− log2

[
1+

(
ρi + ρ′

i
)

2σ 2L
P
]

−log2

[
1 +

(
ρi+1 + ρ′

i+1
)

2σ 2L
P
]

= log2

[
1+

(
ρi + ρ′

i+1
)

2σ 2L
P
]

+log2

[
1 +

(
ρi+1 + ρ′

i
)

2σ 2L
P
]

− log2

[
1+

(
ρi+ρ′

i
)

2σ 2L
P
]

−log2

[
1+

(
ρi+1 + ρ′

i+1
)

2σ 2L
P
]
.

(23)

Let a constant c = P
2σ 2L , and then,

CL(η) − CL(ρ̄′)
W/2

= log2
M1
M2

, (24)

where

M1 = 1 + c
(
ρi + ρ′

i + ρi+1 + ρ′
i+1

)
+ c2

(
ρi + ρ′

i+1
) (

ρi+1 + ρ′
i
)

> 0,
(25)

M2 = 1 + c
(
ρi + ρ′

i + ρi+1 + ρ′
i+1

)
+ c2

(
ρi + ρ′

i
) (

ρi+1 + ρ′
i+1

)
> 0.

(26)

So, the difference

M1 − M2 = c2(ρi − ρi+1)
(
ρ′
i − ρ′

i+1
)
. (27)

Because ρi > ρi+1 and ρ′
i < ρ′

i+1.
So, M1 − M2 < 0; Thus, M1

M2
< 1; and then, CL(η) −

CL(ρ̄′) < 0.
That is to say, we find a counter-example η to have

small achievable rate than CL(ρ̄′), which contradicts the
assumption of minimum achievable rate CL(ρ̄′). There-
fore, CL(ρ̄) is the minimum achievable rate.

4 AMI analysis for complex-valued QAM signals
For practical communication systems, the transmit signal
X usually belongs to a finite alphabet (constellation sig-
nal set), such as the complex-valued QAM signal. AMI
also varies with the rotation angle of QAM signals in the
MIMO system. Assuming equiprobable QAM constella-
tion inputs and the independent Rayleigh fading channel,
the AMI of the coded modulation (CM) MIMO system

before the demapper is called CM-AMI, which is irrele-
vant to the labeling and defined as [2]

ICM = I (X;Y|�)

=
NL∑
l=1

⎧⎪⎨
⎪⎩m − Exl ,yl ,λl

⎡
⎢⎣log2

∑
x̂∈χ

P
(
yl|x̂, λl

)
P(yl|xl, λl)

⎤
⎥⎦
⎫⎪⎬
⎪⎭.

(28)

The AMI after the demapper is called BICM-AMI,
which is relevant to the labeling and defined as [2]

IBICM =
m∑
k=1

I (Ck ;Y|�)

=
NL∑
l=1

⎧⎪⎨
⎪⎩m−

m∑
k=1

Eck ,yl ,λl

⎡
⎢⎣log2

∑
x̂∈χ

p(yl|x̂, λl)∑
x̂∈χ ,ĉk=ck

p(yl|x̂, λl)

⎤
⎥⎦
⎫⎪⎬
⎪⎭.

(29)

AMI analysis is an effective method to calculate its
achievable rate. From Equation 28, because I (X;Y|�) is
independent from labeling, it implies that the AMI of CM
system is not related to the labeling. However, for the
BICM system, the BICM-AMI strongly depends on the
labeling. Extensive literature has proven that Gray label-
ing is optimal for the non-ID BICM system in the AWGN
channel [25]. Monte Carlo simulation techniques are use-
ful tools to get the expectation of a complex function
by ergodicity of the random variables [26]. The expecta-
tion operations in Equations 28 and 29 can be evaluated
by using the Monte Carlo simulation techniques. Based
on Equation 9, we can get the received symbol before
the soft demapper by generating the random coded bits
ck (corresponding to the modulated symbol xlk on each
layer), the random fading coefficient λlk (SVD of i.i.d.
Rayleigh-distributed random channel matrixHk), and the
i.i.d. Gaussian noise random variable nlk . Thus, by using
the Monte Carlo simulation techniques, we can estimate
the expectation values of Equations 28 and 29 by ergod-
icity of (ck , Hk , nlk), where P (yl|xl, λl) can be calculated
as Equation 12. As for complex-valued QAM signals, the
optimum rotation angle usually is different from the value
of the real-valued signals, and we can get it by maximizing
AMI.
Figure 3 shows how 2 × 2 MIMO CM-AMI varies with

