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Abstract

Inclusion of statistical knowledge of the primary user (PU) channel usage had shown to be beneficial in dynamic
spectrum access. Motivated by this fact, this paper investigated the importance of collecting and using statistics on
neighboring secondary users (SUs) in selecting channels in addition to the knowledge of PU channel usage. The
paper assumed that PU traffic characteristics of the channels are included in the radio environment map in the form of
probabilistic suffix trees, which is a sequence predictor based on Markov property. In the proposed method, an
intelligent sequence hopping-based common control channel and a carrier sense multiple access (CSMA)/collision
avoidance (CA)-based medium access control (MAC) protocol were introduced. As shown in the paper, selecting
channels using statistics of both the neighboring SUs and PUs reduced the number of packet collisions compared to a
scheme which only uses PU statistics. Furthermore, the simulation results showed that the scheme proposed had
better throughput performance with respect to both the random channel selection scheme and the scheme which
only uses PU statistics while having less training complexity.
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1 Introduction
The vast growth in wireless applications in the past decade
has pushed the FCC to search for efficient spectrum allo-
cation mechanisms to avoid spectrum scarcity [1]. The
measurement operation carried out by the FCC’s Enforce-
ment Bureau in 2002 gave some insight into the real cause
of the widely accepted notion of spectrum scarcity [2]. The
recommendations made by the spectrum efficiency work-
ing group, based on these findings, consisted of promoting
flexible use of spectrum development and deployment of
advanced technologies and promoting secondary markets
for spectrum [2]. A technology known as cognitive radio
(CR) was found to have the capability to implement those
recommendations [1].
However, the secondary usage of spectrum requires

the CRs to opportunistically utilize the spatiotemporally
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available primary user (PU) spectrum. This utilization
brings about several problems as follows:

1. The problem of imperfect sensing (false alarms and
missed detection) in the physical layer.

2. Unavailability of a common control channel which is
always available.

3. Deciding on which channels to sense to find an
opportunity efficiently.

4. Efficient selection of a different channel to continue
with the communication when the PU appears in the
currently used one (spectrum mobility).

5. Efficient sharing of the spectrum with other
secondary users (SUs).

Proactive spectrum access (PSA) can be used as a solu-
tion for the third and fourth problems mentioned above.
Furthermore, using the statistical information on the PU
channel usage, highly available sequence hopping (SH)-
based common control channels (CCCs) can be designed.
One of the solutions to the problem of imperfect sensing
is cooperative sensing. In [3], the authors discuss a semi-
distributed cooperative spectrum sensing scheme which
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reduces this problem. In Sections 1.3 and 1.2, we discuss
some available solutions for the problems 2 and 5, respec-
tively. This paper is an extension to the work in [4]. In that
paper, we only discussed the usage of probabilistic suffix
tree (PST) as a prediction mechanism, where there was
only a single SU trying to access the channel.
In the scheme presented, the radio environment map

(REM) is enhanced with statistical knowledge of the PU
channel usage as in [5]. Furthermore, due to PU channels
being highly dynamic, it may not be possible to query the
REM for information on the current state of the chan-
nels. Even if the channels are not highly dynamic, it might
not be possible to query the REM before every time slot
due to the control channel saturation problem. Consider-
ing these facts, in the scheme presented, each transmitting
SU queries the REM once for the probabilistic informa-
tion before the transmission. Then, the SU will cache the
probabilistic information to be used until the end of the
communication between itself and the receiver while car-
rying out periodic sensing. In the work, we presented
in this paper, the REM learned the PU channel usage
distributions from the past channel usage data using a
scheme called the PST algorithm [6], which belongs to the
class of variable-orderMarkovmodels (VMMs). PSTs only
increased the length of the conditioning strings if there
was evidence that higher order gives a better prediction
result with high probability, although we set a maximum
value for the memory in the algorithm [7]. Therefore,
the model takes less memory and does not need much
bandwidth to transmit. In [8], it was observed that in
some channels, the predictability cannot be improved by
increasing the Markov order and the largest improve-
ment for other channels happens when going from zeroth
order to first order. But the authors admitted that the
predictability did not monotonically decrease with the
Markov order. In their results, there were evidence for
the existence of channels which are more predictable
using higher Markov order, for example, 10% of the chan-
nels they tested had an optimal Markov order of 8. There-
fore, the PST scheme is a good candidate when a CR
operates in diverse wireless channels, because of its self-
regulation of the Markov order and the convenience of
training. Furthermore, the PST is capable of predicting the
channel availability conditioned on a string of past chan-
nel observations which are of variable length. The second
property mentioned in the above line was very useful
in our case since the length of consecutive observations
the SUs possessed was varying according to the sensing
schedule. In a scenario where a carrier sense multiple
access (CSMA)/collision avoidance (CA)-based medium
access control (MAC) scheme is used, collisions are
inevitable. Therefore, time slots become wasted. To allevi-
ate the network from this issue, we used the statistics col-
lected by each SU on the number of successes and failures

on each used channel in a given window of time slots when
selecting a set of channels to transmit data. We believe
that this is the first time SU channel access data are used
in PSA. In this scheme, the channel conditions were not
considered. It was ignored to keep the model simple and
to clearly show the advantage of using available statistics
on PUs and SUs. The channel conditions can be obtained
by channel probing after the handshake or from the REM
itself, and it will enhance the capacity obtained without
doubt.

1.1 Existing schemes on PSA
In the literature, there are mainly three categories of PSA
schemes as follows: analytic formulations ([9-11]), heuris-
tic schemes based on assumed channel usage ([12-15]),
and heuristic schemes based on channel usage learning
([4,16-18]). Most of the learning methods like neural net-
works (e.g.,[16]) and binary time series models (e.g.,[18])
in the literature fixed the value of the memory to be
used in prediction. The hidden Markov models (HMMs)
(e.g.,[17]) fixed the number of states in the Markov chain.
Although being very good predictors, the training com-
plexities of neural networks, HMMs, and binary time
series models are a lot higher than those of the PST,
and thus, they cannot be trained online. The analytic for-
mulations (e.g.,[9-11]) used variants of Markov decision
process to calculate the sensing and access schedule to
maximize the SU reward while keeping the PU interfer-
ence probability under a given threshold. Although they
can calculate the optimum policy, they become imprac-
tical even for a small number of channels because of the
complexity of policy calculation. The heuristic schemes
proposed in the literature although being simple can lead
to more SU packet collisions, because all the SUs use
the same schedule only varied because of imperfect sens-
ing. Thus, they lead to inefficient channel usage in a
CSMA/CA-based protocol.

