
Zhou et al. EURASIP Journal onWireless Communications and
Networking  (2015) 2015:140 
DOI 10.1186/s13638-015-0374-6

RESEARCH Open Access

Energy and spectral efficient Doppler diversity
transmissions in high-mobility systems with
imperfect channel estimation
Weixi Zhou1*, Jingxian Wu2 and Pingzhi Fan1

Abstract

This paper studies energy and spectral efficient Doppler diversity transmissions in the presence of imperfect channel
state information (CSI). Fast time-varying fading in high-mobility communication systems introduces Doppler diversity
that can benefit system performance. On the other hand, it is more difficult to estimate and track fast time-varying
channel; thus, channel estimation errors might seriously degrade system performance in high-mobility systems. The
trade-offs between channel estimation errors and Doppler diversity are studied by using two precoding schemes, a
simple repetition code, and a rate 1 Doppler domain multiplexing (DDM) scheme. The repetition code can achieve
the maximum Doppler diversity at the cost of a lower spectral efficiency, and the DDM scheme can achieve the
energy and spectral efficient Doppler diversity transmissions. Unlike many other Doppler diversity systems that
assume perfect CSI, we explicitly consider the impacts of imperfect CSI on the design and performance of both
precoding schemes. Optimum and suboptimum receivers for both schemes are developed by studying the statistical
properties of channel estimation errors. The analytical error probabilities of the receivers are expressed as functions of
a number of system parameters, such as the maximum Doppler spread, the percentage of pilot symbols for channel
estimation, the energy allocation between the pilot and data symbols, etc. The analytical and simulation results
indicate that both precoding schemes can achieve the maximum Doppler diversity order through the optimization of
the various parameters, even in the presence of imperfect CSI.
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1 Introduction
With the increasing demands of high-speed railways
and aircraft communications, wireless communications
in high-mobility environment have attracted considerable
attentions during the past few years. Signals in high-
mobility systems could experience large Doppler shifts in
the order of kilohertz, while most conventional wireless
communication systems are designed for Doppler shifts
up to a few hundred hertz. The large Doppler shifts result
in fast time-varying fading, which is one of the main chal-
lenges for the design of reliable high-mobility systems.
On the other hand, fast time-varying fading caused by
large Doppler shifts in high-mobility systems provides
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Doppler diversity, which can be used to benefit system
performance.
Several methods are proposed to exploit the Doppler

diversity gain inherent in fast time-varying fading [1–3],
and they provide efficient countermeasures against fad-
ing. Most existing works on Doppler diversity assume that
perfect channel state information (CSI) can be obtained
at the receiver. However, in high-mobility systems, it is a
non-trivial task to estimate and track the fast time-varying
fading with high precision and credibility. Channel esti-
mation errors are usually inevitable andmight have signif-
icant impacts on system performance when the Doppler
frequency is high. The performance of precoded orthogo-
nal frequency divisionmultiplexing (OFDM) systems with
channel estimation error is studied in [4]. It is shown in
[5] that for a single-input multiple-output (SIMO) sys-
tem with identically and independently distributed (i.i.d.)
fading, the conventional maximal ratio combining (MRC)
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receiver is no longer optimum with imperfect CSI. The
results of [4] and [5] cannot be applied to high-mobility
systems because they both assume the systems experi-
ence quasi-static fading channels. The optimum designs
of high-mobility systems in the presence of imperfect CSI
are studied in [6, 7] and [8] in terms of different design
metrics, such as the bit error rate (BER), symbol error rate
(SER), or spectral efficiency. However, Doppler diversity is
not considered in these works.
In this paper, we study the energy and spectral effi-

cient designs of Doppler diversity transmissions in high-
mobility systems with imperfect CSI. The design aims at
achieving a balanced trade-off between Doppler diver-
sity gain and channel estimation errors by considering
a large number of system parameters, such as the per-
centage of pilot symbols among the total transmitted
symbols, the energy allocation between pilot and data
symbols, and the maximum Doppler shifts. Two precod-
ing schemes are employed to achieve Doppler diversity:
a simple repetition code, and a rate 1 Doppler domain
multiplexing (DDM) code [3]. The repetition precoder
can achieve the full Doppler diversity at the cost of a
lower spectral efficiency, and the rate 1 DDM precoder
can achieve energy and spectral efficient Doppler diver-
sity transmissions. By analyzing the statistical properties
of channel estimation errors, we develop the optimum
and sub-optimum receivers for both precoding schemes.
The main contributions of this paper are summarized as
follows.