the rotation angle θ for real-valued binary phase shift key-
ing (BPSK) symbols. Since I (X;Y|�) = I (Ck ;Y|�), the
ICM and IBICM are the same for BPSK. Both for low and
high SNR, e.g., at SNR = −5 dB and SNR= −15 dB,
the optimal rotation angles are always θ = 45°, which
coincides with our analysis in Section 3.
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(a) (b)
Figure 3 2 × 2 MIMO CM-AMI ICM vs. rotation angle θ for BPSK over Rayleigh fading channels. (a) SNR = −5 dB. (b) SNR = 15 dB.

Figures 4 and 5 show how 4 × 4 MIMO CM-AMI
and BICM-AMI vary with the rotation angle θ for QPSK
and 16QAM, respectively. The AMIs of proposed sys-
tems with two kinds of spatial Q-component interleavers
(reverse and cyclic-shift) are plotted in the same figures.
Examples of low SNR and high SNR are presented. In
Figures 4 and 5, for both spatial Q interleaving algorithms,
the optimal rotation angles just have slight difference in
high SNR. For CM-AMI, the optimal angle of QPSK at
SNR = −3 dB is 45°, while the optimal angle at SNR =
11 dB is about 30° and 29° for the cyclic-shift interleaver
and the reverse interleaver, respectively. For BICM-AMI,
the optimal angle of QPSK at SNR = −3 dB is 0°, while
the optimal angle at SNR = 11 dB is about 26° and 27°
for the cyclic-shift interleaver and the reverse interleaver,
respectively.
Based on the AMI maximization criterion, the optimal

angle corresponds to the maximum AMI value. Figure 6
shows the CM-AMI and BICM-AMI curves that corre-
spond to the optimal angles in Figures 4 and 5 for 4 × 4

MIMO systems. In Figure 6, CM-AMI and BICM-AMI
for the reverse interleaver described in Equation 2 are
always not less than that of the cyclic-shift interleaver
described in Equation 3 both for QPSK and 16QAM.
These observations concide well with Theorem 2.
Based on maximizing AMI, we can also obtain the rela-

tionship between optimal angle and SNR. The optimal
angles for CM and BICM systems vary with SNR for QPSK
and 16QAM, which is plotted in Figure 7. The optimal
rotation angle of CM is always bigger than that of BICM.
When SNR increases, the optimal angle of CM becomes
smaller, but the optimal angle of BICM becomes bigger.
For a given modulation order m, according to the

AMI value I corresponding to optimal rotation angle in
Figure 6, the optimal code rate for a given SNR can be
calculated as R = I

m·NL
. Therefore, we can get the rela-

tionship between the optimal code rate R and SNR, which
is shown in Figure 8.
Thus, for a given operating SNR, we can obtain the

optimum rotation angle in Figure 7 and the optimal

(a) (b)
Figure 4 4 × 4 MIMO CM-AMI ICM and BICM-AMI IBICM vs. rotation angle θ for QPSK over Rayleigh fading channels. (a) SNR = −3 dB.
(b) SNR = 11 dB.
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(a) (b)
Figure 5 4 × 4 MIMO CM-AMI ICM and BICM-AMI IBICM vs. rotation angle θ for 16QAM over Rayleigh fading channels. (a) SNR = −3 dB.
(b) SNR = 11 dB.