1.2 Existing medium access control schemes
In [19], the MAC schemes in the literature were cat-
egorized according to the spectrum access mode as
contention-based, time-slotted, and hybrid. Our scheme
falls in the category of hybrid spectrum access protocols.
Furthermore, in [20], they were categorized according
to the level of coordination performed as direct access-
based (DAB) protocols and dynamic spectrum allocation
(DSA)-based MAC protocols. In DAB protocols, only the
user pair involved in the communication take part in
coordinating the access. While in DSA protocols, users
coordinate with the neighbors to achieve a network-wide
optimum. Although being optimal, DSA protocols have
scalability issues. The MAC scheme that we proposed is a
DAB with proactive access. The difference in our scheme
from these MAC schemes is that being proactive and
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switching channels inside a time slot when the channel is
not available. Interested readers are referred to the survey
papers [19] and [20] and the references therein for more
information.

1.3 Existing common control channel design schemes
The CCCs proposed for overlay networks can be divided
into three main categories [21] as follows:

1. Sequence hopping-based CCC
2. Group-based CCC [22]
3. Dedicated CCC

We used a sequence-based CCC for the initial hand-
shake between two SUs and an SU and REM. The advan-
tage of SH-based CCCs over the group-based ones is
having less coordination burden in a highly dynamic PU
spectrum access scenario. Then, compared to the ded-
icated CCCs, it has less probability of being saturated.
Our scheme is different from the ones in the literature
(e.g.,[23-25]) because of using PU stationary channel
usage probabilities in deciding on the channel to be used.
The scheme proposed in [25] also uses PU stationary
channel usage probabilities to rank the channels. In that
paper, each individual SU made a ranking table of PU
channels according to their activity. Then, using a linear
and a parabolic function, the number of occurrences of
each channel in a sequence of fixed length L was decided
such that channels with lower activity had more appear-
ances. Because of the deterministic nature of the number
of occurrences of the channels, the arrangement of chan-
nels in the sequence by each SU plays a huge role on the
channel load, which was not discussed in detail in that
paper.
One of the drawbacks of the SH-based schemes is

the burden of synchronization. Many papers considering
decentralized scenario in the literature took the assump-
tion of the network being synchronized (e.g., [23-26]). In
[23], although they claimed to have alleviated the network
from the need for synchronicity, they assumed the switch-
ing boundaries to be synchronous. In other words, the
delay between the two sequences is an integer multiple of
the time slot length. Our scheme could also handle that
form of asynchronicity. For more information on how this
synchronicity is maintained, the readers are referred to
Section 4.4.

1.4 Main contribution
The main objective of this paper was to find solutions
to the MAC layer problems faced by SUs utilizing PU
channel usage models acquired from the REM and the
SU channel usage individually observed by each SU.
These MAC problems are the problem of designing a
highly available control channel, the problem of efficiently

searching for spectrum holes, the problem of spectrum
mobility, and the problem of spectrum sharing among
SUs. The contributions of this paper are listed below:

• A synchronized channel hopping-based common
control channel was proposed for the initial
handshake.

• The theoretical properties of this common control
channel were derived.

• A stochastic channel set selection scheme for sensing
and access was proposed taking both the PU channel
usage and SU channel usage into consideration.

• A probabilistic suffix tree-based prediction scheme
was proposed to arrange the channels from best
availability to least availability in each time slot.

The rest of this paper is organized as follows.We present
the system model used in Section 2. In Section 3, we
present a brief explanation of the prediction scheme used
in this paper. Then, we discuss the MAC used in this
paper in Section 4 followed by the simulation results and
conclusion in Sections 5 and 6, respectively.

2 System overview
In the system investigated, we have a centralized time
slotted primary network (PN) and a decentralized sec-
ondary network (SN) which opportunistically utilizes the
PN resources. In this secondary network, a REM exists
which has the ability to collect the PN channel occupancy
details. REM is assumed to possess records of past chan-
nel usage information of N channels, which are collected
from the SUs and a dedicated set of sensors as in [5]. In
the event that channel occupancy of PUs change and the
statistics are recalculated, they are distributed by the REM
to the registered users using the CCC.
The SUs register themselves with the REM and obtain

the PU channel usage information. They were assumed
to be synchronized among themselves and with the
REM. This synchronization is vital in having a univer-
sally quiet period (QP) among the SUs. The universally
QP enables the use of a less complex sensing method like
energy detection as opposed to matched filter detection
or cyclostationary detection. The SUs were assumed to be
equipped with a widely tunable antenna, a sensing unit
and a radio unit which is capable of sensing all the N pri-
mary channels and transmitting on the same. The SUs
and the dedicated sensors were assumed to be capable of
differentiating an SU signal from a PU signal since they
are synchronized and have a QP at the beginning of each
time slot. Further details on this topic are explained in
Section 4.
We assumed unlicensed operation of SUs without any

QoS guarantees, which was one of the two DTV band
secondary spectrum usage schemes proposed in [27]. In
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this paper, we adopted the convention of denoting the
busy period with 1 and the idle period with 0. The chan-
nel state distribution learning scheme used by the REM is
explained in the next section.

