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Abstract

We consider a distributed SON (D-SON) architecture where the interaction of different self-organizing network (SON)
functions negatively affect the performances of the system. This is referred to in 3rd Generation Partnership Project
(3GPP) as a SON conflict, which needs to be handled by means of a self-coordination framework. We focus on a
functional architecture and a theoretical framework based on the theory of Markov decision process (MDP) for the
self-coordination of different actions taken by different SON functions. In order to cope with the complexity of the
overall SON problem, we subdivide the global MDP modeling the long-term evolution (LTE)-enhanced node base
station (eNB) onto simpler subMDPs modeling the different SON functions. Each sub-problem is defined as a subMDP
and solved independently by means of reinforcement learning (RL), and their individual policies are combined to
obtain a global policy. This combined policy can execute several actions per state but can introduce policy conflicts.
We focus on the specific SON conflict generated by the concurrent execution of coverage and capacity optimization
(CCO) and inter-cell interference coordination (ICIC) SON functions, which may require to update the same parameter,
i.e., the transmission power level. The coordination among the different actions selected by the conflicting use cases is
achieved by means of a coordination game where the players are the subMDPs and the actions and rewards are those
provided by means of a RL approach. Performance evaluation is carried out in a ns3 release 8 compliant LTE system
simulator, and it shows that our self-coordination approach provides satisfying solutions in terms of system
performances for both the conflicting SON functions.

Keywords: Self-organizing network; SON conflicts; Self coordination; Markov decision process; Reinforcement
learning; Coordination games; Long-term evolution; Inter-cell interference coordination function; Coverage and
capacity optimisation function

1 Introduction
A promising approach, which is receiving significant
interest from industrial and research communities, to
maximize total performance in cellular networks, is to
bring into them intelligence and autonomous adaptabil-
ity. This is referred to as self-organizing network (SON).
This concept has been introduced by 3rd Generation
Partnership Project (3GPP) in release 8 and it has been
expanding across subsequent releases. The main objec-
tive of SON is to reduce the costs associated with network
operations, by diminishing human involvement, while

*Correspondence: jessica.moysen@cttc.es
Centre Tecnològic de Telecomunicacions de Catalunya, Av. Carl Friedrich
Gauss 7, 08860 Castelldefels, Spain

enhancing network performance, in terms of network
capacity, coverage, and service quality. The main moti-
vation behind the increasing interest in the introduction
of SON is twofold. On the one hand, from the techni-
cal perspective, the complexity and large scale of future
radio access technologies imposes significant operational
challenges due to the multitude of tuneable parameters
and the intricate dependencies among them. In addi-
tion, the advent of new heterogeneous kind of nodes like
femto, pico, relays, etc., is expected to make tremendously
increase the number of nodes in this new ecosystem, so
that traditional network management activities based on,
e.g., classic manual and field trial design approaches are
not viable anymore.
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Different architectural solutions have been designed,
ranging from a centralized SON (C-SON), where the self-
organizing algorithms reside in the network management
system, in the operation and maintenance center (OMC)
or in the network management systems (NMS), to a dis-
tributed SON (D-SON) solution, where the SON func-
tions are distributed, in the control plane, across the edges
of the network, typically in the enhanced node base sta-
tions (eNB). C-SON can take into consideration data from
all nodes in the network to identify and address network-
wide issues. However, centralized systems may respond
too slowly in the emerging world of small cells that expe-
rience very transitory traffic loads. On the other hand,
D-SON functionalities are designed for near real-time
response in seconds or milliseconds, which makes the
SON functions highly dynamic and enables the network to
adapt to local changes more rapidly. The main challenge
in a D-SON implementation is that, it is more vulnera-
ble than C-SON against network instabilities caused by
the concurrent operation of SON functions with conflict-
ing objectives. In particular, multiple SON functions, or
instances of the same function running in neighboring
cells, can be executed in parallel and may then interact
such that the originally intended operation from one func-
tion is affected, and the related system performance may
be different from what was intended to be. In 3GPP, this
kind of negative interactions, which affect the system per-
formances, is referred to as SON function conflict, and
the general framework to solve them is referred to as
self-coordination. The literature on SON mainly focuses
on individual SON function design, [1-3] while some ini-
tial work on self-coordination functions can be found in
[4-6] and [7] where the authors focused on the identifica-
tion and classification of different conflict types. Algorith-
mic solutions [8,9] and implementation challenges [10]
have been recently discussed in literature.
In this paper, we target the self-coordination problem in

a small cell network. As a result, in the context of a D-SON
architecture, we propose a theoretical framework and a
functional architecture, which can be easily implemented
for self-coordination in 3GPP networks. We propose to
map the multiple eNBs in the scenario onto a multia-
gent system, where each entity is a self-organized agent
capable of making autonomous decisions. The multiple
agents interact among each other through their actions
and operate within an environment, which in our case
is the wireless setting. We propose that the theoretical
model behind each agent is the theory of Markov decison
process (MDP), able to model a dynamic process which
evolves through stages, as a result of stochastic actions. In
each stage, the MDP chooses one of several actions, and
the system stochastically evolves to a new state based on
the current state and the chosen action. The solution to
a MDP determines a policy which specifies the action to

be selected at each time step, such that a certain objective
function is maximized. The eNBs have to be capable of
executing the multiple standardized SON functions, each
one resulting in a different action, e.g., increasing trans-
mission power, modifying the antenna tilt, altering the
handover parameters, etc. While in [8], the authors focus
on the interactions of two SON functions and on the solu-
tion of the MDP obtained as the result of their concurrent
execution, we consider that this approach is not scalable,
whenmore SON functions and their instances acrossmul-
tiple cells are running in parallel. The global SON problem
including all the standardized SON functions and related
instances would become extremely complex. To solve it,
we should rely on multi-objective optimization frame-
works, which do not allow real-time solutions [11]. As
a result, we propose to subdivide the proposed Markov
decision problem into several simpler subproblems repre-
sented by the different SON functions and their instances.
This results in aMDP organized ontomultiple tasks which
are theoretically modeled by different Markov decision
sub-processes (subMDP). Each subMDP can be solved
independently through the theory of reinforcement learn-
ing (RL), which has already been proposed in the literature
of self-organization and heterogeneous networks (Het-
Nets) as a valid solution [12], and which allows to make
decisions taking into account the past experience. The
solution to each subMDP provides a local policy. Themul-
tiple solution policies are then combined to obtain a global
solution, such that the actions of each subMDP can be
executed concurrently. InMDP literature, this approach is
referred to as concurrent actionsmodel [13,14].
As a particular case, in this paper, we focus on the coor-