code rate in Figure 8. Furthermore, we can get the
relationship between code rate R and optimal rota-
tion angle, which is shown in Figure 9 for QPSK and
16QAM. It provides a good reference to select an opti-
mal rotation angle for a given code rate. For instance, for
code rate = 0.5, the optimal angles for 4 × 4 MIMO-
BICM QPSK and 16QAM are 18° and 0°, respectively.
According to Figures 7 and 9, at low SNR or low code
rate, non-rotation is the best for BICM, which implies
that the channel coding dominates the BICM perfor-
mance, while 45° rotation is the best for CM, which
indicates that the rotation symmetry affects the CM per-
formance. However, at high SNR or high code rate, the
signal space diversity dominates the performance both for

BICM and CM, so BICM-AMI can approach CM-AMI,
and the optimum angle of BICM with the optimum
reverse spatial interleaver is also close to that of CM with
the same interleaver. Note that the rotation angle is just
related to the code rate and modulation. So, in practice,
the rotation symbol mapper can be implemented through
a look-up table that is calculated and stored in advance
for a given modulation order and code rate, which is the
same as the conventional symbol mapper. Hence, it does
not introduce additional processing complexity and delay.

5 Code design for JCMD-ID system
For the non-ID BICM system, Gray mapping has been
proved to be optimal. Based on the optimal rotation angle
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Figure 6 CM-AMI and BICM-AMI corresponding to the optimal angles for 4 × 4 MIMO.
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Figure 7 Optimal angle θ vs. SNR for QPSK and 16QAM over 4 × 4 Rayleigh fading channels.

obtained by maximizing BICM-AMI and Gray mapping,
the non-ID JCMD system only needs to consider the
optimization of channel codes to achieve excellent per-
formance. For the JCMD-ID system, besides the optimal
rotation angle, it is also very crucial to choose a pair of a
well-matched labeling and an outer channel code by some
joint optimization.

The convergence behavior of the iterative demodula-
tion and decoding can be analyzed by the EXIT chart
method, which can describe the flow of extrinsic informa-
tion between the demodulator and the decoder [27-29].
Several advantages of EXIT charts are summarized in [29].
The inputs to the demapper are the noise-corrupted chan-
nel observations and the a priori knowledge A(ck) on
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Figure 8 Code rate vs. SNR for QPSK and 16QAM over 4 × 4 Rayleigh fading channels.
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Figure 9 Optimal angle θ vs. code rate R for QPSK and 16QAM over 4 × 4 Rayleigh fading channels.

the unmapped bits. The demapper outputs channel and
extrinsic information E(ck). According to Equations 12
and 19 in [27], the mutual information IA1 = I (ck ;A (ck))
(0 ≤ IA1 ≤ 1) between transmitted unmapped bits and
the L-values A(ck) can be written as

IA1 = 1
2

∑
x=−1,1

∫ ∞

−∞
pA(ck) (ξ |ck = x) · log2

× 2pA(ck) (ξ |ck = x)
pA(ck) (ξ |ck = −1) + pA(ck) (ξ |ck = 1)

dξ .

(30)

The mutual information IE1 = I (ck ;E (ck)) (0 ≤ IE1 ≤ 1)
can be written as

IE1 = 1
2

∑
x=−1,1

∫ ∞

−∞
pE(ck) (ξ |ck = x) · log2

× 2pE(ck) (ξ |ck = x)
pE(ck) (ξ |ck = −1) + pE(ck) (ξ |ck = 1)

dξ .