3 Channel modeling and prediction
The most commonly used Markov chain in the literature
is the one-step Markov chain. Suppose we let the states
of the Markov chain be labeled by the window of last m
observations. Then, even though the Markov chain does
only a one-step prediction, that prediction depends on
the last m observations. For example, let ‘1’ and ‘0’ rep-
resent the busy and idle states of a particular channel,
a fixed-order Markov model of order m has strings of
channel observations of the past m time slots as its state
labels. Thus, there are 2m number of states in this par-
ticular case. For example, if we assume m = 2, then we
have 22 = 4 states, and the state labels are {00, 01, 10, 11}.
For m = 3, we have 23 = 8 states having state labels
{000, 001, 010, 011, 100, 101, 110, 111}. Since the number
of states grows exponentially with m, only Markov chains
with lower order can be practically used [6]. In variable-
order Markov models as opposed to fixed-order Markov
models, we only consider the states which are highly
abundant on the training sequence and have a significant
impact on the next observation. Therefore, the number
of states in a variable-order Markov model is usually less
than those in a fixed-order Markov models of the same
order [28]. The PST introduced in [6] belongs to the cat-
egory of variable-order Markov models. A summary of
the algorithm is given below for the convenience of the
reader.
If we take a variable-order Markov model of order D =

2, its states are labeled with binary strings of length l ≤ 2
(strings are binary since the observation space is binary).
The set of states in variable-order Markov model in this
case is a subset S of � = {0, 1, 00, 10, 01, 11}, chosen by
an algorithm run on a past observation sequence. But a
sequence in this subset S cannot be a suffix of another
sequence in the same set, for example, both 1 and 01
cannot be in set S. A suffix s′ of a string s is defined as
s′ ∈ {sisi+1...sl|1 ≤ i ≤ l} ∪ {e} where s = {s1s2...sl} and
e is the null string. In our case si ∈ {1, 0} ∀i ∈ {1, 2, ..., l}.
The other requirement about the state space S is that for
every string s ∈ S, if the probability of having σ ∈ {1, 0}
after s (Probability(σ |s)) is greater than zero, there should
be a unique string ŝ which is a suffix of sσ in S. Where sσ
is the the string having σ attached to the end of the string
s. As mentioned earlier, to find out the states that matter
in the variable-orderMarkovmodel, we used an algorithm
called the PST algorithm, which was introduced in [6]. To
use this algorithm, we needed a training sequence of suf-
ficient length which represents channel behavior under
normal circumstances, in our case, it was the channel state

data gathered by the REMwhich are binary sequences. An
algorithm to discover the suffix set S and build the PST
using a given training sequence of length m is explained
in the papers [6,28]. An algorithmic explanation of the
PST algorithm is given in Appendix A for the conve-
nience of the reader. In this paper, the symbol on the
right hand side end of any time series string of chan-
nel state observations was assumed to be the most recent
one.

3.1 Prediction using the probabilistic suffix tree
For a given PST T̄ withmaximum orderD and the channel
observations for the previous k (0 ≤ k ≤ D) consec-
utive slots, we traverse the tree starting from the node
e which denotes the empty string. An example tree cal-
culated according to the parameters given in Table 1 is
shown in Figure 1. In this parameter list, the first 5 entries
are the parameters of the PST algorithm, while σ 10

1 is
a training sequence of length 10. This traversal is done
according to the past k channel observations starting with
the most recent channel observation and going backwards
in time in the past k channel states. Traversing the tree,
we will reach a leaf node either using all the k channel
state observations or partially using them. When this leaf
node is reached, we use the probability distribution of
the occurrence of an idle slot or a busy slot for that par-
ticular node as the probability of occurrence of the next
channel state. For example in Figure 1, the values given
in parentheses, {pidle, pbusy}, are the probabilities of the
occurrence of an idle slot and a busy slot, where node label
gives the longest suffix of the observation string present
in the model. In the next section, we will discuss the MAC
protocol and the CCC design used.

4 MAC protocol
As discussed in the related work section, most MAC
protocols in the literature did not take into account the
channel usage characteristics of the PUs, with [9,25] being
exceptions. But in those schemes too, the effect of SU
access was not taken into account. Therefore, if all the
SUs tried to access the optimum channel, the packet
collisions bring the throughput down. In this section, we

Table 1 Threshold values used in algorithm and an
example training sequence

Description Value

Pmin 0.006

α 0

r 1.05

D 3

γ 0.0006

σ 10
1 1110010000
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Figure 1 Example probabilistic suffix tree.

discuss how the PU channel usage statistics and the SU
channel usage statistics could be used towards increas-
ing the throughput of SUs. First, we explain how the
PU channel statistics can be used in the CCC sequence
selection process. Then, we explain how both the PU
and SU statistics can be used in the data transmission
process.

4.1 Proactive common control channel
Most SH CCC schemes in the literature searched for idle
channels in a predetermined or random order. So each SU
selected channels based on that channel scan order and
listened to them to identify the state of the channel. If
the channel was idle, the SU used it and if not, the search
continued till it finds one and the receiver channel selec-
tion coincided with it. In the scheme presented, to reduce
the interruptions to the primary and secondary users,
we ordered the channels in the ascending order of activ-
ity. Thus, the SUs selected the channel with the highest
expected availability more often, saving them from inter-
fering with the PU and high variability in the idle channel
search delay.
Let pi denote the stationary probability of PU channel i

being idle, where i ∈ {1, 2, . . . ,N}. This probability is given
by the distribution of events at node e. This node e rep-
resents empty string in the PST. Then, Algorithm 1 was
used to generate the channel sequence φt

j , where φt
j is the

channel selected by SU j at time slot t.

Algorithm 1 Control channel selection algorithm
1. Initialize φt

j = ∅
2. u ⇐ rand()

3. for k = {1, 2, 3, . . . ,N} do
4. if u ≤

∑k
l=1 pi∑N
i=1 pi

then
5. φt

j = k
6. break;
7. end if
8. end for

In the above scheme, it can be seen that the SUs select
the channels with less PU activity more often. Further-
more, due to the randomness in the selection process, the
packet collisions will be low. The downside to this channel
selection method is not having a guaranteed rendezvous
time as the schemes [24] and [23].