dination of two specific SON functions, the coverage and
capacity optimization (CCO) and the ICIC, and we model
them through two subMDPs, which are solved indepen-
dently through RL. We consider that focusing on only two
functions does not result in a loss of generality to our
approach, as also other SON functions, considering their
automatic characteristic, can be solved through RL, e.g.,
[8,12], so that our theoretical model can be extended to
NSON SON functions. The generality of our solution for
3GPP SON architecture is proven later in the paper. The
two selected SON functions incur in the so-called output
parameter SON conflict [15] when, e.g., the CCO func-
tion increases the transmission power levels to decrease
the outage probability at the cell edge, while the inter-
cell interference coordination (ICIC) decreases the power
transmission levels to minimize interference. These two
policies may generate a resource conflict as each one
requires modifying the eNB transmission power in a way
that may cancel the actions that the other one intends
to take. We propose then a self-coordination approach
modeled by means of a coordination game [16], where
the players are the conflicting SON functions, the actions
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are the solutions to the specific subMDPs, i.e., the out-
put of the actor critic algorithm, and the rewards are
those provided by the solution of the individual sub-
MDPs. Coordination games have been proven to correctly
model the coordination problems that arise when there
is a conflicting interest, i.e., when two or more persons
prefer different equilibrium outcomes. This is why we
consider that they are appropriate to model the problems
that the self-coordination function has to face. The self-
coordination framework aims then at founding a Nash
equilibrium through the coordination game, maximizing
the average reward. The proposed approach is validated
through system level simulations based on the release 8
compliant platform LTE-EPC network simulator (LENA),
available in ns3.
The outline of the paper is organized as follows.

Section 2 discusses the work related to this paper
from standardization, market, and academic perspec-
tives. Section 3 provides the details of the system model.
Section 4 describes the MDP framework for the execu-
tion of concurrent SON functions. Section 5 presents a
functional architecture for the solution of SON conflicts.
Section 6 defines the global SON problem modeling it
through a MDP, and its decomposition through subMDPs
modeling the different SON functions. Section 7 describes
the CCO and ICIC conflict case study. Section 8 describes
the details of the simulation platform and scenarios, as
well as meaningful simulation results. Finally, Section 9
concludes the paper.

2 Related work
SON functionalities are often designed as stand-alone
functionalities, by means of control loops. When they are
executed concurrently in the same or different network
elements, the impact of their interactions is not easy to

be predicted, and unwanted effects may occur. The risk of
unacceptable oscillations of configuration parameters or
undesirable performance results increase with the num-
ber of SON functions, so that it is considered necessary
to define and implement a self-coordination framework
[3,4,8].
3GPP has proposed different architectures for SON

implementation, ranging from centralized C-SON to dis-
tributed D-SON, as it is shown in Figures 1 and 2, and
the choice of the architecture has a strong impact on the
efficiency of the self-coordination framework. If C-SON
is used, SON functions are implemented in the OMC or
in the NMS, as part of the operation and support system
(OSS). This implementation benefits from global infor-
mation about metrics and key performance indicators
(KPIs), as well as computational capacity to run powerful
optimization algorithms involving multiple variables or
cells. However, it suffers from long timescales. In order to
avoid oscillations of decision parameters, 3GPP requires
[17] that each SON function asks for permission before
changing any configuration parameter. This means that
a request must be sent from the SON function to the
SON coordinator and a response has to be returned.
In C-SON, all these requests must pass through the
interface-N, which is not suitable for real-time commu-
nication, so that there is no possibility to give priority
to SON coordination messages over other operations,
administration, and maintenance (OAM) messages. If
in turn, distributed coordination is used, the interaction
between the SON function and the local SON coordi-
nator will be over internal vendor-specific interfaces,
with much lower latency characteristics. This makes the
D-SON architecture much more flexible and adequate
for small cell networks, which experience very transitory
traffic loads, thus requiring high reactivity to propagation

Figure 1 C-SON self-coordinator implementation.
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Figure 2 D-SON self-coordinator implementation.

and traffic conditions. Market implementations of
C-SON are offered by vendors like Celcite (acquired by
AMDOCS), Ingenia Telecom, and Intucell (acquired by
Cisco), while D-SON solutions have traditionally been
more challenging to implement and vendor specific, not
allowing for easy interaction of products from differ-
ent vendors, so that a supervisory layer is commonly
still needed to coordinate the different instances of
D-SON across a much broader scope and scale. Only
recently, vendors like Qualcomm or Airhop have started
proposing D-SON as a SON mainstream, as small cells
and HetNets require the millisecond response times of
D-SON.
The topic of conflicts resolution and coordination has

been receiving growing interest also from academic com-
munity. In [6,7,15], the authors focus on the classifica-
tion of potential SON conflicts and on discussing the
valid tools and procedures to implement a solid self-
coordination framework. Examples of centralized and
distributed implementations of SON coordination are
offered in [18] and [19], respectively. A preventive coor-
dination mechanism that uses policy-based decision-
making has been proposed in [10]. Guard functions have
been proposed in [4] to detect undesirable network behav-
iors and trigger countermeasures. Decision trees have
been proposed in [20] for properly adjusting remote elec-
trical tilt (RET) and transmission power. Q-learning, as a
RL method, has been proposed in [8] to take advantage of
experience gained in past decisions, in order to reduce the
uncertainty associated with the impact of the SON coor-
dinator decisions when picking an action over another to
resolve conflicts.

3 Systemmodel
We consider a heterogeneous wireless network composed
of a set of M macrocells that coexist with F small cells.
The M= |M| macrocells form a regular hexagonal net-
work layout with inter-site distance D and provide cov-
erage over the entire network, comprising both indoor
and outdoor users. The F = |F | small cells are placed
indoors within the macro-cellular coverage area follow-
ing the 3GPP dual strip deployment model. Both macro
and small cells operate in the same frequency band, which
allows to increase the spectral efficiency per area through
spatial frequency reuse.
An orthogonal frequency division multiple access

(OFDMA) downlink is considered, where the system
bandwidth BW is divided into B resource blocks (RBs). A
RB represents one basic time-frequency unit that occupies
the bandwidth BWRB over time T . In particular, in LTE
systems, each frame has a duration of 10 ms, divided into
equally sized transmission time interval (TTI), which have
a duration of 1 ms. The bandwidth B is divided into BRB =
180 kHz physical RBs which are grouped in resource block
group (RBG) of different sizes determined as a function
of the transmission bandwidth configuration in use. Asso-
ciated with each macro and small cell base station (BS)
are UM macro and UF small cell users, respectively. The
multiuser resource assignment that distributes the B RB
among the UM macro and UF femto users is carried out
by a proportional fair scheduler.
We denote by pnt = (

pn1,t , . . . , p
n
B,t

)
the transmission

power vector of BS n at time t, with pnr,t denoting the
downlink transmission power of RB r. The maximum
transmission power for small and macro BSs are PFmax and
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PMmax, with PF�maxPMmax, such that
∑B

r=0 pmr,t ≤ PMmax,m∈M
and

∑B
r=0 p

f
r,t ≤ PFmax, f∈F .

