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Abstract

Recently, iterative receiver combining multiple-input multiple-output (MIMO) detection with channel decoding has
been widely considered to achieve near-capacity performance and reliable high data rate transmission, for future
wireless communication systems. However, such iterative processing increases the computational complexity at the
receiver. In this paper, the computational complexity of MIMO detection algorithms combined with turbo decoding is
investigated. We first present an overview of the family of MIMO detection algorithms based on sphere decoding,
K-Best decoding, and interference cancellation. A recently proposed low-complexity K-Best decoder (LC-K-Best) is also
presented. Moreover, we analyze the convergence of combining these detection algorithms with the turbo decoder
using the extrinsic information transfer (EXIT) chart. Consequently, a new scheduling order of the number of iterations

throughput requirements.

for the iterative process is proposed. Several system configurations are developed and compared in terms of
performance and complexity. Simulations and analytical results show that the new scheduling provides good
performance with a large saving in the complexity. Additionally, the LC-K-Best decoder shows a good
performance-complexity tradeoff, and it is therefore suitable for parallel and pipeline architectures that can meet high
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1 Introduction

Multiple-input multiple-output (MIMO) technology is an
effective solution to increase the channel capacity and to
improve the link reliability of wireless communications
systems [1]. Actually, MIMO technology is combined with
orthogonal frequency division multiplexing (OFDM) and
advanced channel coding schemes such as turbo codes to
support the increase of reliable data transmission. These
techniques have been incorporated into the latest stan-
dards such as IEEE 802.11n/ac, IEEE 802.16e/m, and
3GPP-Long Term Evolution (LTE).

In such coded MIMO-OFDM systems, the optimal way
to decode the received signal would be the joint detection-
decoding that reveals to be very complex and infeasible
for practical implementation. An alternative solution is to
perform the detection and the decoding steps iteratively

*Correspondence: rida.el-chall@insa-rennes.fr; mingliu@bjtu.edu.cn
1 INSA, IETR, CNRS UMR 6164, F-35708, Rennes, France

2School of Computer and Information Technology, Beijing Jiaotong
University, Beijing, China

@ Springer

with soft information exchanging. Such method, com-
monly referred to as iterative or turbo processing, was
initially proposed for turbo decoding [2] where two com-
ponent decoders exchange soft information to improve
the system performance. The turbo principle was rapidly
extended to the turbo equalization [3], where equaliza-
tion and channel decoding were performed iteratively to
overcome inter-symbol interference (ISI) [4]. Turbo equal-
ization principle was then applied to several transmission
systems, such as systems with multi-user interference [5]
and multi-antenna interference [6].

For the coded MIMO-OFDM systems, the optimal
detection relies on maximum a posteriori probabil-
ity (MAP) and maximum likelihood (ML) algorithms,
which present an exponentially increased complexity
with respect to the number of transmit antennas and
modulation orders. Therefore, a number of sub-optimal
approaches have been proposed in the literature [7-15].
These approaches are based on linear equalization, inter-
ference cancellation, and tree-search-based detection.
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Linear equalization consists of a linear filter according to
the zero forcing (ZF) or the minimum mean square error
(MMSE) criteria [7]. These algorithms need low complex-
ity but suffer from unsatisfactory performance. On the
other hand, interference cancellation-based algorithms
use an estimation of the previous detected symbols to
cancel their interference from the received signal such as
ordered successive interference cancellation (OSIC) also
referred to as VBLAST [8]. However, their performances
suffer from error propagation in the decision feedback
loop. The signal detection can also be transformed into
a tree-search problem [9-13]. The sphere decoder (SD)
is an efficient tree-search-based method that limits the
search space of the ML solution to the symbols that lie
inside a hyper-sphere. The sphere decoder performs a
depth-first search to efficiently find the best solution and
achieve near optimal performance. However, it suffers
from variable throughput depending on the noise levels
and channel conditions [16,17]. Moreover, the sequential
nature of the tree search makes it unsuitable for parallel
implementation. The breath-first based K-Best decoder
[14] and fixed sphere decoder (FSD) [15] are thus pro-
posed to obtain a constant throughput and to reduce the
hardware complexity at a cost of certain performance loss.

Recently, many efforts have been made in the design of
soft-input soft-output (SISO) MIMO detectors in order to
achieve high throughput and low computational complex-
ity. An improved VBLAST (I-VBLAST) for SISO detec-
tion was proposed in [18,19]. In addition, a SISO detector
based on MMSE interference cancellation (MMSE-IC)
was proposed in [20,21]. The list sphere decoder (LSD)
was proposed in [22] as a variant of the sphere decoder to
provide soft outputs. Consequently, in [23], a list sequen-
tial decoder based on metric-first search strategy was
proposed for the iterative process. The single tree-search
(STS) algorithm [24,25] was proposed to find the MAP
hypothesis and the corresponding counter hypotheses
during one tree-search process. In [26], the tuple search
detector (TSD) was introduced to improve the trade-off
between STS-SD and LSD. Furthermore, soft versions of
K-Best decoder and FSD decoder for iterative receiver
were proposed in [27-29] and [30], respectively. The
implementation of MIMO detectors have also been widely
discussed in the literature. In [21], an implementation of
a SISO detector based on MMSE-IC algorithm was pre-
sented. However, this algorithm is not able to fully exploit
the spatial diversity of MIMO system. Several implemen-
tations of SISO STS-SD were then reported in [31,32] to
exploit the spatial diversity. A VLSI architecture of TSD
was proposed in [26]. Their main issue is their prohibitive
worst-case complexity. In [33], a trellis-search-based SISO
decoder and its VLSI architecture have been proposed.
Such trellis-based decoder provides a high throughput at
the cost of a large hardware area. Several implementations
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of SISO FSD were proposed in [34-36]. Several imple-
mentations of K-Best decoder were also reported [37-39].
Despite these efforts, it is still very challenging to develop
a high speed iterative receiver with efficient MIMO detec-
tor to meet the high throughput requirements at an
affordable complexity and implementation cost.

In this paper, we first present an overview of the main
existing soft-input soft-output MIMO detection algo-
rithms. Consequently, a low-complexity K-Best (LC-K-
Best) decoder is presented [40]. We then analyze the
convergence of the iterative receiver which combines
MIMO detection with turbo decoding. The extrinsic
information transfer (EXIT) chart [41] is adopted for ana-
lyzing the convergence behavior of the iteratively decoded
system. A new scheduling of the number of iterations is
therefore obtained. Moreover, the complexity of several
MIMO detection algorithms is evaluated. We compare the
performance and the analytical complexities of STS-SD,
LC-K-Best, I-VBLAST, and MMSE-IC-based receivers
using the original and the new scheduling orders of the
number of iterations in different system configurations.
Simulation results show that the LC-K-Best decoder and
the new schedule give the best performance-complexity
trade-off among existing solutions.

The rest of this paper is organized as follows. Section
2 introduces the system model and the principle of iter-
ative detection-decoding process. Section 3 provides an
overview of MIMO detection algorithms based on sphere
decoding, K-Best decoding and interference cancella-
tion, followed by a description of the LC-K-Best decoder.
Section 4 illustrates the convergence behavior of the iter-
ative process. In Section 5, the performance of these
MIMO detectors is compared with different system con-
figurations. In Section 6, the computational complexity
versus performance trade-offs are explicitly discussed. We
conclude the paper in Section 7.

2 MIMO system model and turbo principle

2.1 System model

We consider a MIMO system based on bit-interleaved
coded modulation (BICM) scheme [42] with M transmit
antennas and N receive antennas (N > M) as depicted in
Figure 1.