(31)

In [27], it turns out that the a priori inputA(ck) is almost
Gaussian distributed. Additionally, large interleavers keep
the a priori L-values A(ck) fairly uncorrelated over many
iterations. Hence, it seems appropriate to model the a
priori input A(ck) by applying an independent Gaussian
random variable with variance σ 2

A1 and mean zero (see
Equations 1 to 10 in [27]). Thus, the conditional probabil-
ity density function can be written as

pA(ck) (ξ |ck = x) = 1√
2πσA1

exp

⎡
⎢⎢⎢⎣−

(
ξ − σ 2

A1
2 x

)2

2σ 2
A1

⎤
⎥⎥⎥⎦
(32)

The mutual information IE1 = I (ck ;E (ck)) can be
viewed as a function of IA1, SNR, and the rotation angle θ ,
i.e,

IE1 = T1(IA1 , SNR, θ). (33)

The function T1 can not be expressed in a closed form.
For a given value of the input mutual information IA1 =
I (ck ;A (ck)) (0 ≤ IA1 ≤ 1) to the demodulator, to com-
pute T1(IA1 , SNR, θ), the distributions pE(ck) (ξ |ck = x) are
most conveniently determined by the Monte Carlo sim-
ulation (histogram measurements) proposed in [27,28].
The convenient method has been verified to allow an
accurate prediction of the SNR-decoding threshold with
low complexity [27].
On the other hand, the extrinsic transfer characteristics

of the decoder can describe the input/output relationship
between the input IA2 and the output IE2, which is inde-
pendent of SNR value. It can be computed by assuming
the a priori input to be Gaussian distributed and applying
the same method as used for the demapper characteristic
T1. Therefore, the transfer characteristic of the decoder is
denoted by

IE2 = T2(IA2). (34)
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Qiuliang et al. [16] verified that the SSD technique can
affect the demapper’s EXIT curve for the SISO BICM-ID
SSD system. For the MIMO system, we analyze the effect
of the SSD technique to different demapper labelings. Dif-
ferent 16QAM labelings (natural, Gray, and reference [16])
are shown in Figure 10. For the 1/2-rate coded 16QAM
4 × 4 MIMO system, the corresponding 16QAM EXIT
curves with 45° rotation and non-rotation are depicted
in Figure 11. The doping technique is used for error-
floor removal [30] and the doping rate P = 100. For
Natural and Gray labelings, the demappers’ EXIT curves
with rotation have a larger slope than that without rota-
tion. For the referenced labeling, the demapper’s EXIT
curve with rotation is always above the curve without
rotation.
Demapper-matched code design is very crucial for

the JCMD-ID MIMO system with rotation. In order to
approach the capacity, based on EXIT chart, we pro-
pose an optimization method of outer channel codes to
match with a given demapper for the JCMD-ID system.
We choose the BCC as the channel code. For a given SNR,
if two EXIT curves of the demapper and the decoder do
not intersect, the iterative decoding can converge, other-
wise it cannot converge. Thus, the SNR which makes the
two EXIT curves tangent is the SNR convergence thresh-
old, which is also called pinch-off SNR. The objective of
JCMD-ID optimization is to find the outer channel code
that has the lowest SNR convergence threshold to match
with the demapper.
We define the optimization function as follows.

α(G(NReg), SNR)= min
In∈[0,1],n=1,2,...,Num

[
T1(In)−T−1

2 (In)
]
,

(35)

SNR = argmin
SNR

[
α
(
G
(
NReg

)
, SNR

)
> 0

]
, (36)

where G(NReg) denotes the generator polynomial of BCC
with NReg registers. Num is the number of selected sta-
tistical samples. SNR is the pinch-off SNR. For 1

Nout
rate

BCC, the objective is to find the optimum GOpt.(NReg)

with the lowest pinch-off SNR from
(
2NReg+1 − 1

)Nout

generator polynomial candidates. However, the exhaus-
tive searching of a channel code to well match the
demapper’s EXIT curve is trivial, especially for NReg is
large.
GA is an efficient optimization algorithm, which is

stochastic search techniques based on the mechanism
of natural selection and natural genetics [31]. In GA, a
genetic representation is required for the individuals in
a population. Generator polynomials of BCC G(NReg) =[
g1, g2, . . . , gNout

]
2 inherently provides a (NReg+1)×Nout-

length binary string Sg =< g1, g2, . . . , gNout >. gi is
the (NReg + 1)-length binary generator polynomial cor-
responding to ith (1 ≤ i ≤ Nout) output. Based on the
genetic algorithm, an optimization method is proposed as
follows.