We analyze the system performance under different
perspectives. First of all, we consider the signal-to-
interference and noise ratio (SINR). Assuming perfect
synchronization in time and frequency, the SINR of
macrouser um who is allocated RB b of macrocell m∈M
amounts to:

γm
b,t = pmb,th

mu
b,t∑

n∈M,n�=m
pnb,th

nu
b,t + ∑

f∈F
pfb,th

fu
b,t + σ 2

(1)

where hmu
b,t accounts for the link gain between the trans-

mitting macro BS m and its macrouser um; while hnub,t and
hfub,t represent the link gain of the interference that BSs n
and f imposes on macrouser um, respectively. Finally, σ 2

denotes the thermal noise power.
Likewise, the SINR of small cell user vf who is allocated

in RB b by small cell f∈F is in the form:

γ
f
b,t = pfb,th

fv
b,t∑

m∈M
pmb,th

mv
b,t + ∑

n∈F ,n�=f
pnb,th

nv
b,t + σ 2 (2)

where hnvb,t and hmv
b,t indicate the link gain between BSs n

andm and small cell user vf , respectively.
We also use as a meaningful indicator of quality per-

ceived by users the channel quality indicator (CQI). This is
computed based on the spectral efficiency per user, using
the mapping function as indicated in [21], where the block
error rate (BLER) BLER = 1 − exp

(
log (1−BLER)

TBS

)
, should

be smaller or equal to 10%, and the transport block size
(TBS) for the estimated CQI is calculated as reported in
[21]. As a system metric, we also use the reference signal
received quality (RSRQ) from the serving cells, which is
defined as the number of RBs multiplied by the reference
signal received power (RSRP) over the system bandwidth
BW multiplied by reference signal strength indication
(RSSI). Finally, the throughput per user is achieved by user
data protocol (UDP) client application.

4 Theoretical model of SON conflicts: a Markov
decision process framework

We propose a framework where the decision makers are
the 3GPP eNBs. The learner or decision maker is called
agent, and it interacts continuously with the so-called
environment. The agent selects actions and the environ-
ment responds to those actions and evolves into new
situations. In particular, the environment responds to the
actions through rewards, i.e., numerical values that the
agent tries to maximize over time.
The agent has to exploit what it already knows in order

to obtain a positive reward, but it also has to explore in

order to take better actions in the future. We assume that
the environment is the wireless cellular scenario, with all
its realistic characteristics, in terms of mobility of users,
channel variations, and users’ activity patterns. The prob-
lem is then defined bymeans of aMarkov decision process
{S ,A, T ,R}, where S , is the set of possible states of the
environment S = {s1, s2, . . . , sn} ,A is the set of possible
actionsA = {a1, a2, . . . , aq} that each decision maker may
choose, T is the probability of moving to state s + 1 when
action a is taken in state s, and R is a reward function
R(s, a), which specifies the immediate return when taking
action a in state s. The interactions between the multi-
agent system and the environment at each time instant t
consist of the following sequence.

• Agent i senses the state sit = s ∈ S .
• Based on s, agent i selects an action ait = a ∈ A.
• As a result, the environment makes a transition to the

new state sit+1 = v ∈ S.
• The transition to the state v generates a reward

rit = r ∈ R.
• The reward r is fed back to the agent and the process

is repeated.

In the following, we remove the notation indicating the
specific agent i, for the sake of simplicity. The solution to
a MDP is based on the RL framework [22]. At each time
step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is
the agent’s policy. The objective of each learning process
is to find an optimal policy π∗(s) ∈ A for each s, to max-
imize some cumulative measure of the reward r received
over time. Almost all RL algorithms are based on estimat-
ing a so-called value function, which is a function of the
states estimating how good it is for an agent to be in a
given state. The quantification of this is defined based on
the expected future rewards. Of course, the rewards that
an agent can expect to receive in the future depend on
what actions it will take. As a result, the value of a state
s under a policy π , and denoted Vπ (s), is the expected
return when starting in s and following π thereafter:

Vπ (s) = Eπ

[ ∞∑
k=0

γ krt+k+1

∣∣∣∣∣st = s
]

(3)

where E stands for the expectation operator, t is any time
step, and 0 ≤ γ ≤ 1 is a discount factor.
The literature of MDPs offers two methods to solve this

kind of problems in a closed form: value iteration and
policy iteration [23]. The first one is used to find ε-optimal
policies for discounted MDPs, the second one works
by constructing a sequence of policies with increasing
rewards. Both of them require an explicit representation
of states and actions and need to explore the entire state
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space during each iteration. As a result, the temporal com-
plexity of these solution methods can be very large when
they are applied to complex problems represented by big
state-action spaces. In order to reduce the complexity of
MDPs, the literature proposes three approaches: factor-
ization [24], abstraction [25], and decomposition [26]. The
idea behind the factorization approach is to address the
complexity of the problem by identifying variables, which
determine the state of the environment and the specific
actions which have an effect on them, under certain con-
ditions. In this framework, a state is implicitly described
by an assignment to a set of state variables X = {x1, ..., xn},
where the state at time t is now represented as a vector
Xt = {

x1,t , ..., xn,t
}
, where Xi,t denotes the ith state vari-

able at time t [27]. Furthermore, the rewards can often also
be decomposed as a sum of rewards related to individ-
ual variables. The abstraction approach, in turn, creates
an abstract model that aims at generating an equivalent
simplified MDP by mapping a group of states, sharing
a local behavior, onto a single state. Finally, the decom-
position approach subdivides the complex problem into
smaller tasks. Each task is modeled by means of a sub-
MDP and the value function and optimal policy for the
MDP associated to each subtask are computed and then
combined.
We rely then on the so-called decomposition approach

[13], which subdivides the autonomous decision making
process into multiple tasks represented by the individ-
ual SON functions. This results in a MDP organized onto
multiple tasks which are theoretically modeled by dif-
ferent subMDPs. Each subMDP is solved independently
through actor critic (AC), as described in the next section,
and the resulting policies are combined to obtain a global
solution.