At the transmitter, the data stream is first encoded
and punctured with a coding rate R.. The turbo encoder
is constituted by a parallel concatenation of two recur-
sive systematic convolutional encoders separated by an
interleaver. The first encoder processes the original data
while the second processes the interleaved version of data.
Then, the encoded stream is randomly interleaved and
mapped into complex symbols of a 29 quadrature ampli-
tude modulation (QAM) constellation, where Q is the
number of bits per symbol. The resulting sequence of
symbols is mapped into M dimensional symbol vectors
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Figure 1 MIMO system block diagram using bit-interleaved coded modulation with iterative detection and decoding.

s € 29M using either space-time block coding (STBC)
schemes or spatial multiplexing (SM) schemes. Herein,
the SM-based MIMO system is considered without loss
of generality. It is assumed that the channels experience
independent Rayleigh fading, and the transmitter does not
require any channel state information (CSI). The transmit
power is normalized so that E {ssH } = E;/MIy;, where
I is the M x M identity matrix. The transmission infor-
mation rate is R, - M - Q bits per channel use. The received
vector y =[y1,92,...yn]" can be represented by:

y=Hs+n, (1)

where H is an N x M channel matrix, assumed to be per-
fectly known at the receiver, with independent elements
hjj of zero mean and unit variance complex Gaussian
random variables; n =[n1,n,..,ny]7 is an independent
and identically distributed (i.i.d.) additive white Gaussian
noise (AWGN) vector with zero mean and 03 variance
(No =07).

2.2 Turbo principle

At the receiver, an iterative detection-decoding process
based on the turbo principle is applied as shown in
Figure 1. The MIMO detector and the channel decoder
can be viewed as serially concatenated blocks. The MIMO
detector can employ MAP algorithm or other sub-optimal
algorithms like LSD, STS-SD, K-Best decoder, or MMSE-
IC. When MIMO equalizer is performed, the iterative
process is referred to as turbo equalization [3]. The MIMO
detector takes the received symbol vector y and the a
priori information Ly; of the coded bits from the chan-
nel decoder and computes the extrinsic information Lg;.
This extrinsic information is de-interleaved and serves
as the a priori information Lyy for the turbo decoder.

The turbo decoder computes the extrinsic information
Lgy which is consequently re-interleaved and fed back
to the MIMO detector as the a priori information Lg;.
The turbo decoding is performed by two soft-input soft-
output (SISO) component decoders that exchange soft
information about their data sub-stream. The SISO com-
ponent decoder can be implemented using BCJR (Bahl,
Cocke, Jelinek, and Raviv), Log-MAP algorithms. Each
component decoder takes systematic or interleaved infor-
mation, the corresponding parity information, and the
a priori information from the other decoder to com-
pute the extrinsic information. This extrinsic information
is used by the other decoder as the a priori informa-
tion after interleaving or de-interleaving. In our itera-
tive process, we denote by I,y the number of outer
iterations (MIMO detector - turbo decoder) and by
Iin the number of inner iterations (within each turbo
decoder).

In the sphere decoder case, the complex model system
in Equation 1 is usually transformed into an equivalent
real system model as follows:

Re(y) | _ | Re(H) —Im (H) Re (s) Re (n)
Im(y) | | Im(H) Re(H) Im (s) + Im(n) |’
(2)

where Re (.) and Im (.) represent the real and the imagi-
nary parts of the variables, respectively. In this equivalent
real system model, the QAM constellation can be viewed
as two PAM constellations, and the matrix dimension is
hence doubled. In [29], the real model was revealed to
be more efficient for the implementation of the sphere
decoder and it will be used for the system model in this

paper.
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3 Soft-input soft-output MIMO detection

This section firstly reviews the optimal MAP detection
algorithm. Then, it discusses several sub-optimal detec-
tion algorithms. These algorithms can be divided into
two main families, namely the tree-search-based detec-
tion and the interference cancellation-based detection.
The tree-search-based detection generally falls into two
main categories, namely depth-first search and breath-
first search. The classical sphere decoding is a depth-first
approach, while the K-Best decoding and fixed sphere
decoding are commonly seen as breath-first approaches.
We then present interference cancellation-based detec-
tion that performs MMSE filtering in combination with
the soft symbol-aided interference cancellation. The inter-
ference cancellation can be carried out either in a succes-
sive way or in a parallel way. Consequently, the LC-K-Best
decoder is also introduced [40].

3.1 Maximum a posteriori probability (MAP) detection
The MAP algorithm uses an exhaustive search over all
2QM possible symbol combinations to compute the exact
a posteriori probability of each bit. Such probability is usu-
ally expressed in terms of log-likelihood ratio (LLR). The
sign of LLR value determines the binary decision about
the corresponding bit, while its magnitude indicates the
reliability of the decision. More concretely, LLR of the b
bit of the i symbol, x;, can be computed as:

PGy =+1ly) _ | Ly PYIOPE
L (xl',b) = lOg = - ,
P(x;p = —1ly) Dsex ;) PYISP(S)
3)
where X:;l and X,«,_bl denote the sets of symbol vectors cor-

responding to the i symbol and having the b bit of
the symbol equal to +1 and —1 (representing a logical
1 and a logical 0), respectively. p(yls) is the conditioned
probability density function given by:

319 = —— ex (—lll —Hs||2) (4)
py _(nNo)N p No Y ’

and P(s) represents the a priori information provided by
the channel decoder in the form of a priori LLRs:

P(x;p =41
La(x;p) = log (IM) , Vi,b
(5)
P(s) = ]'[P(s,) = HHP Xip)

i=1b=1

To reduce the computational complexity, LLR values
can be calculated using the Max-Log-MAP approximation
[22]:

1 . 1 .
L (xip) ~ No 1;1;1 {di} — No r)r(l%rll {d1}, (6)
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where
di = Hy — Hs”2 — Nolog P(s)
) M Q (7)
= |y—Hs|"=No ) > logP(x;),
i=1 p=1

represents the Euclidean distance between the received
vector y and lattice points Hs.

Based on the a posteriori LLRs L(x;;) and the a priori
LLRs L4 (%;5), the detector computes the extrinsic LLRs as
Le(xip) = L(xip) — La(xip).

The exact computation of LLR using MAP detection
can only be used with low-order modulations and a small
number of antennas [43] because its complexity increases
exponentially with respect to the number of transmit
antennas and modulation orders. For example, in the case
of a 2 x 2 MIMO system with 4-QAM, 22%2 = 16 pos-
sible solutions need to be searched. However, in the case
of a 4 x 4 MIMO system with 16-QAM, there are 24x4 —
65,536 possible solutions. A number of MIMO detectors
have been therefore proposed with reduced complexity as
will be discussed in the following.