Step 1: Initial population. Set the current iterative
number (number of generations) Npop = 0, the
number of candidate generator polynomials
(population size) Ng , the maximum iterative number
Nmax, crossover probability Pc, and mutation
probability Pm. Ng binary strings
Sig =< gi1, g

i
2, . . . , g

i
Nout

> that correspond to the
candidate polynomials are randomly initialized,
which are denoted by a set CNpop , where
gi1, g

i
2, . . . , g

i
Nout

∈ [
1, 2NReg+1), 1 ≤ i ≤ Ng .

Step 2: Selection. Reduce the SNR by small steps
	SNR (e.g., 0.1 dB) and compute the pinch-off SNRs
SNRi of all the candidate generator polynomials
Gi(NReg) =

[
gi1, g

i
2, . . . , g

i
Nout

]
2
in population, where

< gi1, g
i
2, . . . , g

i
Nout

>∈ CNpop , 1 ≤ i ≤ Ng . We use the
pinch-off SNR to measure the fitness. The fitness
function is associated with the maximum pinch-off
SNR SNRmax = max

1≤i≤Ng

{
SNRi

}
, shown as

f
(
Sig
)

= SNRmax(dB) + 0.1 − SNRi(dB). (37)

(a) (b) (c)

Figure 10 16QAM labelings. (a) Gray labeling. (b) Natural labeling. (c) The reference labeling in [16].
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Figure 11 EXIT chart analysis for 16QAM at SNR = 7.8 dB.

Ng individuals are selected to breed a new generation
with probability proportional to the fitness value.

The probability that Sig is selected is P(i) = f
(
Sig
)

Ng∑
k=1

f
(
Skg
) .

Based on roulette wheel selection (RWS) algorithm,
the tth (1 ≤ t ≤ Ng) individual selection follows the
steps below.
A. Generate a uniform random number χ(t),
χ(t) ∈ [0, 1].

B. If
k−1∑
i=0

P(i) ≤ χ(t) <
k∑

i=1
P(i)(1 ≤ k ≤ Ng),

P(0) = 0, Skg is selected.
Step 3: Crossover. For two adjacent selected
individuals, a random number κc from the range
[ 0, 1] is generated. Only when κc < Pc, the crossover
operator is carried out. The crossover point is
selected randomly. All bits beyond that point in
either string are swapped between the two parent
individuals, and then two children individuals are
obtained.
Step 4:Mutation. For each individuals, a random
number κm from the range [0, 1] is generated. Only
when κm < Pm, the mutation operator is carried out
through one bit flip at random mutation position.
Step 5: Judgment. Npop = Npop + 1. After step
2 ∼ 4, a new population CNpop+1 is formed. If
Npop < Nmax, then go to step 2, otherwise stop. The
generator polynomial with the lowest pinch-off SNR
in CNpop+1 is chosen as the optimum one.

Using the method above, a rate-half BCC code with
NReg = 5 is optimized for the natural labeling 16QAM
JCMD-ID system. Based on the AMI analysis in Section 4,
the optimal rotation angle for 0.5 rate 16QAM JCMD-
ID system is 45°. The optimal generator polynomial is
[63,32]8. As shown in Figure 11, the natural labeling
demapper’s EXIT curve with 45° rotation keeps a nar-
row open tunnel with that of BCC decoder, while its
non-rotation curve intersects with the decoder, which
shows the effect of rotation to the ID system. The other
two labeling demappers’ EXIT curves with and with-
out rotation always intersects with the decoder, so the
Gray and reference labelings are not suitable for the BCC
decoder. Therefore, the natural labeling with 45° rotation
matches well with the [63,32]8 BCC code and has the best
performance.