• The Doppler diversity transceivers in this paper are
developed by explicitly utilizing the properties of
imperfect CSI, whereas most existing works on
Doppler diversity assume perfect CSI. For example,
the DDM scheme is originally proposed in [3] for
systems with perfect CSI, and its performance
degrades significantly with imperfect CSI, given the
fact that conventional receivers are no longer
optimum with imperfect CSI. We address this
problem by developing new transceiver structures
that explicitly consider the impact of channel
estimation errors.

• The impacts of imperfect CSI on system performance
are identified by developing the theoretical error
probabilities of the new transceivers. The new
analytical results are expressed as functions of the
second-order statistics of the channel estimation
errors, and they reveal the trade-off between Doppler
diversity and channel estimation errors.

• The new transceiver structure along with the
theoretical error probabilities can be used to guide
the development of practical Doppler diversity
systems. With the analytical and simulation results,
the various system parameters that yield the

optimum trade-off between channel estimation
errors and Doppler diversity are identified.

The rest of this paper is organized as follows. Section 2
introduces the system model and the two precoding
schemes. Section 3 shows the channel estimation. The
trade-off between Doppler diversity and channel estima-
tion errors is studied in Section 4 with the repetition code.
Section 5 presents the receiver design and performance
analysis of the rate 1 DDM scheme. Numerical and sim-
ulation results are presented in Section 6, and Section 7
concludes the paper.

2 Systemmodel
The system model is presented in this section. At the
transmitter, the modulated data symbols are precoded to
achieve Doppler diversity transmissions. Pilot symbols are
inserted among the precoded data systems to track and
estimate the fast time-varying fading channel.

2.1 Precoding
The data symbols to be transmitted are divided into slots.
Denote the modulated data symbols in one slot as s =
[ s1, · · · , sNs ]T ∈ SNs , where S is the modulation alphabet
set, AT is the matrix transpose operation, and Ns is the
number of data symbols in one slot. To achieve the max-
imum Doppler diversity, precoding is employed to spread
out the data symbols in the time domain before trans-
mission. The precoded data vector can be represented
by

c = �s, (1)

where � ∈ CNc×Ns is a precoding matrix with C being
the set of complex numbers, and Nc ≥ Ns is the length
of the codeword. Define the k-th precoded data symbol
of c =[ c1, · · · , cNc ]T as ck , where k = 1, · · · ,Nc. The
coding rate is ρ = Ns

Nc
and the precoding matrix satisfies

trace
(
��H) = Ns, with AH being the matrix Hermitian

operation. Two precoding schemes are considered in this
paper.
The first precoding scheme is a simple rate 1

Nc
repeti-

tion code with Ns = 1 and � = 1√
Nc
1Nc , where 1Nc is a

length-Nc all-one vector. Since the repetition code spreads
one data symbol over the entire slot, it is guaranteed to
achieve the maximum Doppler diversity at the cost of a
low spectral efficiency. The repetition code provides the
best possible performance in terms of Doppler diversity
gain, and its performance can serve as a lower bound for
practical precoding schemes [9].
The second precoding scheme is the rate 1 DDM

scheme originally proposed in [3]. It can achieve the
maximum Doppler diversity without sacrificing spectral
efficiency, at the cost of mutual interference among the
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data streams. The precoding matrix is � = FHNc
, where

Nc = Ns and FNc ∈ CNc×Nc is the normalized discrete
Fourier transform (DFT)matrix with the (n, k)-th element
being 1√

Nc
e−j2π(n−1)(k−1)/Nc . With DDM, the codeword

can be alternatively expressed as

c =
Nc∑
n=1

θnsn, (2)

where θn is the n-th column of �. With such a precod-
ing scheme, the n-th data symbol is spread out over the
entire slot as θnsn, such that the maximum Doppler diver-
sity can be achieved. However, the orthogonality between
the columns of the precoding matrix will be destroyed
by the fast time-varying fading channel. Therefore, there
will be mutual interferences among the data symbols
at the receiver. The interference can be partly removed
by means of Doppler domain equalization. It should be
noted that perfect CSI at the receiver is assumed by [3],
and this assumption is usually not true for high-mobility
systems.