4.1 Learning the optimal policy
We have modeled the eNBs as decision makers through
a MDP, which we propose to factor onto as many sub-
MDPs as SON functions the eNB needs to execute in
parallel. The solution of a MDP passes through the the-
ory of RL, which offers different alternatives depending
on the peculiarities of the problem to solve. A possible
solution could be based on the theory of dynamic pro-
gramming. However, in the complex wireless environment
where the decision makers are operating, it is not possible
to evaluate the probabilities of transition from one state
to another, as a result of a given set of actions, as it would
be necessary to apply this kind of solutions. Another
group of potential solutions is based on time-difference
learning methods, which allow to make decisions online
and self-adapting to the natural evolution of the wire-
less environment as a function of the mobility of users,
traffic patterns, propagation characteristics, etc. Numer-
ous embodiments of temporal difference (TD) learning

exist (Q-learning, SARSA, actor critic, etc.), where we
concentrate on the actor critic approach, which in its
very nature is suited for dynamical wireless systems, for
its capability of learning from experience and its compu-
tational complexity. These kinds of methods are able to
learn directly from experience, without a model of the
environment’s dynamics.
RL solutions based on time difference algorithms such

as Q-learning [28] or some actor critic approaches [29]
can be proven to converge to the optimal policy when
only one agent/decision maker is present in the sce-
nario. It is worth mentioning, anyway, that the eventual
convergence to the optimal is reassuring in theory, but
could be useless in practical terms, as an agent that
quickly reaches the 99% of optimality is preferable in
most applications compared to another agent guaranteed
of eventual optimality, but with a very low learning rate
[30]. When more agents are present in the scenario, as
it is the case in our setting, the standard convergence
proof of time difference algorithms does not hold any-
more, as the Markov transition models depend also on
the unknown policies of the other learning agents. How-
ever, in practice, these learning schemes have been shown
to provide successful results also in multiagent scenar-
ios [31]. The generalization of the MDP problem to a
multiagent system is a stochastic game. In this case, we
cannot prove the eventual optimality, but we can prove
the existence of a Markov perfect equilibrium [32], which
also is a challenging problem in decentralized wireless
networks.
ACmethods are TDmethods that have a separate mem-

ory structure to represent the policy independently of the
value function. The policy structure is known as the actor,
since it is used to select the actions, while the estimated
value function is known as the critic. The critic learns and
critiques whatever policy is currently being followed by
the actor and takes the form of a TD error δ, which is used
to determine if at was a good action or not. δ is a scalar sig-
nal, which is the output of the critic and drives the learning
procedure. After each action selection, the critic evalu-
ates the new state to determine whether things have gone
better or worse than expected, as it is defined by the TD
error:

δt = rt + γVt(st+1) − Vt(st) (4)

where V is the current value function implemented by
the critic to evaluate the action at taken in st . If the TD
error is positive, it suggests that the tendency to select
at should be strengthened for the future, whereas if the
TD error is negative, it suggests that the tendency should
be weakened. We identify this tendency with a preference
function P(st , at), which indicates the tendency or pref-
erence to select a certain action in a certain state. Then,
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the strengthening or weakening described above can be
implemented by increasing or decreasing P(st , at) by:

P(st , at) ← P(st , at) + β δt (5)

where β is a positive learning parameter. This is the most
simple implementation of a AC algorithm. The variation
that we consider for implementation is to add different
weights to different actions, for example, based on the
probability of selecting action at in state st , i.e., π(st , at),
which results in the following update rule:

P(st , at) ← P(st , at) + β δt(1 − π(st , at)) (6)

In this implementation, AC directly implements the
Boltzmann exploration method to select actions as fol-
lows:

π(st , at) = eP(st ,at)∑
at∈A eP(st ,at)/τ

(7)

This means that the probability to select an action a in
state s at time t depends on the temperature parameter τ

and on the preference values P(st , at) at time t. In this kind
of exploration, actions that seemmore promising, because
of higher preference values, have a higher probability of
being selected.

5 Functional architecture
We model the self-organized decision-making process of
the eNB, characterized by the multiple parallel SON func-
tions, by means of a MDP. The problem, involving all the
radio access autonomous functions, is so complex that
it cannot be handled by means of classical approaches.
We rely on the decomposition approach, which subdi-
vides the autonomous decision-making process into mul-
tiple tasks represented by the simpler SON functions’
decision-making processes. This results in a MDP orga-
nized onto multiple tasks which are theoretically mod-
eled by different subMDPs. Each subMDP is solved
independently, and their policies are combined to
obtain a global solution, such that the actions of
each subMDP can be executed. This is illustrated in
Figure 3.

If the tasks are independent, the policies can be exe-
cuted without incurring into conflicts. However, if it is
not the case, and the selected actions for each task are
executed concurrently and not serially, conflicts among
local policies may arise, which may result in undesir-
able behaviors. In order to solve SON conflicts, we
propose a functional architecture based on two main
functions:

• Functional decomposition: It is the function in
charge of breaking the complex problem into tasks.
The complex MDP is subdivided into k subMDPs,
which are solved locally. k optimal policies
π∗
1 , . . . ,π∗

k are obtained so that at each time step t
actions a1, . . . , ak can be selected.

• Resolution of policy conflicts: It is the function in
charge of detecting and solving potentially conflicting
policies, which are to be executed concurrently. The
resource conflict detector entity, represented in
Figure 3, evaluates whether two or more of the
actions a1, . . . , ak aim at modifying the same
parameter. In this case, the conflict is detected and
the self-coordinator entity is activated to solve the
conflict. The result is the execution of the global
solution a′

1, . . . , a′
k .

The next sections describe these two functions with fur-
ther details.

5.1 Functional decomposition
This module is responsible for breaking the global MDP
{S ,A,T ,R} into k tasks. Each task is characterized by a
specific objective and is modeled by a subMDP, which is
solved independently to find a policy π that maps states to
actions to maximize the expected reward. Each subMDP
i is characterized by its own state, action set, transi-
tion probability, and reward functions and is denoted by
subMDPi = {Si,Ai, Ti,Ri}.
The set S = {s1, s2, . . . , sn} of states of the global prob-

lem is modeled by means of a set ofm variables of possible
states of the environment X = {x1, x2, . . . , xm}. For each

Figure 3 General architecture.
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subMDP, we consider a decomposed representation, so
that the subMDP state space is modeled by a set of v state
variables: Xi = {x1, x2, . . . , xv}, where v < m. The state
space of the global problem is fully modeled when the k
subMDPs include all the m variables, i.e., X = ∪k

i=1Xi. If
the global problem is not modeled in a decomposed rep-
resentation, the union of all space states of the subMDPs
must be equal to the state space of the global problem,
i.e., S = {S1 ∪ S2∪, . . . ,∪Sk}. Each subMDP is solved
independently to obtain the value function V ∗

i for any
π∗
i . The global problem is then defined by k subMDPs,

subMDP1, subMDP2, . . . , subMDPk, such that:

• The global state space S is modeled in a decomposed
form, in such a way that the total state variable X is
the union of the k sets of state variables
X = X1 ∪ X2∪, . . . ,∪Xk .