4.1.1 Analytic formulation of the average time to
rendezvous

The time to rendezvous is an important performancemet-
ric because it decides the number of attempts an SU
has to make to successfully complete a handshake with
the receiver which in turn dictates the packet delays.
Therefore, time to rendezvous should be as small as
possible. In order to derive a formula for the aver-
age time to rendezvous for a transmitting SU, first, the
probability of successfully contacting the receiver should
be calculated. The method of calculation is explained
below.
First, the following assumptions were made: the con-

tention window size is CW, all backoff time values are
equiprobable with probability 1

CW+1 and the total num-
ber of SUs isM. The vulnerable time is given by tv. This is
the minimum time gap between the smallest backoff time
window and the second smallest backoff time window
of contending neighbors on the same channel to avoid a
packet collision. In other words, this is the average time
duration it takes for nodes in the CSMA/CA network to
identify the channel is busy after the first node trans-
mits. This time is equal to the sum of the transmission
time duration of the request to send (RTS) packet and the
propagation time, in the unit of sub-time slots (smallest
synchronous time unit) [29]. The false alarm probability is
given by symbol pfa and the probability of selecting chan-
nel k(≤ N) is given by psk . According to the CCC selection
algorithm above, psk = pk∑N

i=1 pi
. The probability of channel

access by an SU is given by a, and the cumulative dis-
tribution of the random backoff time slots generated is
given by F(·). Using these parameters, the formula for the
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probability of successful handshake, θs, was formulated as
given in Equation 1.

θs =
N∑
i=1

pipsi

[M−1∑
r=0

(1−pfa)
(
M−1
r

) (
apsi

)r (
1−apsi

)M−r−1

×
CW∑
τ=0

(1 − F(τ + tv))r
1

CW + 1

]
psi(1 − a) .

(1)

The steps of the derivation of this equation are given
below.

Proof. First let us find the conditions that should be met
in order for an SU to succeed in the handshake. A given SU
j can succeed in the handshake if all the conditions below
are satisfied:

• SU j has a packet to transmit which is given by
probability a.

• The SU j selects channel i which is given by the
probability psi .• Channel i is idle, given by probability pi.

• Channel i is sensed as idle by j, given by (1 − pfa).
• SU j wins the contention.
• The receiver has selected channel i and is not

transmitting, given by psi × (1 − a).

For the SU j to win the contention, the backoff duration
of it should be less than the minimum of all the other SUs
trying to transmit in the same channel by atleast the vul-
nerable time tv. In this paper, we assumed all the SUs can
hear each other. If the cumulative distribution function of
the backoff duration is given by F(·) and SU j’s backoff
duration is τ , the probability, R(τ + tv)r , that r number
of transmitting SUs backoff times are more than τ + tv is
given by:

R(τ + tv)r = (1 − F(τ + tv))r . (2)

Then, the distribution of r SUs trying to access channel i
can be derived using the binomial distribution with prob-
ability of success a × psi and total number of other SUs
M − 1 as given in Equation 3.

B
(
M − 1, apsi

) =
(
M − 1

r

) (
apsi

)r (
1 − apsi

)M−r−1 .

(3)

Equation 2 gives the probability of winning the con-
tention conditioned on, the backoff time τ of SU j, the
number of other SUs trying to access channel i which is r
and the given SU j is trying to transmit on channel i. Since
the backoff time is uniformly distributed in [0, CW], we
took the expectation of R(τ +tv)r with respect to the back-
off duration and the number of other users trying to access

channel i. The result is the probability of an SU winning
the contention which is given in Equation 4.

ζs(i) =
M−1∑
r=0

(
M − 1

r

) (
apsi

)r (
1 − apsi

)M−r−1

×
CW∑
τ=0

(1 − F(τ + tv))r
1

CW + 1
. (4)

Then, multiplying ζs(i) by the probability of the receiver
being tuned into channel i, apsi , we get the probability
of successful handshake in channel i. Then, finally, we
took the expectation of it w.r.t. all the channels where the
probability of selecting a given channel was pi (1 − pfa) psi
which gave us the result given in Equation 1.

Then, the probability distribution for the number of
time slots to achieve rendezvous TR(q = l) was calculated
as given in Equation 5.

TR(q = l) = (1 − θs )l−1 θs . (5)

4.1.2 Channel load in the SH control channel
Since this scheme uses a stochastically selected control
channel, only the average channel load can be calculated.
The probability of r users out of M SUs accessing chan-
nel i can be given by B(M, apsi) which was defined in
Equation 3. Then, using B(M, apsi), an equation for the
maximum average channel load was formulated as shown
in Equation 6.

L
(
M,ps, a

)
= max

i={1,2,··· ,N}

M∑
r=1

r · B(M, apsi) . (6)

4.1.3 Degree of rendezvous
This metric gives the number of minimum overlaps
between any two channel sequences in a SH-based CCC.
In a stochastic channel selection scheme, although a num-
ber for the degree of rendezvous cannot be given, the
probability for two sequences of length Q to have a mini-
mum of k overlaps can be calculated. Equation 7 gives an
expression for this probabilistic degree of rendezvous.

DR(Q, k,ps) =
N∑
i=1

psi
Q∑
r=k

(
Q
r

) (
psi

)2r (
1 − (

psi
)2)Q−r

.

(7)

4.2 Channel set selection for the data transmission
In predicting the status of a channel using the PST, we
need to sense the channels. To make the CR less expen-
sive, we used a single half-duplex transceiver and did
energy detection-based narrow band sensing. Therefore,
in our scheme, only sequential sensing was possible and
there is an upper bound m, to the number of channels an
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SU can sense in a given time slot. This upper bound is
the time needed to fail in transmitting m − 1 times and
trying transmitting for the mth time, so that there is time
for contention window, RTS and clear to send (CTS) mes-
sages, data, and the ACK. Therefore, the selection of a set
of channels which are both utilized less by the PU and the
other SUs is necessary to achieve a better throughput. We
used a channel set selection schemewhich chose the chan-
nels which are highly available for a given SU j with high
probability. To find this channel set, we have to calculate
the probability of winning the contention on a given idle
channel i.