2.2 Pilot-assisted transmission
After precoding, Np equally-spaced pilot symbols are
inserted in each slot to assist channel estimation at the
receiver. The number of precoded data symbols Nc and
pilot symbols Np are chosen as Nc = Np(K − 1), such that
there are K − 1 precoded data symbols between a pair of
adjacent pilot symbols. The k-th pilot symbol is denoted
as xik = pk , where ik = kK is the index of the k-th pilot
symbol, for k = 1, . . . ,Np. Similarly, the k-th data sym-
bol is denoted as xnk = ck , where nk = k + � k−1

K−1� is the
index of the k-th coded data symbol, for k = 1, · · · ,Nc,
where �a� is the largest integer not larger than a. Define
xp =[ xi1 , · · · , xiNp ]T and xd =[ xn1 , · · · , xnNc ]T as the
pilot and coded data vectors, respectively. Pilot and data
symbols can be from different modulation alphabet sets.
Without loss of generality, pilot symbols are assumed to
be constant amplitude symbols, i.e., |pk|2 = 1, which is
not necessarily the case for data symbols. With such a slot
structure, the pilot percentage can be defined as δ = Np

N =
1
K , with N = Np + Nc.
Due to the different roles of channel estimation and

data transmission, different amounts of energy are allo-
cated to the pilot and coded data symbols. Denote the
energy for each pilot and coded data symbol as Ep and
Ec, respectively. The total energy in one slot is thus E0 =
EpNp+EcNc. The energy per uncoded information bit can
be calculated as Eb = EpNp+EcNc

Ns log2 M
, where M = |S| is the

cardinality of the modulation constellation set. Define an
energy allocation factor η = EpNp

E0 ∈ (0, 1) as the fraction

of the total energy per slot allocated to pilot symbols, Ep
and Ec can be expressed by

Ep = ηE0
Np

= η

(
1
δ

− 1
)

ρEb log2M, (3)

Ec = (1 − η)E0
Nc

= (1 − η)ρEb log2M, (4)

where ρ is the precoding code rate. Under a fixed Eb, η,
and ρ, increasing the pilot percentage δ will decrease the
energy for each pilot symbol; however, it will not affect the
energy per coded data symbol.
The pilot and coded data symbols are transmitted

over the time-varying fading channel. The pilot symbols
observed at the receiver can be represented by

yp =
√
EpXphp + zp, (5)

where yp=[ y(i1), · · ·, y(iNp)]T∈CNp×1 and zp=[ z(i1), · · ·,
z(iNp)]T ∈ CNp×1 are the received pilot vector and additive
white Gaussian noise (AWGN) vector, respectively, and
Xp = diag(xp) is a diagonal matrix with the main diago-
nal being xp, and hp =[ h(i1), . . . , h(iNp)]T ∈ CNp×1 is the
discrete-time channel fading vector. The AWGN vector is
a zero-mean symmetric complex Gaussian random vector
(CGRV) with covariance matrix N0INp , where IN is a size
N identity matrix.
Similarly, the data symbols observed at the receiver can

be denoted as,

yd = √
EcXdhd + zd, (6)

where yd = [ y(n1),· · ·, y(nNc)]T∈CNc×1 and zd =[z(n1), · · ·,
z(nNc)]T ∈ CNc×1 are received coded data symbols and
AWGN, respectively, Xd = diag(xd) is a diagonal matrix
with the precoded data vector xd on its main diagonal, and
hd =[ h(n1), . . . , h(nNc)]T ∈ CNc×1.