3.2 Tree-search-based detection

3.2.1 List sphere decoder (LSD)

The sphere decoder transforms the symbol detection
problem into a lattice search problem [9,11,12], which can
be represented by the search on a tree. Using the QR
decomposition, the channel matrix H can be transformed
into the product of two matrices Q and R (H = QR), where
Q is a N x M unitary matrix (QHQ = Ipy), and R is a
M x M upper triangular matrix with real-positive entries
on its diagonal. With the modified received symbol vec-
tor y = Q'ly, the distance in Equation 7 can then be
computed as: ‘ y— Hs||2 = ||§' — Rs||2. Exploiting the tri-
angular nature of R, the Euclidean distance metric d; can
be recursively evaluated through the accumulated partial
Euclidean distance d; with dr1 = 0 as follows [25]:

M 2

di=digy + i — Y Rijs;
=i

c
m;

Q
N
=0 Z |LA Xip | —xipla (xlb)) i=M,..1.
b=1

mh

i

where mlc and mf denote the channel-based partial met-
ric and the a priori-based partial metric at the it level,
respectively.
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The sphere decoder performs a depth-first search in
both forward and backward directions. A certain prun-
ing criterion can be used to reduce the number of visited
nodes. For example, a sphere radius can be set to limit
the search range. The tree is represented with M + 1
levels, where the level [ corresponds to the /" transmit
antenna. The tree search starts at the root level with the
node at level M corresponding to the symbol transmit-
ted by the M™ antenna. The partial Euclidean distance
dyr in Equation 8 is computed. If djs respects the sphere
radius constraint, the search continues at level M — 1
and steps down the tree at level / until finding a valid
leaf node at level 1. Subsequently, the search continues by
back-tracking to previous levels to find better candidates.
Figure 2a illustrates the tree search in the case of M = 2.
Thus, the candidate with the minimum Euclidean distance
is chosen as an approximation of the ML solution in the
hard-output sphere decoder. Whereas, in the list sphere
decoder [22], a list £ of the most promising candidates
and their corresponding Euclidean distances are used in
the computation of LLR values:

1 1
L (xip) No £rr111)l(r‘;1 {d1} No LI:?;%} {d1}. )

Although the list sphere decoder is able to approach the
theoretical channel capacity, the proximity to the capacity
depends on the list size. The list should be large enough to
include at least one candidate for both possible hypothe-
ses. However, using an excessively large list size will lead
to an increase in computational complexity. Meanwhile,
the size of the list should not be too small either. The use
of limited list size causes inaccurate approximation due
to missing some counter hypotheses where no entry can
be found in the list for a particular bit x;;, = +1 or —1.
The frequently used solution for this problem is to set the
LLR to a predefined maximum value [22,27]. Moreover,
two methods were used to process the list in the iterative
receiver. The first method consists of generating the list
during the first iteration and using this list for subsequent
iterations to update the soft information [22]. The second
method updates the list at each iteration leading to further
performance improvements but yielding additional com-
putational complexity [27]. Additionally, several methods
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can be included for further reduction of the complex-
ity of tree-search algorithms. The Schnorr-Euchner (SE)
enumeration [10] proposed as a refinement of Fincke-
Pohst (FP) enumeration extends the nodes in ascending
order with respect to their Euclidean distance metrics
to reduce the average complexities. Layer ordering tech-
nique allows to select most reliable symbols at a high layer
using the sorted QR (SQR) decomposition [44]. The most
reliable symbols are helpful for faster finding the ML solu-
tion. MMSE pre-processing might also be used for further
reducing through the use of an extended channel matrix
for the SQR decomposition [45]. However, this method
introduces a biasing factor in the metrics which should
be removed in the LLR calculation to avoid performance
degradation [46].

3.2.2 Single tree-search sphere decoder (STS-SD)

One of the two minima in Equation 6 corresponds to the
MAP hypothesis s4” while the other corresponds to the
counter hypothesis. The computation of LLR can be done
as:

L (gMAP _ dMAP)’ i xMAP - 41

No
L(xip) = Nio JMAP _ a%Ap) if xMAP _1
dMAP _ g _ RgMAP ”2 — NyP (SMAP) ’ (10)
A = min {[§ - Rs|* — NP s)], (11)
sex
sMAP — arg mm [”y Rs|| — NoP (S)] ) (12)

where ; bAP denotes the bit-wise counter hypothesis of
the MAP hypothesis, which is obtained by searching over
all the solutions with the ™ bit of the i™ symbol oppo-
site to the current MAP hypothesis. Originally, the MAP
hypothesis and the counter hypotheses can be found
through repeating the tree search [47] that requires a
large computational complexity cost. To overcome this,
the single tree-search algorithm [24,25] was developed
to compute all the LLRs concurrently. The dMAP met-

ric and the corresponding dMAP metrics are updated
through one tree search. The ba51c idea of STS-SD is to

a) Depth-first search
Sphere decoder

O Non-visited nodes

A M=2

| . @ Visited nodes d; =0
i

i

i

b) Breath-first search
K-Best decoder

Figure 2 Tree-search strategies. (a) Depth-first search sphere decoder. (b) Breath-first search K-Best decoder.
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search the sub-tree originating from a given node if the
Euclidean distance leads to an update of either #MAP or

at least one of d%[]AP. Through the use of extrinsic LLR
clipping method, the STS-SD algorithm can be tunable
between the MAP performance and hard-output perfor-
mance. Channel matrix regularization and run time con-
straint may also be used in STS-SD to reduce the decoding
complexity at the price of performance degradation. The
implementations of STS-SD have been reported in [31,32].

3.2.3 K-Best decoder
K-Best decoder is a breath-first search-based algorithm.
Starting from the root node at level M + 1 with dyr4; = 0,
K-Best decoder expands each of the K survival paths to all
possible children nodes in the constellation and computes
their corresponding partial Euclidean distances. Then, the
K-Best decoder sorts all K+/2Q distances and keeps only
the K nodes with minimum Euclidean distances until
reaching the leaf nodes as illustrated in Figure 2b. The
candidate with the minimum Euclidean distance is chosen
as an approximate of the ML solution. Whereas, a list of
the most likely candidates is retained in the case of iter-
ative receiver. We note that the candidate list does not
necessarily correspond to the lowest Euclidean distance.
The major drawbacks of K-Best decoder are the expan-
sion and the sorting operations that are very time consum-
ing. Several proposals have been drawn in the literature to
approximate the sorting operations such as relaxed sort-
ing [48], local sorting and merging, and distributed sorting
[49]; or even to avoid sorting using on demand expansion
scheme [50]. Moreover, K-Best decoder suffers similarly
as LSD from missing counter hypothesis problem due to
the limited list size. Numerous approaches have been pro-
posed to address this problem such as smart candidates
adding [51], bit flipping [52], path augmentation and LLR
clipping [22,27].

3.2.4 Fixed sphere decoder (FSD)

Fixed sphere decoder is a breath-first search algorithm
proposed to further reduce the complexity of K-Best
decoder. It performs two stages of tree search. A full
search is performed in the first T levels by expanding
all branches per node. Then, a single search is per-
formed in the remaining M — T levels expanding only one
branch per node. The parameters T are chosen such as
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(N —M) (T +1) + (T +1)> > N in order to provide an
asymptotical ML performance. We note that in FSD, the
columns of H are ordered such as in the first T levels,
the signal has the largest post-processing noise amplifica-
tion. In the soft-output FSD proposed in [30], the search
is performed not only to find the ML solution but also to
find a set of candidates around the ML solution in order
to compute the LLR of all bits. Therefore, a subset S is
first chosen, then the ML solution of the subset is used
to generate a subset §’. The combined list S U §’ is finally
used to compute an approximation of the extrinsic LLR.
Efficient SISO FSD implementations have been proposed
in [35,36].

3.3 Interference cancellation (IC)-based detection
Interference cancellation-based detection is commonly
used in combination with MMSE liner filtering. In the
case of MIMO iterative receiver, the MIMO equalizer and
the channel decoder exchange soft information accord-
ing to the turbo equalization principle [4,6]. The MIMO
equalizer produces an equalized symbol vector s deduced
from received signal y. The soft estimated symbol vector §
is used to cancel the interference terms in the received sig-
nal. The interference cancellation can be carried out either
in a successive way as in VBLAST [8] or in a parallel way
as in MMSE-IC [20,21].