• The action spaceA = {A1,A2, . . . ,Ak}.
• The transition function T = {T1, T2, . . . , Tk}
• The reward functionR = {R1 + R2+, . . . ,+Rk}

5.2 Resolution of policy conflicts
In this section, we deal with the conflicts, which may
arise from the combination of local solutions of individual
subMDPs. We focus on the parameter conflict gener-
ated by different subMDPs, which occurs when two or
more subMDPs may request different values for the same
parameter. If there are no conflicts, the set of actions to
be selected in a generic state s, A = {π∗

1 (s) = a1,π∗
2 (s) =

a2, . . . ,π∗
k (s) = ak} is executed simultaneously and the

solution is optimal. Otherwise, the subMDPs with con-
flicts are detected and solved. In the following, we propose
a solution based on the theory of coordination games,
which have already been proven in literature good to solve
coordination problems which arise when there is a con-
flicting interest. The classic example of application is the
‘battle of the sexes’ game, where the man prefers to attend
a baseball game and the woman prefers to attend an opera,
but both would rather do something together than go to
separate events. The question is, if they cannot commu-
nicate, where they would go. We consider that this game
perfectly fits our coordination game in case of conflicting

interests between two SON functions. This game has two
pure strategy Nash equilibria, one where both go to the
opera and another where both go to the football game.
There is also a mixed strategies Nash equilibrium, where
the players go to their preferred event more often than the
other.
For the sake of simplicity, wemodel the conflict between

two subMDPs, subMDP1 and subMDP2, by means of
a two-player coordination game. However, the conflict
between n subMDPs is scalable to a n-player coordination
game.

• S is the set of possible states of the environment,
which is the same as the one defined for the global
MDP S = {s1, s2, . . . , sn}.

• A = {α,β} is the action set, where α and β are the
actions selected by subMDP1 and subMDP2,
respectively, and they belong to the corresponding
action sets, i.e., α ∈ {asubMDP11 , . . . , asubMDP1q1} and
β ∈ {asubMDP21 , . . . , asubMDP2q2}.• The reward matrix associated with each state at time
t is denoted by R.

The self-coordinator module receives as input the
actions selected by each subMDP, and based on that, the
possible situations to face are the following:

1. The subMDPs choose the same action (α = β).
2. The subMDPs choose different actions, with different

rewards, i.e., α �= β with rα �= rβ .
3. The subMDPs choose different actions, but with the

same reward, i.e., α �= β with rα = rβ .

If the actions are the same, the coordinator just exe-
cutes the action, otherwise, the conflict is solved by mixed
strategies through the reward matrix depicted inside the
coordination box in Figure 4, where A, a, are the rewards
of subMDP1 and subMDP2, respectively, when executing
for both subMDP α; B, b, are the rewards of subMDP1
and subMDP2, respectively, when executing action α for
subMDP2 and action β for subMDP1; C, c, are the rewards
of subMDP1 and subMDP2, respectively, when executing

Figure 4 Self-coordination based on coordination game.
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action α for subMDP1 and action β for subMDP2; D, d,
are the rewards of subMDP1 and subMDP2, respectively,
when executing for both subMDPs action β .
This game has mixed strategy Nash equilibria given by

probabilities p = (d−b)/(a+d−b−c) to play α and 1−p
to play β for player 1 (rows) and q = (D − C)/(A + D −
B−C) to play α and 1−q to play β for player 2 (columns).
Hence, each player is not actually choosing α,β directly,
but choosing a probability with which a player will play
α. A given number p means that player 1 will play α with
probability p and β with probability 1 − p. Similar con-
siderations can be done for player 2. Since d > b and
d − b < a + d − b − v, p and q are always between 0 and
1, so the existence is assured.
The algorithm for solving resource conflict is described

in Algorithm 1.

Algorithm 1 Coordination game (S ,A, T ,R)
Let subMDP1= player 1
Let subMDP2= player 2
A = {α,β}
if α = β then

compute and execute a′ = α = β

end if
if α �= β and rα > rβ then

compute and execute a′ = α

else
compute and execute a′ = β

end if
if α �= β and rα = rβ then

if A > B,D > C and a > c, d > b then
compute and execute
Function mixedStrategies CG (A,Rt , p, q)

return a′
end Function

end if
end if

return {a′}

6 Functional decomposition of the general 3GPP
self-optimization use case

In this section, we provide an example about how the pro-
posed functional architecture can be used to deal with
the conflicts generated by the concurrent execution of
multiple SON functions. The objective of this section is
to show that the proposed approach is general enough
to model all the SON functions and their derived con-
flicts. For this purpose, we focus on the self-optimization
functionality and on all the associated SON functions,

as defined in [15] and [21], i.e., mobility load balancing
(MLB), mobility robustness optimisation (MRO), CCO,
ICIC, cell outage compensation (COC), energy saving
(ES), and random access channel (RACH) optimization.
We first introduce these SON functions in the context
of the general SON architecture, together with high-level
examples of how they may interfere. Then, we define the
state and action spaces of the global MDP that models
the self-optimization procedure of the overall radio access
network (RAN) segment. Finally, we show that the global
self-optimization problem can be decomposed onto as
many subMDPs as SON functions.We define the different
subMDPs, with state and action spaces and tentative pro-
posals for reward functions. References in literature will
show that these self-optimization problems can be solved
using reinforcement learning functionalities. We consider
that this demonstrates the generality of our approach to
solve conflicts in 3GPP SON architectures.

6.1 Overview of 3GPP self-optimization functions
In the following, we quickly describe the main self-
optimization functions. We describe the main informa-
tion these functions rely on and the main parameters they
aim to tune.
The MLB is a SON function where cells with conges-

tion can transfer load to other cells. The main objective
is to improve end-user experience and achieve higher sys-
tem capacity by distributing user traffic across system
radio resources. The implementation of this function is
generally distributed and supported by the load estima-
tion and resource status exchange procedure. The mes-
sages containing useful information for this SON function
(resource status request, response, failure, and update)
are transmitted over the X2 interface [33]. MLB can be
implemented by tuning the cell individual offset (CIO)
parameter. The CIO contains the offsets of the serving and
the neighbor cells that all UEs in this cell must apply in
order to satisfy the A3 handover condition [21].
The MRO is a SON function designed to guaran-

tee proper mobility, i.e., proper handover in connected
mode and cell re-selection in idle mode. Among the spe-
cific goals of this function, we have the minimization
of call drops, the reduction of radio link failure (RLF),
the minimization of unnecessary handovers and ping
pongs due to poor handover parameters settings, and
the minimization of idle problems. Its implementation is
commonly distributed. The messages containing useful
information are, e.g., the S1AP handover request or X2AP
handover request, the handover report, and the RLF indi-
cation/report. MRO operates over connected mode and
idle mode parameters. In connected mode, it tunes mean-
ingful handover trigger parameters, such as the event A3
offset (when referring to intra-RAT, intra-carrier han-
dovers), the time to trigger (TTT), or the layer 1 and layer
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3 filter coefficients. In idle mode, it tunes the offset values,
such as the Qoffset for the intra-RAT, intra-carrier case.
CCO is a SON function, which aims to provide capac-
ity and coverage optimization. The targets that can be
optimized may be vendor dependent and include cover-
age, cell throughout, edge cell throughput, or a weighted
combination of the above.
CCO reacts to changes in the environment depend-

ing on diverse origins: seasonal changes, changes in the
surrounding infrastructures, changes in the network plan-
ning, daily variations of traffic, etc. It can be imple-
mented in both centralized (in the network manager or
element manager) and distributed architectures. Useful
information is generally extracted from UE measure-
ments. Parameters that may be tuned are the transmission
power, the pilot power, and antenna parameters (azimuth
and tilt).
ICIC is a SON function, which aims to minimize inter-