4.2.1 Calculating the probability of winning the contention
This is a subjective usage indicator on an SU j of inter-
est. To calculate this parameter, each SU kept track of the
instances it tried to access channel i, εtotij and the instances
it acquired channel i, εacqij . Then, for the channels that the
SU has been accessing, we calculated cij using the ratio

between the two,
ε
acq
ij

εtotij
. For the channels that the SU has

not tried to access, these parameter values were calcu-
lated based on the probability a channel is successfully
accessed by an SU, given that each SU chooses each chan-
nel with equal probability 1

N . Thus, for the unused channel
i and SU j, the parameter cij was calculated as given in
Equation 8.

cij =
M−1∑
r=0

(1 − pfa)
(
M − 1

r

) ( a
N

)r (
1 − a

N

)M−r−1

×
CW∑
τ=0

(1 − F(τ + tv))r
1

CW + 1
. (8)

4.2.2 Channel set selection for the data transmission
Using the above calculated parameter cij and the station-
ary probability of channel i being idle, pi, we selected the
channel set using Algorithm 2.

Algorithm 2 Channel set selection algorithm
1. Initialize Sj = ∅
2. while |Sj| < m − 1 do
3. S̄j = {1, 2, 3, . . . ,N}/Sj
4. k = arg

i∈S̄j

max{picij}
5. Sj = Sj ∪ {k}
6. end while

In the following section, we discuss how the communi-
cation between two SUs happen.

4.3 Communication between two SUs
In the scheme presented, the communication between
two nodes happens in two stages. First, an initial hand-
shake between SUs is completed, and then, the SUs com-
municate data between each other. In the first stage, the
transmitting SU generates the channels to be used at each
time slot t, φt

j , using Algorithm 1. Then, it generates the
channel set Sj to be used for data transmission, using
Algorithm 2. After that, the transmitting SU u starts the
handshake phase with receiver v. This is explained in the
next sub-section.

4.3.1 Handshake between the sender and the receiver
Prior to the handshake with the receiver, in the QP, the
transmitter u senses the channel list Sj first and then
senses the control channel φt

j . Then, in the backoff period,
it calculates the statistical availability of the channel set
Sj ∪ φt

j at time slot t + 1 using the sensing results and
the PST models acquired. Then, the channels which have
the probability of being idle greater than 0.5 are arranged
in the descending order. This ordered list Ht+1

u is pig-
gybacked on the RTS packet. If the intended receiver
happened to listen to the same channel (i.e., φt

u = φt
v) and

was able to decode the packet, it transmits a CTS packet.
Then, the data communication is done using the same
channel φt

j till the end of the time slot and the receiver
sends an ACK. At this stage, the handshake is considered
to be successful. If the CTS get timed out, the procedure
is continued in the next time slot. A diagram showing an
example of transmitter slot structure at handshake phase
is given in Figure 2.

4.3.2 Data transmission after the successful handshake
If the handshake was successful at time slot t, the receiver
v and transmitter u, knowing the channels to be used in
access, sense the channel set Ht+1

u in the quiet period of
time slot t + 1. This sensing is done starting from the
worst to the best (i.e., in the reverse order). Therefore,
after sensing the best channel, the transmitter u generates
the backoff time and if sensed idle, it will send the RTS
with the sensed channel status data on set Ht+1

u piggy-
backed on it. Then, if this RTS was received at the receiver
v, it replies with a CTS with sensed channel status data on
set Ht+1

u piggybacked on it. Then, after the data transmis-
sion starts at the end of the time slot, the receiver v sends
an ACK if the transmission was successful. If the CTS was
not received at the transmitter, the transmitter will try
the next channel in sequence Ht+1

u after the CTS times
out. This goes on until the list Ht+1

u gets exhausted within
time slot t + 1. We set this time out period to be equal to
the sum of CTS transmission time and propagation delay
and the time to transmit the header of the data part and
propagation delay. If the transmitter u was unable to con-
tact the receiver v for an entire time slot, then the initial
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Figure 2 An example of transmitter slot structure at handshake phase.

handshake has to be redone, because the channel status
at both ends of the current slot are not known to both
u and v.
If the RTS and CTS exchange was successful, then the

sensing outcomes of the channels at both ends are avail-
able to both u and v. Then, both u and v fuse the sensing
results using OR decision fusion and save this result for
each channel i separately in a buffer siuv, where i ∈ Sj ∪ φt

j .
Each user u clears the buffer siuv when the channel i is not
sensed or the communication between each other is over
in that time slot. Then, this buffer content at time slot t+1
is used to predict the channel status at time t + 2. Then,
both u and vmake their ordered listsHt+2

u andHt+2
v . Both

of these lists are the same. Therefore, in time slot t+2, the
communication is possible. This process goes on till the
communication between u and v is complete. A diagram
showing an example of transmitter slot structure at data
transmission phase is given in Figure 3.

4.4 Registration of new users, synchronization, and
model updates

We assume that the REM transmits beacons every T time
slots on all the available PU channels. This beacon trans-
mission starts at the QP of the SUs; therefore, it is easy
for the SUs to detect this beacon. This beacon contains
a synchronizing bit sequence and encoded channel mod-
els. The SUs who has registered with the REM can decode
these models. In these beacons, the periodic channel hop-
ping pattern of the REM is mentioned so that the SUs
newly arriving to the network can follow the REM hop-
ping pattern and communicate with it to get registered. A
newly arriving SU should scan the spectrum till it receives
the beacon. The period T was determined as the mini-
mum of the time for 5% of SUs to have a clock drift of QP

2
and the inter-arrival time between two new user arrivals
to have 95% probability of arrival. Since all the registered
SUs get synchronized with the REM from time to time,
the assumption of synchronicity holds true.