6 Simulation result
6.1 Results of non-ID JCMD system on fast fading

channels
For the non-ID JCMD MIMO system, the optimal Gray
labeling and powerful DVB-T2 LDPC coding are used to
achieve excellent performance [32]. The optimal rotation
angle is obtained by maximizing BICM-AMI in Figure 9.
The size of coded block N is 64,800 bits. For the LDPC
decoder, the log-belief propagation (BP) algorithm with
30 maximum iterations is utilized. In order to ensure the
fairness of the comparison, the SVD precoding is imple-
mented for both the conventional BICM MIMO system
and proposed JCMDMIMO system.
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Figure 12 BER performance of rate-1/2 DVB-T2 LDPC coded, BPSK 4 × 4 JCMD MIMO systems on fast fading channels.

Figure 12 shows the bit error rate (BER) performance
comparisons of rate-1/2 LDPC-coded BPSK MIMO sys-
tems on the independent fast Rayleigh fading channel. The
channel fading coefficients on each symbol are indepen-
dent identical distributed Rayleigh random variables with
the variance 1. BPSK is also a simple real-valued signal,

so the optimal rotation angle is chosen as 45°. For 4 × 4
MIMO systems, JCMD with 45° rotation obtains signifi-
cant SNR gains as compared with JCMDwithout rotation.
For the target BER= 10−5, it can achieve 2.2 dB SNR gain.
Note that the spatial interleaver, spatial Q-component
interleaver, and time Q-component interleaver are all
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Figure 13 BER performance of rate-1/2 and 3/4 DVB-T2 LDPC coded, QPSK 4 × 4 JCMD MIMO systems on fast fading channels.
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Table 1 SNR gains and gaps to the capacity for JCMD 4 × 4
MIMO systems

Parameters Gains compared with Gaps to the JCMD/Gaussian
BICM system (dB) input Shannon limit (dB)

BPSK, 1/2-rate 2.2 1.0/1.5

QPSK, 1/2-rate 0.6 1.1/1.9

QPSK, 3/4-rate 3.9 0.7/2.3

implemented in both JCMD scheme with and without
rotation. That means the performance gain of JCMD does
not exactly come from the interleavers compared with
BICM scheme.We can still obtain significant gain through
the optimal rotation and the matching of channel coding
and labeling. Furthermore, the 4×4 JCMDMIMO system
with the reverse spatial Q interleaver can obtain about 0.6
dB SNR gain compared with that with the cyclic-shift spa-
tial Q interleaver. The results coincide well with the above
analysis in Section 3.
For theQPSK 4×4MIMO system, the optimal angles for

1/2 and 3/4 rate are 18° and 25°, respectively. As shown in
Figure 13, JCMD systems with the optimal rotation angle
can obtain 0.6 and 3.9 dB SNR gains compared with the
conventional BICM systems employing the ideal SVD pre-
coding for low rate 1/2 and high rate 3/4, respectively.
Given the optimal rotation angle, JCMD-MIMO with the
reverse interleaver obtains significant 0.3 and 1.3 dB SNR

gains at BER = 10−5 compared to that with the cyclic-
shift interleaver for the code rate 1/2 and 3/4, respectively.
Meanwhile, the proposed 1/2 rate JCMD system with the
reverse interleaver is only about 1.1 dB SNR gap to the
JCMD limit for 4 × 4 MIMO. For the 3/4 rate JCMD
MIMO, the gap to the JCMD limit is reduced to 0.7 dB
for 4 × 4 MIMO. SNR gains and gaps are summarized in
Table 1. From the results, SNR gain becomes bigger for
higher code rate.