ference among cells using the same spectrum. It involves
the coordination of physical resources between neighbor-
ing cells to reduce interference from one cell to another.
ICIC can be done in both uplink and downlink for the data
channels physical downlink shared channel (PDSCH) and
physical uplink shared channel (PUSCH) or uplink con-
trol channel physical downlink control channel (PDCCH).
ICIC can be static, semi-static, or dynamic. Dynamic ICIC
relies on frequent adjustments of parameters, supported
by signaling among cells over X2 interface. To support
proactive coordination among cells, the high interfer-
ence indicator (HII) and the relative narrowband transmit
power (RNTP) indicators have been defined, while to sup-
port reactive coordination, the overload indicator (OI) has
been introduced [33]. Parameters that may be tuned are
the transmission power, the pilot power, antenna param-
eters (azimuth and tilt), and the support of coordinated
almost blank subframes (ABS).
COC is applied to alleviate the outage caused by the

loss of a cell from service. For this use case, an adequate
reaction is vital for the continuity of the service so vendor-
specific cell outage detection (COD) schemes have to be
designed. Parameters to tune to try to compensate the out-
ages are the transmission power and antenna parameters
of the cells neighboring the fault.
ES aims at providing the quality of experience to end

users with minimal impact on the environment; the objec-
tive is to optimize the energy consumption by designing
network element (NE)s with lower power consumption
and temporarily shutting down unused capacity when not
needed. The most common action is to switch on/off the
appropriate cells.
RACH optimization aims at optimizing the random

access channels in the cells based on UE feedback and
knowledge of its neighboring eNBs RACH configuration.
RACH optimization can be done by adjusting the power

control (Pc) parameter or change the preamble format to
reach the set target access delay.
The independent execution of these individual SON

functions affects parameters or performances that can end
up in conflict. For example, the ICICmay decide to reduce
the transmission power to reduce inter-cell interference,
while the CCO may decide on increasing it to improve
coverage. These conflicting actions affect the borders of
the cell and consequently the performances of the MLB
function of the same cell and its neighbors. To compen-
sate for the actions taken by ICIC and CCO, the MLBmay
decide to modify some handover parameters, which then
have impact on the handover andMROperformances, etc.

6.2 Definition of the global MDP and of the decomposed
subMDPs

We consider a heterogeneous wireless network composed
by M + F 3GPP (H)eNBs, as defined in Section 3. Each
eNB has to be capable of executing the N standardized
SON functions, where NSON is the number of imple-
mented SON functions. As an example, in this paper, we
will consider the following functions: CCO, COC, ICIC,
MLB, MRO, ES, RACH. We can model the global self-
optimization problem defined by the NSON SON func-
tions through a MDP, as it consists of a multi-objective,
multi-parameter decision-making/optimization process
where the outcomes are partly random and partly under
the control of the decision maker. The global problem is
then defined by:

• State. The state space S is defined by a set of state
variables X defined, among others, by: (1) the
allocation of users to RBs, (2) the values of CQI, (3)
UE measurements in terms of RSRP and the values of
RSRQ, (4) resource status information, (5) handover
and RLF statistics and information, and (6)
interference coordination information in terms of
HII, OI, and RNTP.

• Actions. The action setA consists of all the possible
actions that can be taken by tuning, among others,
the following parameters: (1) transmission power, (2)
pilot power, (3) antenna parameters, in terms of tilt
and azimuth, (4) CIO, (5) handover parameters in
terms of event offsets, TTT, Qoffset, etc.

• Reward. The rewardR is defined based on the
following rationale. If the combination of the selected
actions gives, e.g., an intercell interference below a
threshold or an outage probability above a threshold,
RLF statics above a threshold or throughput
performances below objectives, or pilot pollution
above threshold, etc., the reward is negative;
otherwise, the reward is weighted function of
multiple objectives, such as the network throughput
and the users fairness.
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The global MDP including the NSON SON functions
is extremely complex. To solve it, we should rely on
multi-objective optimization frameworks, which do not
provide real-time solutions [11]. As a result, the global
SON problem is subdivided into multiple tasks repre-
sented by the simpler N = 7 SON functions described
before. Other functional decomposition approaches may
be possible but they would not be aligned with the
3GPP SON architecture, and consequently, they are
not interesting for our problem. Here, each subMDPi
is characterized by its own state, action set, transition
probability, and reward functions and is denoted by
subMDPi = {Si,Ai, Ti,Ri}.
We define the state and action spaces, together with

one of the possible reward functions of each subMDP as
follows:

1. CCO

• State: The state S1 is defined based on the result
of the scheduling scheme, which defines (1) the
allocation of users to RBs, (2) the values of CQI
of each user in the corresponding RB, and (3)
UE measurements (e.g., RSRP, RSRQ, etc.)

• Actions: The action setA1 is based on (1) the
set of eligible actions that are a finite set of
downlink transmission power levels, which can
be allocated to the RBs assigned to the users,
and (2) the finite set of available tilt, and
azimuth values, which can be assigned to the
gain of the vertical plane of the antenna model.

• Reward : If the CQI is greater or equal than 1,
the reward will be positive, otherwise, will be
negative. The threshold is set in order to
support the SINR values for multiple-input
multiple-output (MIMO) transmissions.

The subMDP representing this SON function can be
solved through reinforcement learning, as for
example has been done before in [34].

2. ICIC

• State: The state S2 is defined based on the result
of the scheduling scheme, which defines (1) the
allocation of users to RBs, (2) the values of SINR
of each user in the corresponding RB, and (3)
UE measurements (e.g., RSRP, RSRQ, etc.)

• Actions: The set of eligible actionsA2 are
defined based on (1) the finite set of downlink
transmission power levels, which can be
allocated to the RBs assigned to the users and
(2) the finite set of available tilt and azimuth
values, which can be assigned to the gain of the
vertical plane of the antenna model.

• Reward : If the SINR is greater or equal than 0
dB, the reward will be positive, otherwise will be
negative. The threshold is set in order to support
the SINR values for MIMO transmissions.

Also, the subMDP modeling this SON function can
be solved through reinforcement learning as it is
done for example in [35].

3. COC

• State: The state S3 is defined based on the result
of the scheduling scheme, which defines (1) the
allocation of users to RBs and (2) UE
measurements (e.g., RSRP, RSRQ, etc.)

• Actions: The set of eligible actionsA3 are
defined based on (1) the finite set of downlink
transmission power levels, which can be
allocated to the RBs assigned to the users and
(2) the finite set of available tilt and azimuth
values, which can be assigned to the gain of the
vertical plane of the antenna model.

• Reward : If the SINR is greater or equal than 6
dBs, the reward is positive, otherwise is negative.
The threshold is set in order to support the
lowest modulation and coding scheme (MCS).