3.3.17  Minimum mean square error-interference
cancellation (MMSE-IC) equalizer

MMSE-IC equalizer can be performed using two filters
[20]. The first filter p; is applied to the received vector vy,
and the second filter q; is applied to the estimated vector
s as shown in Figure 3. The equalized symbol §; can be
written as:

Sk = pfy — qfék with ke [1,M], (13)
where §; denotes the estimated vector given by the
previous iteration with the k' symbol omitted: §; =
[s}...§k,1 0 §/<+1...§M]. Sk is calculated by the soft map-
peras: §x = E [sg] = Y cpa SP (sk = s) [53].

The filters p; and q; are optimized under the MMSE
criterion:

(pzpt, qZpt) = arg min E {|sk - §k|2} , (14)
P9k

MIMO Equalizer

SISO
Channel
Decoder

Y= 5 Soft
H—s MMSE-IC Demapper
§ Soft
Mapper

Figure 3 Turbo equalization with MMSE-IC equalizer.
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and can be computed by [4]:

-1
p =02 [HViH + Noly] ™ hy, (15a)
q”" = Hp”", (15b)

where o2 is the power of the received signal, hy denotes
the K column of the channel matrix H, and Vy is a diag-
onal matrix that depends on the residual errors of each
estimated symbols:

M
2, T 2, T
Vi =ogere; + Z viee;

(16)
i=1,izk
with v]% defined as:
vt =E {5 = & 1La ), (17a)
Vg = Z Is|>P (3 = s) — |§k‘2. (17b)

s€2Q
At the first iteration, since no a priori information is

available, the equalization process is reduced to the classi-
cal MMSE solution:

32 (18)

2 -1
- o
5 = |:HHH + "IM] Hy.
o
The equalized symbols 5i are associated with a bias fac-
tor By in addition to some residual noise plus interferences

Nk:

Sk = Brsk + nk (19)

These equalized symbols are then used by the soft
demapper to compute the LLR values using the Max-Log-
MAP approximation [53]:

L) = 1 .~ 2 .~ 2
(xip) = = min (8 — Br-skl” — min ISk — Br-skl” | -
T \s€x S€ X

(20)

MMSE-IC equalizer requires M matrix inversions for
each symbol vector. For this reason, several approxima-
tions of MMSE-IC were proposed.

The first approximation of MMSE-IC consists of replac-
ing the variable v,% by its mean v2 = E (v,%) =02 — a§2
[4]. Hence, one matrix inversion is computed for all
symbols. This approximation is denoted as MMSE-
IC1. MMSE-IC1 algorithm reduces significantly the com-
plexity of computing the filter coefficients. However, the
coefficients of the equalizer must be recomputed at each
iteration.

A second approximation denoted as MMSE-IC2 [20]
assumes a perfect estimation of transmitted symbols
(a§2 = asz) to overcome the matrix inversion at each
iteration.
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In [21], a low-complexity approach of MMSE-IC is
described by performing a single matrix inversion with-
out performance loss. We refer to this algorithm as LC-
MMSE-IC.

3.3.2 Successive interference cancellation (SIC) equalizer
The SIC-based detector was initially used in VBLAST
systems. In VBLAST architecture [8], a successive cancel-
lation step and interference nulling step are used to detect
the transmitted symbols. However, this method suffers
from error propagation. Several methods have been pro-
posed to reduce this problem by taking decision errors
into account [19,54]. An improved VBLAST for itera-
tive detection and decoding is described in [54]. At the
first iteration, an enhanced VBLAST which takes deci-
sion errors into account is employed. When the a priori
LLRs are available from the channel decoder, soft sym-
bols are computed by a soft mapper and are used in
the interference cancellation. To describe the enhanced
VBLAST algorithm, we assume that the detection order
has been made according to the optimal detection order
[8]. We define §;_; as [s} 5 §k—1], and H;; as
[hi hi 1 hj], where h; denotes the i column of H.
At the step k, the pre-detected symbol vector §x_; until
step k — 1 is cancelled out from the received signal:

Yi =Y — Hig—18k-1. (21)

In the conventional VBLAST algorithm, the hard esti-
mated symbol vector s;_; is used in the cancellation step;
then the MMSE filtering is applied in the nulling step.
The enhanced VBLAST algorithm uses the soft estimated
symbol vector §;_; and a nulling matrix Wy based on the
MMSE criterion that takes decision errors into account.
W can be expressed by [19,54]:

Wi = o2 (HEH + Noly) ™ by, (22)

where X is the decision error covariance matrix defined
as:

M—k+1
2 T 2 A2 (A
Z o ee; ef =E [|S,’ — si| |si_1} .
i=k

(23)

k—1
Y= Z e?eieiT +
i=1

The estimated symbol 5; can be expressed as:

Sk = Wiye = Bisk + k. (24)

A soft demapper is then used to compute the LLRs as
in Equation 20. We refer to this algorithm as improved
VBLAST (I-VBLAST) in the following.

3.4 Low-complexity K-Best (LC-K-Best) decoder
The classical K-Best decoder computes K+/2% Euclidean
distances. Then, a sorting operation is done to choose the
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K best candidates as illustrated in Figure 5 with an exam-
ple of K = 4. The LC-K-Best decoder recently proposed
in [40] uses two improvements over the classical K-Best
decoder for the sake of lower complexity and latency.

Simplified hybrid enumeration

The first improvement simplifies the hybrid enumeration
of the constellation points in real system model when
the a priori information is incorporated into the tree
search using two look-up-tables (LUTs). Hybrid enumer-
ation was initially proposed in [55] for soft-input sphere
decoder in complex system model. It consists of separat-
ing the partial metric into two metrics: the channel metric
and the a priori metric. To simplify the enumeration, we
consider two LUTs. One LUT is used for channel met-
ric mlC and the other LUT is used to store the a priori
metric m{‘. The enumeration is approximated through the
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orthogonality of these two metrics. Figure 4 illustrates an
example of the enumeration strategy. First, the constel-
lation points are enumerated according to m¢ and m*
and stored in the LUTs. Then, the smallest Euclidean dis-
tances of m© and m? are compared (S2 and S3). The
one which has the minimum distance (S2 in %) is cho-
sen as the first point. Then, the first point in 74 (S3) is
compared to the next point in m¢ (S1). Since S3 has a
lower distance, it is considered as the second point and
SO on.

Relaxed on-demand expansion

The second improvement is to use a relaxed on-demand
expansion that reduces the need of exhaustive expansion
and sorting operations. The on-demand expansion was
proposed in [50] for hard-output decoder. It consists in
expanding the first children of parent nodes and choosing

0,1 0.170,12 023 0,2
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el O Non-visited nodes
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02410281029 | 03 |033( 04 | 054

1 3 7 10 8 2 9 5 4

12 6 15 11 13 16 14

2 nodes y
7
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Figure 4 Classical K-Best Versus LC-K-Best. (a) Classical K-Best. (b) LC-K-Best.
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mé m€ :S2-S1-S3-S4
m# : S3 - S1- S2- S4
O §p Searching Sequence:
) S2 - S3-S1-S4
@ s |

Figure 5 Enumeration strategy based on m¢ and m*.

one minimum between these children. Then, the survival
path expands the next child. In our approach, a portion
A of the first children is chosen. Then, the correspond-
ing parents expand their next children. This operation is
repeated to get K best nodes. The number of the first
children A is chosen in order to allow a parent node to
extend all its possible children nodes depending on the
constellation and on the total number K of retained solu-
tions. Figure 5 shows an example with K = 4 and A = 2.
All parent nodes at the first level expand their first chil-
dren. The two children that have the smaller Euclidean
distances (nodes 1 and 7) are retained. Then, the cor-
responding parent nodes (P1 and P2) expand their next
children (nodes 3 and 8). The distance is compared, and
the two nodes (3 and 10) having the lowest distances are
retained to get 4 best candidates.