6.2 Results of JCMD-ID system on fast fading channels
For the JCMD-ID 16QAM MIMO system, the optimal
rotation angle is obtained by maximizing CM-AMI in
Figure 9, and it is 45° at 1/2 rate for 4 × 4 MIMO sys-
tems. In order to confirm our optimization method for
JCMD-IDMIMO system, simulations are carried out with
proposed [63,32]8 BCC-coded JCMD-ID scheme on fast
fading channels for 4 × 4 MIMO systems. The size of
coded block N = 64, 800 bits and the maximal global
iterative number is 30. The powerful 1/2 rate DVB-T2
LDPC-coded Gray-labeling BICM and BICM-ID schemes
with the same block size are also simulated as the refer-
ence, and the same ideal SVD precoding method is used
for the conventional BICM and BICM-ID schemes and the
proposed JCMD-ID scheme.
The BER performance comparisons are shown in

Figure 14.
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Figure 14 BER performance of rate-1/2, 16QAM 4 × 4 JCMD-ID MIMO systems on fast fading channels.
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Table 2 Average decoding complexity for each
information bit

Operation Optimized BCC Turbo used in [24] DVB-T2 LDPC

Additions 331 816 997.5

Max ops. 158 288 0

Look-ups 0 0 735

For the 4 × 4 MIMO system with natural labeling, the
optimized BCC [63,32]8 coded JCMD-ID scheme with
45° rotation and reverse Q interleaver exhibits excellent
performance, which is only 1.3 and 1.1 dB away from
the Gaussian-input capacity and JCMD-ID limit, respec-
tively. It can obtain about 2.9 dB SNR gain compared
with the BCC-coded BICM-ID scheme and JCMD-ID
without rotation, which coincides with the above EXIT
analysis. In addition, the scheme with the reverse inter-
leaver obtains 0.4 dB SNR gain at BER = 10−5 compared
with that with cyclic-shift Q interleaver, which also proves
the above analysis. Furthermore, the optimized JCMD-
ID scheme also outperforms the DVB-T2 LDPC-coded
BICM-ID scheme and the turbo-coded BICM-ID scheme
in [24] by 0.9 and 1.4 dB gains, respectively.
For the JCMD-ID and conventional BICM-ID schemes,

the main complexity lies in the channel decoding. The
Max-Log-MAP algorithm is a simplified algorithm for the
decoding of turbo code and BCC. For each decoding iter-
ation, it requires 10×2NReg +11 additions and 5×2NReg −2
maximum operations [33]. The BCC decoding only needs
one iteration (one Max-Log-MAP operation), while turbo
decoding needs eight iterations (16Max-Log-MAP opera-
tions). For the Log-BP algorithm of LDPC decoding, each
iteration requiresMdc (dc − 1)+Ndv (dv − 1)+Ndc addi-
tions and Md2c look-up table operations, where M is the
number of the parity bits, and dc and dv are the average
degree distributions of check nodes and variable nodes,
respectively [34]. LDPC decoding requires 30 iterations.
Thus, we can obtain the average decoding complexity
comparison for each information bit, as shown in Table 2.
Assuming the equal complexity of the three operations
(addition, max, look-up), the decoding complexity of BCC
is just is 44.3% and 28.2% of turbo and LDPC decod-
ing, respectively. Therefore, the optimized BCC has much
lower complexity compared with the DVB-T2 LDPC and
turbo codes. This indicates that the optimized scheme
with BCC coding obtains much better performance with
much lower complexity.

7 Conclusions
A high-spectral-efficient JCMD scheme over MIMO fad-
ing channels is proposed. By jointly optimizing the com-
ponent interleaver, the rotation modulation, and the BCC
code, this scheme exhibits excellent performance. An
optimum spatial component interleaver is proposed to

maximize the achievable rate. For real-valued signals, we
prove that the achievable rate of JCMD MIMO is greater
than that of the conventional BICM MIMO scheme
and π

4 is the optimal rotation angle. For the rotated
QAM, the optimal rotation angles are investigated for the
MIMO system according to the maximizing AMI crite-
rion. For the JCMD-IDMIMO system, a simple GA-based
search algorithm of BCC generator polynomials is also
proposed to match the rotation modulation. Simulation
results prove that this new scheme can significantly out-
perform the conventional turbo-coded BICM-ID scheme
over MIMO fading channels by 1.4 dB SNR gain, while
it has much lower complexity. In a word, the proposed
JCMD scheme is simple, efficient, and robust for the
future wireless communication systems.
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