5 Simulation
In this section, we carry out the numerical evaluation
of the proposed scheme. In order to create the channel
model according to the probabilistic suffix tree scheme,
we needed a training sequence. Real data was not avail-
able to us, so we created a set of training data as strings
of ‘1’s and ‘0’s. For this, we used a renewal process
with busy time and an idle time generated according to
a pseudo self-similar Markovian arrival process (MAP).
The used MAP is capable of capturing the correlation
between the different channel states. For the simulation
purpose, we developed the MAP as given in [30,31]. As
mentioned above, this MAP exhibited what is known
as ‘pseudo long-range-dependent self-similar characteris-
tics’. Self-similarity means that the burstiness of traffic is
the same over different time scales. In other words, if we
measure the traffic in a particular link and plot, the traf-
fic as a graph of the average amount of packets per 1, 10,
100, 1,000s, etc., the graph will only be scaled in ampli-
tude and the shape will remain the same. The structure
of the Markovian arrival process given in [30] has bursti-
ness similar to Ethernet traffic. The MAP distribution is
defined by a stochastic matrix D as defined in Equation 9,
where D0 and D1 are sub-stochastic matrices containing
the state transition probabilities to phases within the idle
state and busy state, respectively, and d01 (d10) contains
the probabilities of transition to a phase in busy (idle) state
from a phase in idle (busy) state. We fixed the size of theD
matrix to be 6 × 6. The parameters of the MAP were cal-
culated such that the channel utilization are 0.2,0.4, and
0.8, and the mean burst length is 10 slots. The theoretical
properties of this MAP distribution can be found in [30]:

D =
[
D0 d01
d10 D1

]
(9)

Before training the models, we changed the busy slots
to idle with probability Pm and idle slots to busy with

Figure 3 An example of transmitter slot structure at data phase.
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probability Pf in the channel state sequence generated.
The false alarm probability Pf was calculated for a given
missed detection probability, Pm = 0.1, assuming an
AWGN channel with mean SNR 5 dB at the SU. We
then simulated the channel access of 5 and 10 SUs using
10 channels, while varying the channel access probability
values a from 0.1 to 0.9.
We used the parameters given in Table 2 when train-

ing the PST and in the simulation setup. For comparison,
we used a scheme from the literature called the HMM
technique given in [17] for predicting the channel state
in the random channel selection scheme and the chan-
nel selection scheme which uses the channels with lowest
PU channel access probability. The results for the random
channel selection scheme is named in the graphs as Ran-
dom while the results for the scheme which only uses PU
statistics is named as PU only. The scheme introduced in
this paper is named as Both stats in the graphs. Since the
HMM model in [17] did not provide any information on
the number of states in the HMM or the memory length
of sequences they used to determine the parameters, we
chose ten states since training can be done in a reasonable
time. The length of the string used for training was 20,000
for both PST and HMM schemes.

5.1 Initial handshake
In both the random channel set selection scheme and
the channel set selection scheme based on PU activity,
we used the control channel selection scheme introduced
in [23] (RCCH-Sync). In Figures 4 and 5, we plot the
average number of time slots taken by each scheme to
achieve rendezvous for five and ten SUs, respectively.
One can see that our scheme performs as equally well
as the RCCH-Sync scheme. For this comparison, we used
the scheme developed for synchronized networks in [23].
In that scheme, the synchronization offset between the

Table 2 Simulation parameters

Parameter Value

D 10

Pmin 0.006

α 0

r 1.05

γ 0.0006

N 10

Number of SUs 20

k 3

Channels 1 to 4 PU utilization 0.2

Channels 5 to 7 PU utilization 0.4

Channels 8 to 10 PU utilization 0.8

Probability of missed detection 0.1

Figure 4 Average number of control slots vs. SU channel access
probability for five SUs.

transmitter and the receiver could not even have values
which are integer multiples of the time slot length. Our
scheme can handle that form of synchronization issue. In
[23], authors also developed schemes which can withstand
those kind of time offsets, but they had worse time to ren-
dezvous than the synchronous one. In the same figures,
we plot the theoretical results. One can see that the the-
oretical result is quite higher than the simulated value.
The reason behind it is, when deriving this formula, we
assumed the channels are accessed by the SUs according
to the control channel selection scheme in all the time
slots, while in the simulation, once the handshake is done,
the channels are accessed according to a different distri-
bution which allows SUs to balance its load among all the
channels due to the use of SU statistics in data phase chan-
nel selection. Furthermore, in the data phase, the receiver

Figure 5 Average number of control slots vs. SU channel access
probability for ten SUs.
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is tuned to the channel the transmitter is using and it is not
transmitting. Therefore, these happen with probability 1.
But in the derivation of the theoretical result, we asso-
ciated them with the respective probabilities associated
with them in the control phase. Ideally, only the number of
users in the handshake phase and the channels free from
both PU activity and the SU data transmission activity
should be used in this calculation. But due to the complex
interactions of SUs, this is not feasible.
We used an exponential backoff scheme for the

CSMA/CA access of the SUs. We limited the backoff
exponent to 4 for the handshake phase and 3 for the data
phase. The time duration details for the control phase is
given in Table 3.
The duration of the RTS, CTS, ACK, and DATA parts

of the frame for a given data rate R, D bytes of pay-
load, S bytes of channel sensing information is given in
Equations 10, 11, 12, and 13. The expressions are taken
from [29].

tRTS = 20 μs + (22 + (20 + S) · 8)
R

, (10)

tCTS = 20 μs + (22 + (14 + S) · 8)
R

, (11)

tACK = 20 μs + (22 + 14 · 8)
R

, (12)

tdata = 20 μs + (22 + (28 + D) · 8)
R

. (13)

5.2 Data phase
In the simulations, once the initial handshake is done,
each time slot is divided into three sub-slots. This num-
ber is equal to the number of channel switches allowed
at each time slot. Then, an SU who acquired the channel
can transmit a packet in each sub-slot only if the PU is
not present. If an SU transmitted when a PU is present,
it is called an interfered sub-slot. This performance mea-
sure is plotted against the probability of SU channel access
in Figures 6 and 7 for five and ten SUs, respectively. For

Table 3 Time duration for time slot

Parameter Value

Transmission rate 1 Mbps

Sensing time per channel 0.05 ms

Channel switch time 1 μs

Slot duration 4.615 ms

CWmin 15

Slot time 9 μs

Propagation time 5 μs

Figure 6 Probability of interference to PU vs. SU channel access
probability for five SUs.

the random and PU activity-based schemes, we used an
HMM for the prediction and in our scheme, we used PST
scheme for prediction. In this figure, we can see that our
scheme has higher interference than the PU statistics-
based one and random one for all SU user channel access
probabilities. But the probability of interference to PU
is less than 0.005 which is insignificant. A possible rea-
son behind this is, due to the usage of the SU statistics
based on past contention failures, a given SU overesti-
mates the level of competition for the highly available
channels and try to aggressively use the channels with high
PU activity. Fine tuning of the data collection window of
contention failures and successes should be able to reduce
this problem.