3 Channel estimation
The channel is assumed to experience wide-sense sta-
tionary uncorrelated scattering, and h(n) is a zero-mean
symmetric complex Gaussian random process with the
covariance function

φ(m − n) = E[ h(m)h∗(n)]= J0(2π fD |m − n|Ts), (7)

where a∗ denotes complex conjugate, fD is the maximum
Doppler spread of the fading channel, Ts is the symbol
period, and J0(x) is the zero-order Bessel function of the
first kind.
In fast time-varying fading, the channel coefficients vary

from symbol to symbol by following the time correlation
in (7). As a result, the channel coefficients of the pilot sym-
bols, hp, are different from the channel coefficients of the
data symbols, hd.
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In order to track the fast time variation of the fading
coefficients, the channel estimation can be performed in
two steps. In the first step, the receiver obtains an estimate
of the channel coefficients at pilot locations as

ĥp = WH
p yp, (8)

whereWp ∈ CNp×Np is the minimum mean squared error
(MMSE) matrix designed to minimize the mean squared
error (MSE) 1

Np
E

(
‖ĥp − hp‖2

)
. In the second step, the

channel coefficients at data locations can be estimated by
performing time domain interpolation over ĥp as

ĥd = WH
d ĥp, (9)

where Wd ∈ CNc×Np is the MMSE matrix to minimize
1
Nc
E

(
‖ĥd − hd‖2

)
.

It is shown in [10] and [11] that the above two-step
MMSE is equivalent to a single-step MMSE as

ĥd = WH
d ĥp = WH

d W
H
p yp = WHyp, (10)

where W = WpWd ∈ CNc×Np is the MMSE matrix
that canminimize 1

Nc
E

(
‖ĥd − hd‖2

)
. In (10), the received

pilot symbols are used to estimate the channel coefficients
of data symbols through time interpolation; thus, the fast
time-variation of the fading coefficients can be accurately
tracked.
Based on the orthogonal principal, E

[(
ĥd − hd

)
yHp

]
=

0, the MMSE estimation matrix can be solved as

WH =
√
EpRdpXH

p

(
EpXpRppXH

p + σ 2
z INp

)−1
, (11)

where A−1 is the matrix inverse operation, Rdp =
E

[
hdhHp

]
∈ RNc×Np and Rpp = E

[
hphHp

]
∈ CNp×Np with

their elements defined in (7).
Define the error vector ed = hd − ĥd . The correlation

of the error vector, Ree = E
[
edeHd

] ∈ RNc×Nc , can be
calculated as

Ree = Rdd − Rdp

(
Rpp + 1

γp
INp

)−1
RH
dp. (12)

where γp = Ep
σ 2
z
is the signal-to-noise ratio (SNR) of the

pilot symbols, Rdd = E
[
hdhHd

] ∈ RNc×Nc , and XpXH
p =

INp is used in the derivation of the above equation.
For the design and analysis of the diversity receiver in

the presence of imperfect CSI, it is necessary to obtain
the statistical properties of ĥd by considering the effects
of channel estimation errors because the receiver per-
forms detection based on the knowledge of the estimated
channel coefficients ĥd.

Given the pilot symbols, the vector yp is zero-mean
Gaussian distributed with covariance matrix E[ ypyHp ]=
EpXpRppXH

p + σ 2
z INp . From (10), the estimated chan-

nel coefficient vector is a linear transformation of a
zero-mean Gaussian vector. Therefore, ĥd is zero-mean
Gaussian distributed with the covariance matrix

Rd̂d̂ = Rdp

(
Rpp + 1

γp
INp

)−1
RH
dp = Rdd − Ree. (13)

To gain further insights, define the estimation MSE
as σ 2

e,Nc
= 1

Nc
trace(Ree). When Nc goes to infinity

while keeping a finite δ, the asymptotic MSE σ 2
e =

limNc→∞ σ 2
e,Nc

is [12, Proposition 1],

σ 2
e = 1 −

8νγb arctan
(√

2νγb− ωD
δ

2νγb+ ωD
δ

)

π

√
(2νγb)2 − (

ωD
δ

)2
, for δ ≥ 2fDTs,

(14)

where ωD = 2π fDTs, γb = Eb/N0 is the equivalent SNR of
the uncoded bit, and ν = η

( 1
δ

− 1
)
ρ log2M.

4 Trade-off between channel estimation errors
and Doppler diversity

The trade-off between channel estimation errors and the
maximum Doppler diversity gain is studied in this section
with the help of the simple repetition code.