It has been shown in [40] that LC-K-Best decoder
achieves almost the same performance as the classical K-
Best decoder with different modulations. It was shown
that the computational complexity in terms of the num-
ber of visited nodes can be significantly reduced specially
in the case of high-order modulations.

4 Convergence analysis

The extrinsic information transfer (EXIT) chart proposed
in [41] is an effective tool to analyze the convergence
of the iterative process. It describes the exchange of the
mutual information in the iterative process in order to
determine the required number of iterations, the conver-
gence threshold, and the average decoding trajectory. Two
iterative processes (inside the turbo decoder, and between
the MIMO detector and the turbo decoder) are involved
in iterative MIMO turbo code receivers.

In our analysis, we separately study the convergence
of turbo decoding and MIMO detection. We denote by
141 and I49 the a priori mutual information at the inputs
of the MIMO detector and the turbo decoder, respec-
tively. Ir1 and Igp denote their corresponding extrinsic
mutual information at the outputs. We model the a priori
information Ly by applying independent Gaussian ran-
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dom variable 74 with zero mean and oj variance such as
2 .
Ha = 03/2 [41]:

Lg = pax + ng. (25)

The mutual information I, (14 or Ir) can be computed by
the means of Monte Carlo simulation using the probability
density function py :

1 +oo
I, = > Z /OO pr, (Lxlx) log

x=—1,1""
« 2p1, (Lx|x)
pL, Lxl =D pr, (Le| +1)
A simple approximation of the mutual information is
used in our analysis:

(26)

X

L—-1
1
L,~1-— I Zlog 1+ exp(—xLy)),

n=0

(27)

where L is the number of transmitted bits, and L, is the
LLR associated with the bit x € {—1,+1}. At the begin-
ning, the a priori mutual information I4; = 0and I4 = 0.
Then, the extrinsic mutual information Ig; of the MIMO
detector becomes the a priori mutual information 149 of
the turbo decoder and vice versa (i.e, [r; = I45 and Igy =
I41). Moreover, when the tunnel is opened, the exchange
of the extrinsic information can be visualized as a ‘zig-zag’
decoding trajectory in the EXIT chart. Jumping from one
curve to the other to reach a mutual information near to
one determines the convergence point and the required
number of iterations.

For our convergence analysis, a 4 x 4 MIMO system
with 16-QAM constellation and turbo decoder (R, =
1/2) is considered. Figure 6 shows the EXIT chart of
the overall system for different E;/Ny values and sev-
eral MIMO detectors (STS-SD, LC-K-Best, MMSE-IC,
and MMSE-IC1). As the I-VBLAST detector performs
successive interference cancellation at the first iteration
and parallel interference cancellation of the soft estimated
symbols for the rest iterations, it is less intuitive to present
its convergence in the EXIT chart. Therefore, the conver-
gence analysis of VBLAST is not given in this work.

We notice in Figure 6 that the characteristic of the turbo
decoder is independent of E; /Ny values. At a low signal to
noise ratio (e.g, E,/No = 1 dB), with one inner iteration,
the MIMO detector and the turbo decoder transfer char-
acteristics intersect at low mutual information (< 0.4); the
tunnel is blocked for all detection algorithms. Therefore,
the performance cannot be improved through iterations.
With the increase of Ej;/Np, the transfer characteristics
of the MIMO detectors are shifted upward, and the tun-
nel between the two characteristics is then open allowing
the iterative process to improve the performance of the
system. By comparing the characteristics of STS-SD, LC-
K-Best decoder, and MMSE-IC equalizers, we notice that
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Figure 6 EXIT chart for the turbo decoder (R, = 1/2) and MIMO detectors. a) STS-SD, b) LC-K-Best, €) MMSE-IC, d) MMSE-IC1, at different Ep/No

STS-SD has a larger mutual information at its output. LC-
K-Best decoder has slightly less mutual information than
STS-SD. MMSE-IC and MMSE-IC1 show low mutual
information levels at their outputs compared to other
algorithms when I4; < 0.85. While for I4; > 0.85, the
extrinsic mutual information is similar to others.
Furthermore, as shown in Figure 6a, in the case of STS-
SD, at E;/No = 1 dB with eight iterations inside the turbo
decoder, the tunnel is open and hence applying outer iter-
ations will lead to the intersection of the two characteristic
curves at moderate mutual information level. This inter-
section indicates that the BER performance cannot be
further improved with more iterations. At E,/Ng = 1.5
dB, the tunnel is larger, and three outer iterations are suf-
ficient to converge towards higher mutual information
leading to lower BER. However, when performing two
inner iterations inside the turbo decoder, the convergence
point can be attained by performing four outer itera-
tions. Similarly, LC-K-Best decoder in Figure 6b shows

an equivalent performance but slightly higher E,/Np is
required. The convergence speed of LC-K-Best decoder is
a bit lower than STS-SD, which requires more iterations
to get the same performance. The reason is mainly due
to the unreliability of the LLRs caused by the small list
size (L = 16). In the cases of MMSE-IC and MMSE-IC1
(Figure 6¢ and Figure 6d, respectively), the characteristics
present a lower mutual information than the LC-K-Best
decoder when I4; < 0.85. Therefore, an equivalent perfor-
mance can be obtained at higher E, /Ny or by performing
more iterations.

In addition, the average decoding trajectory resulting
from the free-run iterative detection-decoding simula-
tions is illustrated in Figure 6 at E,/Np = 1.5 or 2 dB
for four or six outer iterations between the MIMO detec-
tor and the turbo decoder and two inner iterations. The
decoding trajectory closely matches the characteristics in
the case of STS-SD and LC-K-Best decoder. The small
mismatch is due to the limited interleaver length. In
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the case of MMSE-IC and MMSE-IC1 equalizers, the
decoding trajectory diverges from the characteristics for
high mutual information because the equalizer uses the a
posteriori information to compute soft symbols instead of
the extrinsic information.

In conclusion, the iterative process with large tunnel
leads to faster convergence. If only one inner iteration is
performed for each outer iteration, more than four outer
iterations are required since the turbo decoder requires
at least six to eight iterations to converge. If otherwise,
more inner iteration is carried out (e.g., two), four outer
iterations in the global loop are sufficient to reach the
convergence threshold. The best trade-off scheduling of
the required number of iterations is therefore I,y iter-
ations in the outer loop and a total of eight iterations
inside the turbo decoder distributed across these Iyt
iterations.