Figure 7 Probability of interference to PU vs. SU channel access
probability for ten SUs.
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In this simulation, the probability with which an SU
begins a transmission was distributed according to the
Bernoulli distribution with a = {0.1, 0.2, . . . 0.9} being
the probability of success. Then, as long as the number
of packets to be transmitted is above zero, packets were
added to the transmission queue at the beginning of each
main slot according to the discrete uniform distribution
having the set of outcomes {1, 2, 3}. The transmission was
assumed to have completed when the queue gets empty.
Then, the transmission probability is calculated for each
SU by taking the ratio between the number of pack-
ets successfully transmitted and the number of attempts
made. The graph depicting the fluctuation of the proba-
bility of successful transmission is given in Figures 8 and
9 which are plotted for five and ten SUs, respectively. In
these figures, we can see that our scheme performs better
in ten SU scenarios but becomes inferior to the perfor-
mance of the random channel selection method when
SU transmission probability is 0.4 in the scenario having
five SUs. The possible reason behind this is, when the
number of transmission attempts are low, the probabil-
ity of contention failures is not large enough to penalize
a channel with low PU activity from getting selected;
therefore, most SU select those ending up with higher
collisions. Therefore, the probability of success is low. Evi-
dence for this reasoning can be seen in Figures 10 and
11. In these graphs, we plot the probability of the trans-
missions of two or more SUs colliding with each other
for five and ten SUs, respectively. The low probabilities
of successful transmission for our scheme in Figures 8
and 9 corresponds to the high collision probabilities in
Figures 10 and 11, respectively. Furthermore, although the
collision probability of our scheme is more than that of
the random scheme, our scheme has better probability of

Figure 8 Probability of successful transmission per SU vs. SU
channel access probability for five SUs.

Figure 9 Probability of successful transmission per SU vs. SU
channel access probability for ten SUs.

successful transmission. This is due to the fact that our
scheme uses channels with both less PU channel activ-
ity and less SU channel activity. Since we calculate the
SU activity using previous access results, it is not per-
fect. This imperfectness causes higher collisions than the
random scheme which uses all the channels equally, but
since it stays biased towards the channels with low PU
activity, it results in a better probability of successful
transmission.
Finally, in Figures 12 and 13, we plot the average number

of SUs, using the same channel at the same time, which is
a measure of channel load. The higher the channel load,
the higher will be the number of collisions and thus lower
throughput.

Figure 10 Probability of collision among SUs vs. SU channel
access probability for five SUs.
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Figure 11 Probability of collision among SUs vs. SU channel
access probability for ten SUs.

6 Conclusion
In this paper, we presented a proactive channel access
MAC for an ad hoc CR network having a REM for initial
setup and showed how this MAC can be used to keep the
interference experienced by the PUs at a low level while
providing better throughput for the SUs. The novel feature
of this research was the incorporation of the SU statistics
when selecting a channel set to be used. Furthermore, we
introduced a SH CCC and derived the theoretical proper-
ties of it. This CCC used PU channel access probabilities
when selecting the hopping pattern in the control phase.
Then, in the data transmission phase, we used a predic-
tion scheme called the PST which has a very low training
and memory complexity. We tested our scheme in a sce-

Figure 12 Average number of channels simultaneously used by
SUs vs. SU channel access probability for five SUs.

Figure 13 Average number of channels simultaneously used by
SUs vs. SU channel access probability for ten SUs.

nario with a MAP-based channel state distribution with
different channel utilization levels with imperfect sensing
and showed that the impact of the channel set selec-
tion method has on the throughput and interference to
the PUs. In the simulations, our channel set selection
scheme had better probability of successful transmission
than the random channel set selection scheme and the
scheme based only on PU statistics at high SU traffic
scenarios while having a PU interference probability less
than 0.005. So when considering all of these factors,
we can conclude that our MAC scheme is candidate
worthy of consideration in proactive channel access in
an ad hoc setting similar to the one the schemes we
tested on.

Appendix A
PST learning algorithm
This algorithm consists of two phases. The main purpose
of the algorithmwas to find out a hypothesis which resem-
bles the distribution which generated the sequence, where
the Kullback-Leiber distance [32] between the actual and
the empirical distribution is less than ε per state with
probability 1 − δ where 0 < ε < 1 and 0 < δ < 1 [6]. The
Algorithms 3 and 4 mentioned below are based on [6,28].
A training sequence of sufficient length which represented
the general channel usage was used by this algorithm to
generate an accurate hypothesis on the distribution of the
channel states. In the algorithm, empirical probabilities
of the occurrence of any string s, P̃(s), and the occur-
rence of a particular observation σ given the observation
history sequence, P̃(σ |s), were used to create the hypoth-
esis. The formulae for calculating these which were taken
from [6] are given in Equations 14 and 15, respectively.
We assumed that a training sequence σm

1 = σ1σ2 . . . σm of
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length m having consecutive observations of the channel
states is provided.