4.1 Optimum diversity receiver with imperfect CSI
With the repetition precoder, the received data vector in
(6) can be simplified to

yd =
√

Ec
Nc

hds + zd. (15)

It should be noted that the total energy of the Nc
repeated data symbols is normalized to Ec to ensure fair
comparison with other precoding schemes and uncoded
systems.
The receiver performs detection based on the received

data vector yd and the knowledge of the estimated
CSI vector ĥd. Since both hd and ĥd are zero-mean
Gaussian distributed, the error vector ed = hd −
ĥd is zero-mean Gaussian distributed. Conditioned on
ĥd, hd is Gaussian distributed with mean ud|ĥd =
E[hd|ĥd]= ĥd and covariance matrix Rdd|ĥd =
E

[(
hd − ud|ĥd

) (
hd − ud|ĥd

)H |ĥd
]

= Ree.

Therefore, conditioned on the transmitted data symbol
sm and the estimated CSI vector ĥd, the received data vec-
tor yd is complex Gaussian distributed , i.e., yd|(ĥd, sm) ∼
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CN
(
uy|ĥd ,sm ,Ryy|ĥd ,sm

)
. The conditional mean and condi-

tional covariance matrix are given as follows

uy|ĥd ,sm =
√

Ec
Nc

ĥdsm, (16a)

Ryy|ĥd ,sm = Ec
Nc

Ree + σ 2
z INc . (16b)

For system with equiprobable symbols, the maximum
likelihood (ML) detection rule can minimize the detec-
tion error probability. From (16), maximizing the likeli-
hood function, p(yd|ĥd, sm), is equivalent to minimize the
following cost function

q(sm) =
(
yd −

√
Ec
Nc

ĥdsm

)H

R−1
yy|ĥd ,sm

(
yd −

√
Ec
Nc

ĥdsm

)
.

It can be easily shown that

argmin
sm∈S

q(sm) = argmin
sm∈S

{−2� (α · sm)} (17)

= argmin
sm∈S

{|α − sm|2} , (18)

where � denotes the real part operator, and α is the
decision variable defined as

α =
√

Ec
Nc

ĥ
H
d

(
Ec
Nc

Ree + σ 2
z INs

)−1
yd. (19)

Therefore, the optimum decision rule in the presence of
imperfect CSI can be written as

ŝ = argmin
sm∈S

{|α − sm|2} . (20)

4.2 Performance analysis
The error performance for systems withM-ary phase shift
keying (MPSK) modulation and operating with imperfect
CSI and the optimum decision rule is derived based on the
statistical properties of the estimated CSI ĥd.
From [5], the conditional error probability (CEP) for

systems with MPSK modulation is

P
(
E|ĥk

)
= 1

π

∫ π− π
M

0
exp

[
−ĥ

H
k Qĥk

sin2
(

π
M

)
sin2(φ)

]
dφ,

(21)

whereQ =
(
Ree + 1

γc
IN

)−1
.

The above CEP depends on the estimated CSI through
the quantity β = ĥ

H
k Qĥk . Since the estimated CSI vec-

tor ĥk is zero-mean Gaussian distributed with covariance
matrix Rd̂d̂ given in (13), β is a quadratic form of a com-

plex Gaussian random vector with themoment generating
function (MGF) [13]

�β(t) = E
(
etβ

) = [
det

(
IN − t · Rd̂d̂Q

)]−1 , (22)

where t is a dumb variable.
The MGF in (22) depends on the matrices Rdd and Ree.

Perform eigenvalue decomposition of Ree as

Ree = V�VH , (23)

where V ∈ CNs×Ns contains the orthonormal eigenvectors
of Ree, and � = diag[ϕ1, · · · ,ϕNc ] is the diagonal matrix
containing the corresponding eigenvalues.
Based on the Sylvester’s determinant identity, the MGF

in (22) can be rewritten as

�β(t) =
{
det

[
INc − t · �− 1

2VHRd̂d̂V�− 1
2
]}−1

, (24)

where � ∈ RNc×Nc is a diagonal matrix with the k-th
diagonal element being ϕk + Nc

γc
.