5 Performance comparisons

In this section, we compare the performance of differ-
ent MIMO detectors namely STS-SD, LC-K-Best decoder,
MMSE-IC, and I-VBLAST equalizers. The simulations are
based on a 4 x 4 SM MIMO system, QAM constellation
with Gray mapping, and Rayleigh fading channel model.
The Rayleigh fading coefficients are generated randomly
with zero mean and unit variance. The 1/3 rate turbo
encoder specified in 3GPP LTE is used in the simulations.
Puncturing is performed in the rate matching module
to achieve a coding rate R.. The transmitted frame con-
sists of 2,048 bits. A random interleaver of a size 2,048
is therefore considered. Table 1 summarizes the principle
parameters for the simulations. The performance is mea-
sured in terms of bit error rate (BER) with respect to SNR
per information bit Ej, /Ny defined as:

Ey _Es

= 28
No =~ Ny (28)

1
C

Table 1 Simulation parameters
MIMO system

4 x 4 Spatial multiplexing

Channel type Flat Rayleigh fading

Single tree search (STS-SD)

LC-K-Best, K = 16 (16-QAM), K = 32, 64 (64-QAM),
[-VBLAST, MMSE-IC, MMSE-IC1

LTE turbo code K=41[13,15],

Re=1/2,3/4

Block Length L = 2,048 bits

16-QAM, 64-QAM

Detector

Channel decoder

Modulation 22-QAM
Gray mapping

Interleaver Random, size = 2,048
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For each Ej; /Ny value, BER is obtained with at least 200
errors. A maximum number of 10,000 frames is transmit-
ted which is largely sufficient for obtaining a BER level of
107°.

The performance of these detection algorithms is com-
pared with different system configurations. In the first
configuration, an original schedule that performs eight
inner iterations inside the turbo decoder for each outer
iteration is considered. The second configuration uses a
new schedule that performs a total number of eight iter-
ations inside the turbo decoder distributed equally across
the outer iterations. Such schedule is chosen based on the
convergence behavior of the iterative processing. For this
configuration, two schemes are considered. First scheme
performs two outer iterations, each with four inner iter-
ations. The other scheme performs four outer iterations,
each with two inner iterations. These schemes are con-
sidered to investigate the impact of the number of outer
and inner iterations on the performance and the com-
plexity of the system. Moreover, in the case of MMSE-IC
equalizer, a previous schedule [20] that performs only
one inner iteration for each outer iteration is considered.
This configuration can be adopted in a low-complexity
detector like the equalizer used in [20]. In the case of tree-
search-based algorithms, such configuration with eight
outer iterations requires a high computational complexity
in the MIMO detector.

Figure 7 shows the BER performance of the first con-
figuration with fj, = 8 inner iterations and oy = 1, 2,
4, or 8 outer iterations. STS-SD is used without any sim-
plifications which allows us to consider it as a reference
close to MAP performance. At the first iteration Iy = 1
(Figure 7a), since no a priori information is available at
the equalizer, a classical MMSE equalization is performed.
For Iyt = 2,4, 8, an interference canceller can be carried
out efficiently. Therefore, I-VBLAST, MMSE-IC equal-
izer, and its approximation (MMSE-IC1, MMSE-IC2) are
considered. From Figure 7a,b, it can be seen that the per-
formance of the system is improved through iterations by
about 1.5 dB at a BER level of 1 x 107> with all MIMO
detection algorithms. At the first iteration, STS-SD out-
performs LC-K-Best decoder by about 0.5 dB (Figure 7a).
However, this gap is reduced to 0.2 dB at a BER level of
1 x 10~* with four outer iterations (Figure 7b). In addition,
Figure 7a shows that I-VBLAST outperforms LC-K-Best
decoder by 0.2 dB and 0.1 dB at a BER level of 1 x 107>
for Ioyt = 1 and Iy = 2, respectively. Moreover, LC-
K-Best decoder slightly outperforms MMSE equalizer by
about 0.1 dB at a BER level of 1 x 10~°. However, MMSE-
IC and I-VBLAST performances are close to LC-K-Best
decoder with four outer iterations (Figure 7b). MMSE-
IC1 equalizer shows performance degradation of 0.4 dB
compared to MMSE-IC equalizer and LC-K-Best decoder.
Whereas, MMSE-IC2 presents a degradation of 0.8 dB at
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Figure 7 BER performance of a 4 x 4 coded MIMO system with 16-QAM using several MIMO detectors. (STS-SD, LC-K-Best, |-VBLAST,
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a BER level of 1 x 10~* compared to MMSE-IC1. Further-
more, Figure 7b shows that no significant improvement
can be achieved after four outer iterations. This improve-
ment at a BER level of 1 x 10~* is negligible with eight
iterations in the case of STS-SD and less than 0.2 dB with
other detectors.

Figure 8 illustrates the BER performance of STS-SD
and LC-K-Best decoder with four outer iterations and
eight turbo decoder iterations distributed across these
four outer iterations. We see that the order of inner iter-
ations has an impact on the performance of the system.
For example, performing five inner iterations inside the
turbo decoder in the first outer iteration, then one itera-
tion in the remaining outer iterations shows a degradation
about 0.2 ~ 0.25 dB compared to the case when five inner
iterations are performed in the last outer iteration. This
is explained by the fact that through iterative process, the
turbo decoder gets more reliable information at its input
which allows faster convergence. However, this scheduling
is not the optimal since the turbo decoder does not benefit
from the iterations until the end. By varying the order of
inner iterations, we find that a good solution is to perform
two inner iterations inside the turbo decoder for each of
the four outer iterations.

Figure 9 illustrates the performance of MIMO detectors
with the second system configuration using two different
schemes. Comparing Figure 9a and Figure 9b, it can be
seen that the second scheme with Iy = 2 and [}, = 4
presents a degradation of about 0.5 dB compared to the
first scheme with Iyt = 4 and Ij, = 2. Moreover, Figure 9a
shows that the first scheme presents a degradation of less
than 0.1 dB at a BER level of 2 x 107> with all detec-
tion algorithms compared to the scheme that repeats eight
inner iterations at each outer iteration in Figure 7b. By
comparing the algorithms, LC-K-Best decoder shows a

degradation of less than 0.2 dB compared to STS-SD at a
BER level of 2 x 10~°. However, it outperforms MMSE-
IC1 equalizer by about 0.4 dB at a BER level of 2 x 107°.
MMSE-IC and I-VBLAST show almost the same perfor-
mance as LC-KBest decoder with Ioy¢ = 4 and [j, =
2. MMSE-IC2 presents a degradation of 1 dB compared
to MMSE-IC1. Moreover, with Io,y = 2 and [;;, = 4,

0 Towu= 4, Iin = [i1, 12,13, 4]

BER

—e—STS-SD R

—a— LC-K-Best \ \

1074" ——Iin:[Q»QstQ] ¥ *

e Ly =[1,1,1,5] \ Y
- Iin =15,1,1,1] L

-1 -0.5 0 0.5 1 1.5 2
Eh/NO [dB]
Figure 8 BER performance of a 4 x 4 coded MIMO system with
16-QAM using STS-SD and LC-K-Best decoders. Eight turbo
decoding iterations are distributed over four outer iterations.
lin =[i7,12,13,i4) indicates that ix inner iterations are performed in the

kth outer iteration. Turbo code with Re = 1/2and L = 2,048 is used.




El Chall et al. EURASIP Journal on Wireless Communications and Networking (2015) 2015:69

Page 13 of 19

a) Loy =4, Iin =2

BER

——STS-SD
—=—LC-K-Best
10 't —— L-VBLAST
——MMSE-IC

——MMSE-IC1
—*—MMSE-1C2

-1 0 1 é 3
Ey/ Ny [dB]

Figure 9 BER performance of a 4 x 4 coded MIMO system with 16-QAM using several MIMO detectors. (STS-SD, LC-K-Best, I-VBLAST,
MMSE-IC, MMSE-IC1, and MMSE-IC2), (@) fin = 2, lout = 4 and (b) /iy = 4, oyt = 2. Turbo code with Re = 1/2 and L = 2,048 is used.
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I-VBLAST slightly outperforms LC-K-Best decoder and
MMSE-IC equalizer.