A complete solution for COC by adjusting the gain of
the antenna due to the electrical tilt and the
downlink transmission power of the surrounding
eNBs can be founded in [36], and this solution is
based on reinforcement learning tools.

4. ES

• State: The state S4 is defined based on (1) the
resource status information of the cell and its
neighbors, (2) the expected demand of traffic,
and (3) the energy available to the network
element.

• Actions: The action setA4 consists of switching
on/off the cell.

• Reward : If the resource usage and the energy
available for consumption (in case we are in an
energy constrained system) are below a certain
threshold, the reward is negative, otherwise it is
positive.

The subMDP modeling this use case can also be
solved through reinforcement learning, as it is
demonstrated in [37].

5. MLB

• State: The state S5 is defined based on the
resource status information of each cell and of
that of its neighbors.
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• Actions: The action setA5 is defined based on
the update of the CIO value, by a finite set of
fixed values.

• Reward : If the change of CIO removes overload
with minimal negative handover (HO) effects
the reward will be positive, otherwise will be
negative.

A solution for the subMDP modeling, this function
can also be based on reinforcement learning tools [8].

6. MRO

• State: The state S6 is defined based on handover
and RLF reports and statistics.

• Actions: The action setA6 is defined based on
the update of the cell’s handover event offsets,
TTT, and layer 1/layer 3 filter coefficients.

• Reward : If the users affected by the RLF in the
cell after the HO parameter setting is completed
are lower than a threshold, the reward will be
positive, otherwise will be negative.

A solution for the subMDP modeling this function
can also be based on reinforcement learning tools [8].

7. RACH optimization

• State: The state S7 is defined based on the
resource status information.

• Actions: The action setA7 is defined based on
the update of the power control parameter or of
the preamble format to reach the set target
access delay.

• Reward : If the users achieve lower data rate than
the agreed guaranteed bit rate (GBR), the reward
will be negative, otherwise, will be positive.

This can also be solved through reinforcement
learning strategies, as shown in [38].

If n polices are in conflict, the coordination is handled
through a n-player coordination game, as discussed in
Section 5.2.

7 Case study: self-coordination for ICIC and CCO
function conflict

Among the different SON functions defined by 3GPP, we
focus our attention on CCO and ICIC. The CCO is in
charge of optimizing the capacity and coverage of the area
of influence of the particular eNB. As a result, it aims
to decrease the outage probability at the border of the
cell. The ICIC is in charge of minimizing the interfer-
ence among different cells. We will focus on the conflict
generated by ICIC and CCO SON functions, as both of
them aim at modifying the transmission power. In par-
ticular, while the CCO may decide to increase the power,
e.g., to improve the coverage or the capacity, the ICIC

may decide to decrease the power to reduce the interfer-
ence. Figure 5 shows the actions taken by the two different
SON functions, in the D-SON architecture implemented
in a heterogeneous scenario. The impact of the concurrent
execution of two conflicting actions is highlighted for cell
boundaries of one cell. In this section, we describe how to
solve the independent subMDPs characterizing the ICIC
and CCO functions through TD learning and the actor
critic algorithm in particular. Once each SON function
has found the optimal policy by means of the AC algo-
rithm, if the actions are different, ICIC and CCO play a
game with conflicting interests. We define a two-player
game G = {N,A,R}, where the N = 2 players are the
SON functions, A = {α,β} is the action set consisting
of the actions selected by CCO, α = {pCCO1 , . . . , pCCOR},
and ICIC, β = {pICIC1 , . . . , pICICR}. The reward matrix
associated with each state is denoted by R, represented
in Figure 4, inside the coordination game box. Here, the
rows correspond to the ICIC and the columns to the
CCO.

7.1 AC-based solution for CCO function
The CCO SON function aims to provide capacity and
coverage optimization. In this scenario, the uncovered
planned cell area is the coverage holes that need to be opti-
mized by the coverage and capacity optimization [39]. We
measure this by decreasing the outage probability. As an
indicator, we consider the CQI, which is a measurement
of the communication quality of wireless channels. We
define the state and action spaces and the reward function
as follows.

• State: The state is defined based on the result of the
scheduling scheme, which defines: (1) the allocation
of users to RBs (RB1, RB2, . . . , RBR) to the N users,
(2) the values of CQI of each user in the
corresponding RB.

• Actions: The set of eligible actions are the finite set of
downlink transmission power levels, which can be
allocated to the RBs assigned to the users. The
selected values are 0 to 46 dBm per RB with 0.5 dBm
granularity.

• Reward :

r(st , at) =
{
1 , if CQI ≥ 1
0 , otherwise

The threshold is set based on the CQI. The reason
behind this value is that one of the possible causes of
bad BLER is bad coverage. This one should be smaller
or equal than 10%, which is the requirement from the
LTE standard. As for the particular CQI values
associated to the modulation schemes and channel
coding rates, we refer to [21].
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Figure 5 Impact of ICIC and CCO parameter conflict.

7.2 AC-based solution for ICIC function
The ICIC SON function aims to minimize interference
among cells using the same spectrum. In this scenario
[39], we define the state and action spaces and the reward
function as follows.

• State: The state is defined based on the result of the
scheduling scheme, which defines: (1) the allocation
of users to RBs (RB1, RB2, . . . , RBR) to the N users
and (2) the values of SINR measured for each user in
the corresponding RB.

• Actions: The set of eligible actions are the finite set of
downlink transmission power levels, which can be
allocated to the RBs assigned to the users. The
selected values are 0 to 46 dBm per RB with 0.5 dBm
granularity.

• Reward :

r(st , at) =
{
1 , if SINR ≥ 0
0 , otherwise

Where the threshold is set in order to support the
SINR values for multiuser MIMO transmission mode
[21]. MIMO can be used to increase the SINR, i.e.,
the capacity increases logarithmically with the SINR.

8 Simulation platform, scenario, and results
The proposed algorithms have been evaluated on the ns3
LENA platform based on LTE release 8 [40]. The self-
coordinator framework given in Figure 4 is executed every
time a new action is selected by one of the functions, i.e.,
every time a CQI or the UE measurements are reported
to the (H)eNB. This happens, in periodic reporting, every
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2 to 160 ms for the CQI and every 120 ms - 160 ms for
the UE measurements [41]. The parameters used in the
simulations for CCO and ICIC are given in Table 1.
The scenario that we set up consists of 2 eNBs, each one

with three sectors, which results in 6 cells and 38 UEs.
The small cell network is based on the dual stripe scenario
with one block of two buildings. Each building has one
floor, with 20 apartments, which results in 40 apartments
per block, as depicted in Figure 6. The number of blocks
is equal to 5. The HeNB activation factor is 0.5 and the
deployment ratio is 0.2, which results in 20 HeNBs, each
one located in an independent apartment. Each HeNB
provides service to one user in the scenario, which results
in 20 HeNB users.