P̃(s) = 1
m − D + 1

m−1∑
j=D

χj(s), (14)

P̃(σ |s) =
∑m−1

j=D χj+1(sσ)∑m−1
j=D χj(s)

, (15)

where χj(s) is an indicator function which takes value 1
when s = σj−|s|+1 . . . σj and 0 otherwise, |s| is the length
of string s and D is the order of the model. As an exam-
ple, let σ 10

1 = 1110010000 and s = 00. When j = 2,
χ2(00) = 0 since σ1σ2 = 11 is not equal to s = 00. When
j = 5, χ5(00) = 1, since σ4σ5 = 00 = s. All Markov
predictors depend on the property that the probability
distribution of the next symbol can be approximated by
conditioning it on the previous D symbols, which is called
by the name ‘short memory principle’ [7]. If we chose the
memory D to be smaller than required, the distribution
is incapable of capturing all the dependencies between
the symbols, which degrades prediction efficiency [7]. On
the other hand, if we chose it to be too high, it over-fits
the training sequence and gives a higher prediction
error.
The probabilistic suffix tree algorithm has a favorable

property of avoiding the over-fitting of the model to the
training sequence if the maximum memory kept is too
high. Therefore, we can afford to keep D higher than
the required since the algorithm takes care of it [7]. But
this advantage does not come free. For the algorithm to
take care of this issue, more tunable parameters were
introduced. This algorithm is governed by five parame-
ters namely D,Pmin,α, r, and γ . These parameters control
the upper bound of the number of states in the variable-
order Markov model. The first parameter is the maximum
memory of the variable-order Markov model, denoted by
D. Value of D is the maximum number of ones and zeros
in the strings in set S used to name the states of the
Markov chain or the maximum level to which the tree
is grown. The second parameter is the minimum proba-
bility of abundance Pmin in the training sequence, of any
binary string s′ of length |s′|(≤ D), for s′ to be a member
of the tree. This is a necessary condition, but it is not suffi-
cient. The third parameter α denotes the minimum value
the conditional probability P̃(σ |s′) (see Equation 15) can
take, for a binary string s′ of length |s′|(≤ D) and a sym-
bol σ ∈ {1, 0} . This is also a necessary condition a string
s′ should meet in order for it to be a node on the tree.
The fourth parameter r is a threshold which determines
whether the string s contributes additional information
in predicting the next symbol σ than its longest suffix ŝ
which is a node on the tree (if s = σ1σ2 . . . σk−1σk , then
ŝ = σ2 . . . σk−1σk). The final parameter γ is the probability

assigned to P̃(σ |s), if it is zero for any symbol σ and state
s. Phase 1 of the algorithm is given in Algorithm 3.

Algorithm 3 PST learning algorithm
Phase 1
1. Initialize T̄ and S̄ : T̄ is a binary tree having a root

node
e denoting empty string & S̄ is an empty set

2. S̄ ⇐ {σ |σ ∈ {1, 0} and P̃(σ ) ≥ Pmin}
3. while S̄ 
= ∅, pick any s ∈ S̄ and do
4. remove s from S̄
5. if ∃σ ∈ {1, 0} s.t P̃(σ |s) ≥ α and P̃(σ |s)

P̃(σ |suffix(s)) > r
then

6. add the node corresponding to s with all the
nodes on the path starting from the deepest node
in T̄ which is a suffix of s to s, to T̄

7. end if
8. if |s| < D then
9. 
′ = {1, 0}

10. while 
′ 
= ∅ do
11. remove σ ′ from 
′
12. if P̃(σ ′s) ≥ Pmin then
13. add σ ′s to S̄
14. end if
15. end while
16. end if
17. Continue to next s′ ∈ S̄
18. end while

As one can see in the above algorithm, we started with
a single node tree representing the null string e and as
the algorithm progressed, we added nodes which were
mandatory for the distribution to be correct. In the algo-
rithm, we add a node v labeled by a string s to the tree
T̄ if the following criteria were satisfied by the string s.
First, the empirical probability of the occurrence of string
s in the training sequence P̃(s) should be larger than a
threshold Pmin. Because of this requirement, we avoided
the exponential growth in the number of strings to be
tested in the algorithm. Then, we checked whether the
probability of occurrence of a symbol σ ∈ {1, 0} after the
string s, P̃(σ |s) is greater than a threshold α. Finally, we
checked to see whether P̃(σ |s) is greater than the prob-
ability of getting σ after the longest suffix suffix(s) of s.
We checked this by taking the ratio P̃(σ |s)

P̃(σ |suffix(s)) and find-
ing out whether it is greater than r where r > 1. We added
the extended version of s which is σ s where σ = {1, 0} to
the set of strings S̄ if the probability of occurrence of σ s
in the training sequence is greater than Pmin, immaterial
of whether s is included in the tree or not. This was done
because it is possible to have a string s′ which has a condi-
tional distribution substantially different from its parent.
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Parent of a node in our tree was labeled by the longest
suffix of that particular node.
After performing Algorithm 3 on the training sequence,

there is a possibility that, for some of the nodes, the prob-
ability of occurrence of either 1 or 0 after the string s
labeling that node (γs(1) or γs(0)) is 0. Furthermore, there
is a possibility that the internal nodes of the tree T̄ may
only have one of the children with respect to the occur-
rence of either 1 or 0. We corrected those problems in the
phase 2 of the algorithm given in Algorithm 4 [6].

Algorithm 4 PST learning algorithm
Phase 2
1: Initialize T̂ to be T̄
2: Extend T̂ by adding all missing sons of internal nodes.
3: For each node in T̂ labeled by string s calculate the

conditional probability γs(σ ) for each σ = {1, 0} using
Equation:

4: γs′(σ ) = P̃(σ |s′)(1 − 2γ ) + γ ,
5: where s′ = s if s is in T̄ else s′ is the longest suffix of s

in T̄ .

Althoughwe talked about aMarkov chain, the algorithm
grows a tree. In this tree, the leaf nodes gave the respective
state labels of the equivalentMarkov chain. But in the case
that the destination state after a transition from a given
state is ambiguous, we should add some additional states.
Since the tree is sufficient for the predictions to be done,
we do not explain it here, the readers are referred to [6]
for more information about constructing the equivalent
Markov chain.
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