In addition, Figure 10 shows the performance of MIMO
detection algorithms with Ioyt = 2,4,8 and [, = 1. We
show that Ioyt = 2 is not sufficient for system conver-
gence. With Iyt = 4, there is a degradation of about
0.3 to 0.5 dB at the BER level of 107> compared to
Figure 9a. However, with I, = 8, MIMO detection algo-
rithms present an improvement of 0.1 dB at a BER level of
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Figure 10 BER performance of a 4 x 4 coded MIMO system with
16-QAM using several MIMO detectors. (STS-SD, LC-K-Best,
[-VBLAST, MMSE-IC, MMSE-IC1, and MMSE-IC2), fin = 1, lout = 2,4, 8.
Turbo code with R = 1/2 and L = 2,048 is used.

2 x 107>, This configuration with I;, = 1 and Iy = 8
increases the complexity of the receiver especially in the
case of tree-search-based algorithms.

Figure 11 shows the BER performance of 64-QAM with
It = 4, Iin, = 2, and R, = 3/4. We see that LC-K-Best
decoder with a list size of 64 presents a similar perfor-
mance as STS-SD. Moreover, performance degradation of
0.1 dB at a BER level of 1 x 10™* is observed with a list
size of 32. However, I-VLAST equalizer and MMSE-IC
equalizer present a degradation of 2 dB at a BER level of
1 x 10~* compared to LC-K-Best decoder. Therefore, LC-
K-Best decoder is more robust in the case of high-order
modulations and high coding rate.

In order to summarize the performance of different
detectors with different system configurations, we provide
the E;/Np values achieving a BER level of 2 x 107 in
Table 2. The number used in the parenthesis in the table
represents the performance loss over STS-SD.

Simulation results show that iterative receiver substan-
tially improves the performance of coded MIMO systems
(Figure 7). Moreover, after a certain number of iterations,
the performance of the system becomes saturated and
does not show significant improvement anymore. Addi-
tionally, Figures 8 and 9 show that the scheduling order
and the number of iterations affect the system perfor-
mance. Their impact on the complexity of the system will
be detailed in the next section.

6 Complexity comparisons

In practical systems, the computational complexity
impacts the latency, the throughput, and the power con-
sumption of the device. Therefore, the receiver algorithms
must be a compromise between performance and cost. In
this section, we evaluate the computational complexity of
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Figure 11 BER performance of a 4 x 4 coded MIMO system with
64-QAM using several MIMO detectors. (STS-SD, LC-K-Best,
I-VBLAST, and MMSE-IC), fin = 2, lout = 4. Turbo code with R, = 3/4

and L = 2,048 is used.

the turbo decoder and the family of MIMO detection algo-
rithms in terms of the number and the type of real float
value operations (additions/subtractions, multiplications,
divisions). We then compare the overall complexity of the
iterative receiver for different system configurations.

6.1 lterative receiver complexity

For an iterative receiver, the algorithm complexity is
related to the channel decoder, the MIMO detector, and
the number of iterations. The overall complexity of an
iterative receiver can be expressed by:

Ctotal = finlout CTurboNbit + Nsymb {Caet1 +Uout — 1) Ceti} »
(29)

where Cqet1 denotes the complexity of the first iteration
of MIMO detection algorithm per symbol vector without

Table 2 E;, /Ny values achieving a BER level of 2 x 10~ for
different detectors with 4 x 4 16-QAM, R, = 1/2°

lowt =4,lin=8 lowt=41Iln=2 lout=28,lin=1
STS-SD 1.69 dB 1.72dB 1.56 dB
LC-K-Best 1.87 dB (—0.18) 1.89dB (—0.17) 1.76 dB (—0.20)
I-VBLAST 1.88 dB (—0.19) 1.97 dB (—0.25) 1.78 dB (—0.22)
MMSE-IC 1.92 dB (—0.23) 1.89 dB (—0.27) 1.76 dB (—0.24)
MMSE-IC1 2.20dB (-0.51) 2.28 dB (—0.56) 2.20dB (—0.64)

9The number in the parenthesis corresponds to the performance loss in dB over
STS-SD.
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taking into consideration the a priori information. While
Ceti denotes the complexity per iteration per symbol vec-
tor taking into consideration the a priori information.
Crurbo denotes the complexity of the turbo decoder per
iteration per information bit. Ny is the number of infor-
mation bit at the input of the encoder, while Ny, is the
number of symbol vectors. Nsymp and Ny are linked by
the following relation:

N
bit _ aNpi, with o= ——.
QRM QRM

Nsymb = (30)

6.2 Turbo decoder complexity

The turbo decoder complexity depends on SISO decoder
algorithms and the number of iterations. Herein, Max-
Log-MAP algorithm with a correction factor is used [56].
The complexity of Max-Log-MAP decoder corresponds
to three principal computations: branch metrics, recursive
state metrics, and LLR of the bits. Table 3 summarizes the
total number of operations per info bit and per iteration
for the LTE turbo decoder with eight states and n = 2
output bits. Therefore, the overall complexity of the turbo
decoder can be obtained by multiplying it by the block
length L and by the number of iterations finIoyt-

6.3 MIMO detection complexity

In the case of tree-search-based algorithms, the com-
monly used approach to measure the complexity is to
count the number of visited nodes in the tree-search
process. In the case of the equalizer, the complexity is eval-
uated in terms of real or complex operations required to
compute filter coefficients.

The complexity of tree-search-based algorithms can be
divided into two steps: the pre-processing step and the
tree-search step. However, the complexity of IC equal-
izer algorithms are dominated by the computation of the
filter coefficients and the matrix inversion. Herein, QR
decomposition method is used to help the computation
of the matrix inversion. In the case of quasi-stationary
channel, the channel matrix is assumed to be constant
over a long period of time. The QR decomposition and
the matrix inversion can be performed only once over the
frame. Therefore, their associated complexity can be sub-
stantially reduced in slow fading environment. Moreover,
the QR decomposition is performed at the first iteration.
The complexity of QR decomposition can be then consid-
ered negligible compared to the global complexity of the
iterative receiver.

Table 3 Complexity of turbo decoder per information bit
per iteration

ADD Max (2-input) LUT
Turbo decoder 2™ = 8,n =2 232 88 88




El Chall et al. EURASIP Journal on Wireless Communications and Networking (2015) 2015:69

The complexity of the sphere decoder depends on the
modulation order and on the number of transmit anten-
nas [13,16,17]. The average complexity of the sphere
decoder was shown to be polynomial in the number of
unknowns roughly O(M?3). However, it presents an expo-
nential complexity in the worst case conditions depending
on the noise level and the choice of an initial radius.
Due to the sequential nature of the tree search and the
statistical effect of the channels, it is very difficult to
find an analytical expression of SD complexity. Herein,
Monte Carlo simulations were used to measure the
number of operations (additions and multiplications) of
STS-SD.

6.4 Complexity results

In the case of a 4 x 4 16-QAM system, the complexity
of different detection algorithms in terms of number of
operations are summarized in Figures 12 and 13 at the
first and ith iteration, respectively. The MAP algorithm
presents the highest complexity (4.7 x 10° MUL, 4.6 x 10°
ADD). It is used as a reference to view the reduction in
the complexity of other algorithms compared to the opti-
mal detector. The complexity of STS-SD depends largely
on the SNR. Its average complexity is computed through
simulations over all SNR range. The average number of
arithmetic operations is 90% lower than the MAP algo-
rithm. However, it still has a larger complexity than other
algorithms.