Table 1 Simulation parameters

Simulation parameters Value

Parameter

Path loss model Friis spectrum propagation

Mobility model Pedestrian, speed 3 Km/h

Shadow fading Log-normal, std = 8 dB

Scheduler proportional fair scheduler (PF)

AMC model LteAmc::MiErrorModel

Transport protocol UDP

Macro cell scenario

Number of cells 6

Number of user equipment (UE)s 38

eNB Tx power 46 dBm

Small cell scenario

Number of cells 20

Home eNodeB (HeNB)s per block 4

Number of home UEs 20

HeNB Tx power 23 dBm

LTE

Cell layout Radius: 500 m

Bandwidth 5 MHz

Number of RBs 25; RBs per RBG: 2

TTI 1 ms

CQI Period: 1 ms; number of RBs per CQI: 2

RL

Actions (power) 0 to 46 dBm per RB: granularity 0.5 dBm

Parameter τ 0.1

Learning rate β 0.5

Discount factor γ 0.98

ICIC threshold SINR > 0 dB

CCO threshold CQI ≥ 1

Simulation time 10 s

In the scenario, users are randomly distributed, and
after the related IP traffic session ends, the UE appears
in another location and starts a new session. In addition,
in order to test the quality of service (QoS) performance,
we use a UDP client application, which takes care of the
generation of radio link control (RLC) protocol data units
(PDUs) allowingmultiple flows belonging to different QoS
classes. The parameters used in the simulations, for both
the cellular scenario and the learning algorithm, are given
in Table 1.
We first show in Figure 7 the time evolution of the aver-

age SINR reported by UEs when the two SON functions
are executed independently and for different values of
the CQI and UE measurements reporting periodicity (i.e.,
CQI feedback every 2/120/160 ms and RSRQ feedback
every 120 ms). We observe that both the AC algorithms
implementing the two SON functions after a first training
phase converge in a stable manner to a situation where no
user is in outage. This is achieved even if the proposed sce-
nario is characterized by the dynamism typical of realistic
wireless networks; as the UEs move around, the HeNBs
are characterized by random activation factors, the chan-
nel model includes shadow and fading effects, etc. We
observe as well that the time of convergence depends on
the periodicity of feedback to the (H)eNBs from the users.
In Figure 8, we compare performances in terms of time

evolution of the SINR provided by the proposed coor-
dination game framework and by the approach that is
suggested by 3GPP in [17]. Here, it is proposed that
every time that a SON function is willing to modify
a transmission parameter, it asks for permission to the
self-coordination entity, which handles the queues of
requests for parameter modifications. We consider then
an implementation of ICIC and CCO characterized by
similar reporting periodicity, i.e., 120 ms, for each SON
function. We observe in Figure 8 that while the self-
coordination framework based on the proposed coordi-
nation game actually selects the most appropriate action
to execute based on a compromise between conflicting
interests, the 3GPP-proposed approach handles the con-
flict by properly scheduling in time the different actions.
In this case, due to the execution of both actions, the 3GPP
scheme generates unnecessary oscillations and poorer
performances in terms of average-achieved SINR for the
UEs in the scenario.
We now further analyze the results provided by

the independent implementation of ICIC and CCO,
in comparison to the results obtained when the self-
coordination framework is active. Figure 9 represents the
cumulative distribution function (CDF) of the SINR of the
UEs at the end of simulation time. We observe that when
performing the SON functions independently, the CCO
offers better performances than the ICIC for low values of
SINR, i.e., at the border of the cell, as it aims at optimizing
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Figure 6 Scenario.

0 500 1000 1500 2000 2500 3000 3500 4000
−35

−30

−25

−20

−15

−10

−5

0

5

time(msec)

A
v.

 S
IN

R
(d

B
)

 

 

CCO (CQI − 2ms)
ICIC (RSRQ − 120ms)
CCO (CQI − 120ms)
CCO (CQI − 160ms)

Figure 7 Time evolution of the average SINR of UEs in the scenario. Considering different values of reporting periodicity for the CQI and the UE
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Figure 9 CDF of the SINR of UEs in the scenario.
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Figure 10 CDF of the RSRQ from the UEs in the scenario.
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Figure 11 CDF of the UE average throughput.

the capacity and coverage features of the scenario. On
the other hand, the ICIC function performs better than
the CCO for higher values of SINR, as it aims at min-
imizing the effect of inter-cell interference in the whole
scenario, thus improving interference performances for
all users. When executing the two SON functions in
parallel, conflicts may arise, so we need the support of
a self-coordination function. When implementing it, we
achieve a compromise between the conflicting objectives
of the two SON functions. On the one hand, at the cell
edge, we are reducing the outage probability with respect
to the results obtained by ICIC, while we are maintain-
ing the outage with respect to results obtained by CCO.
On the other hand, inside the cell, the self-coordination
framework obtains better performances in terms of out-
age, compared to previous results of the CCO, while
it increases the outage compared to ICIC independent
results. The reason behind this behavior is to be found in
the compromise achieved by means of the mixed strategy
equilibrium, which consists in an equilibrium where there
is a percentage of time during which ICIC gets less reward
than CCO and the rest of the time when the CCO achieves
a higher reward than ICIC.
Figure 10 shows the RSRQ from the serving cell, which

is one of the UE measurements periodically reported by
the same UE indicating its performance rate. We observe
a similar behavior as discussed for Figure 9. However,
here, the self-coordinator performsmore similarly to ICIC
inside the cell and more similarly to CCO at the cell edge,
thus managing to get the best out of each SON func-
tion. Finally, the same desirable behavior is also confirmed
in Figure 11, which depicts the CDF of each UE average
throughput. The considered traffic uses a RLC saturation
mode (SM), which takes care of the generation of RLC
PDUs allowing multiple flows belonging to different QoS
classes.

9 Conclusions
In this paper, we have discussed the challenging problem
that arises when multiple concurrent SON functions are
executed by the same node, or different instances of the
same or different SON functions are executed in neigh-
boring cells. Without loss of generality, we have focused
on the conflicts between two different SON functions,
which aims at updating the same (H)eNB transmission
parameter in a D-SON architecture, more suitable for
a small cell scenario. We have proposed then a general
framework to support the modeling of SON functions
and their conflicts when they are executed in parallel. We
have shown that the global SON problem can be mod-
eled through aMDP, which can be organized onto simpler
subproblems to favor scalability and modeled by means
of subMDP. Due to the dynamic nature of the wireless
environment and to the autonomous characteristic of the
SON functions, we solve the subMDPs bymeans of RL. RL
algorithms provide solution policies to the different SON
functions which can be in conflict, so that these require
a self-coordinator framework. We have shown that this
framework can be modeled by means of a coordination
game, where the subMDPs are the players and their solu-
tion policies the actions. Simulation results obtained in a
release 8 compliant LTE network simulator which demon-
strates that the proposed scheme provides a convenient
compromise among conflicting actions, taking the best
result among the conflicting solution policies.
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