The complexity of the equalizer comprises the complex-
ity of soft mapping and soft demapping. The complexity
of K-Best and LC-K-Best decoders includes the complex-
ity of SQR decomposition at the first iteration and LLR
computation. The complexity of classical K-Best decoder
is about 50% higher than that of LC-K-Best decoder. LC-
K-Best complexity is approximately 30% higher than that
of the MMSE equalizer and 50% lower than that of I-
VBLAST. I-VBLAST requires more complexity due to
the matrix inversion for each detected symbol. For ith
iteration, MMSE-IC shows 56% higher complexity than
MMSE-IC1 due to the matrix inversion for each detected
symbol. However, MMSE-IC2 has 62% lower complex-
ity than MMSE-IC1 since MMSE-IC2 approximation does
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not contain a matrix inversion. Comparing the complexity
of MMSE-IC1 equalizer and LC-K-Best decoder for the
ith iteration, we found that LC-K-Best decoder presents
a lower number of arithmetic operations (22% MUL, 10%
ADD). This is due to the fact that the equalizer repeats the
matrix inversion for each iteration. However, LC-MMSE-
IC algorithm proposed in [21] has a lower complexity
than the LC-K-Best decoder in terms of MUL (7%) and
ADD (19%) with additional DIV and SQRT operations
required by the matrix inversion. It is important to note
that in LC-K-Best decoder, there is a number of compar-
isons to choose the best candidates that are not taken into
consideration in the complexity comparisons. MMSE-IC2
presents the lowest complexity but with more perfor-
mance degradation, it presents a reduction of 58% MUL
and 52% ADD with a degradation of 1.5 dB compared
to LC-K-Best decoder. Moreover, if the channel matrix is
assumed to be quasi-stationary, the SQR decomposition
as well as the matrix inversion associated with MMSE will
be reused within the signal frame.

As we saw in Section 5, the scheduling order and the
number of iterations have a great impact on the system
performance. The best trade-off schedule when perform-
ing Iout outer iterations is to perform at least eight turbo
decoding iterations distributed equally into fi, = 8/Ioyt.
For this reason, we consider the two schemes having a dif-
ference of 0.5 dB at a BER level of 10> to view the impact
of this performance degradation into the overall complex-
ity. In the first scheme (scheme 1), Ioyt = 4 and i, = 2
iterations are performed. The second scheme (scheme 2)
has Ioyt = 2 and i, = 4. These two schemes present
an equal number of turbo decoding iterations. Therefore,
the complexity in terms of number of operations for the
turbo decoder will be the same. However, the access to the
memory will be changed.

Figure 14 summarizes the overall complexity of the
receiver for one transmitted frame with these two
schemes using different detection algorithms. As shown
in Figure 14, a significant reduction of MUL opera-
tions between 40% ~ 60% is obtained with scheme
2, and a reduction of ADD/SUB operations between
5% ~ 25% is observed. However, the number of Max
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operations remains the same since the same number of
turbo decoding iterations is used. DIV and SQRT opera-
tions are more reduced in the case of MMSE-IC, MMSE-
IC1, and LC-MMSE-IC by about 50% ~ 60% due to
reduction of matrix inversions. MMSE-IC2 presents a
reduction of the DIV operations by 25%. Moreover, com-
paring the overall complexity in the same scheme, we
show that the complexity of STS-SD is much higher than
LC-K-Best decoder (65% ~ 67% MUL, 21% ~ 33% ADD)
at the expense of only 0.4 ~ 0.25 dB of performance
improvement at a BER level of 1 x 107°. K-Best decoder
presents lower complexity than STS-SD but higher than
LC-K-Best decoder. LC-K-Best decoder shows approx-
imately the same complexity as MMSE-IC1 equalizer.

In addition, LC-K-Best presents a reduced complexity
than I-VBLAST (20% ~ 35% MUL, 2% ~ 5% ADD,
approximately 50% DIV, approximately 50% SQRT). The
reason is that I-VBLAST requires multiple matrix inver-
sions at the first iteration. However, LC-MMSE-IC has
a lower complexity than LC-K-Best decoder in terms of
MUL (15% ~ 22% less) and ADD (4% ~ 6% less)
but requires more DIV (20% ~ 50% more) and SQRT
(approximately 50% more) operations. Furthermore, the
complexity of MMSE-IC2 equalizer is much lower than
LC-K-Best decoder (40 ~ 45% MUL less, 7% ~ 13% ADD
less). However, MMSE-IC2 presents a significant degrada-
tion of 1 ~ 1.25 dB at 1 x 10~> compared to LC-K-Best
decoder.
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It is therefore worthy to compare the overall complexity
of different receivers with approximately the same per-
formance. We consider different system configurations
for different detection algorithms given approximately
1 x 107> at E,/Ny = 2 dB at the expense of MMSE-IC1
and MMSE-IC2 that have a degradation of 0.25 and 1
dB, respectively. Figure 15 illustrates the obtained results.
As Figure 15 shows, LC-K-Best decoder, LC-MMSE-IC,
and MMSE-IC2 equalizers have the lowest computational
complexity. However, MMSE-IC2 presents more perfor-
mance degradation. We remind that LC-K-Best decoder
requires many comparison operations that are not consid-
ered in the complexity. MMSE-IC (8 to 1) has the higher
complexity even higher than STS-SD, due to matrix inver-
sion for each symbol and for each iteration. MMSE-IC (4
to 2) has lower complexity than MMSE-IC (8 to 1) (55%
MUL, DIV, SQRT; 32 % ADD) with small degradation
(0.1 ~ 0.2 dB). Furthermore, MMSE-IC1 and I-VBLAST
present a higher complexity than LC-K-Best since the
matrix inversion is repeated at each iteration while in the
LC-K-Best decoder the SQR decomposition is only done
at the first iteration. Moreover, LC-MMSE-IC presents a
lower complexity than LC-K-Best as discussed previously
in Figure 14 with more DIV and SQRT operations.

Other aspects must be taken into consideration such
as the required memory and the number of access to the
memory since these aspects affect the scale of the receiver
and the latency of the system. Moreover, the interleaver
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plays a major role to manage the access of the memory.
These aspects can be the subject of future investigations.
From the theoretical complexity results, LC-K-Best
decoder seems to be less complex and more suitable for
implementation. Furthermore, LC-K-Best decoder per-
forms a breath-first search that can be easily paralyzed and
pipelined in hardware architecture as discussed in [14,28].

7 Conclusions

This paper provides an overview of several SISO MIMO
detection algorithms proposed to avoid the exponential
complexity of the MAP algorithm such as LSD, STS-SD,
and K-Best decoders and IC equalizers. A LC-K-Best
decoder is presented in order to avoid the full expansion
and to simplify the enumeration through the use of two
LUTs. Moreover, we analyze the convergence of the iter-
ative process for several detection algorithms. We then
compare the performance of these detection algorithms
with the original scheduling of number of iterations and
the new proposed scheduling. The theoretical complex-
ity of turbo decoder and the family of MIMO detectors
is evaluated in terms of number and type of real valued
operations. We compare their complexity with different
system configurations. Simulation results show that the
new schedule gives similar performance to the original
schedule while saving a large amount of turbo decoder
complexity and latency. Additionally, complexity results
show that the LC-K-Best decoder achieves a best trade-off

performance of T x 107> BER at £, /Ng = 2 dB.
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Figure 15 Overall computational complexity of a 4 x 4 16-QAM system of different detection algorithms. With approximately an equivalent
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between performance and complexity among the stud-
ied detectors. Future work can include other aspects like
memory access, memory requirement, fixed point conver-
sion, and implementation in real environments.
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