Perform eigenvalue decomposition on the Hermitian
matrix ϒ = �− 1

2VHRd̂d̂V�− 1
2 = UDUH , where U ∈

CNc×Nc contains the orthonormal eigenvectors of ϒ , and
D = diag{[ d1, · · · , dNc ] } is the diagonal matrix contain-
ing the corresponding eigenvalues. Then the MGF in (24)
can be simplified to

�β(t) =
Nc∏
n=1

1
1 − tdn

. (25)

From (21) and (25), the unconditional SER, P(E) =
E[P(E|ĥd)], can then be expressed as

P(E) = 1
π

∫ π− π
M

0

Nc∏
n=1

[
1 + dn sin2

(
π
M

)
sin2(φ)

]−1

dφ, (26)

which can be easily evaluated by numerical calculation.
In case of perfect CSI, we have the assumption Ree = 0

so that the decision variable in (19) simplifies to α =
1
σ 2
z

√
Es
Ns
hHd yd. Thus, the optimum decision rule in Propo-

sition (20) degrades to the conventional maximal ratio
combining (MRC) receiver. From (26), the unconditional
SER simplifies to

P(E) = 1
π

∫ π− π
M

0

Nc∏
n=1

[
1 + gn sin2

(
π
M

)
sin2(φ)

γc
Nc

]−1

dφ,

where gn is the eigenvalue of Rdd, and it is directly related
to the Doppler diversity gain.
However, in case of imperfect CSI, the result in (20)

shows that MRC is no longer optimal. The presence chan-
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nel estimation error affects the decision process, and the
new optimum decision rule has to take into consideration
the statistical properties of the channel estimation error
quantified in the matrix Ree.
The SER expressions in (26) reveal the trade-off between

Doppler diversity and channel estimation errors, and they
provide a lower bound on the performance of systems
with practical precoders.

5 Doppler domainmultiplexing in the presence
of imperfect CSI

The design and performance of a practical rate 1 DDM
precoding scheme is studied in this section. A sub-
optimum receiver is developed by studying the statistical
properties of the estimated channel coefficients, and the
corresponding analytical error performance is derived.

5.1 Doppler domain equalization with imperfect CSI
From (2) and (6), the received coded data samples can be
expressed as

yd = √
EcĤd�s + √

EcEd�s + zd, (27)

where Ĥd = diag(ĥd) and Ed = diag(ed) are diag-
onal matrices with ĥd and ed on their main diagonals,
respectively.
The system can be considered as an equivalent MIMO

system with the equivalent channel matrix being Ĥd�,
which introduces interference among the symbols in the
frequency domain. In addition, interference is introduced
by the channel estimation error.
We propose to detect the transmitted symbols by using

an iterative soft-input soft-output (SISO) block deci-
sion feedback equalizer (BDFE) [14]. Unlike conventional
BDFE that assume perfect CSI at the receiver, the BDFE
in this paper is developed by considering the statistical
properties of the estimated channel coefficients and the
channel estimation errors.
The input to the SISO-BDFE equalizer is the a priori

log-likelihood ratio (LLR) of the information bits, and the
output of the SISO-BDFE equalizer is the a posteriori LLR
of the information bits. The a priori LLR at the i-th iter-
ation is the a posteriori LLR at the (i − 1)-th iteration.
Based on the a priori LLR of the bits, the a priori mean,
s̄n, and variance, σ 2

n , of the symbol sn can be calculated as
described in [14].
The structure of the SISO-BDFE in one iteration is

shown in Fig. 1. The BDFE contains two filters, a feed-
forward filter An and a feedback filter Bn, both will be
calculated by using the properties of Ĥd and Ed.
The output of the feedforward filter is r = An(
yd − Ĥd s̄n

)
, where s̄n =[ s̄1, . . . , s̄n−1, 0, s̄n+1, . . . , s̄Nc ]T ∈

CNc×1 is the a priori mean vector. The n-th element of s̄n
is set to 0 during the detection of sn to avoid instability

caused by positive feedback. The output of the feedfor-
ward filter is then used to subtract the output of the
feedback filter, Bn(ŝ− s̄n), where Bn is a strict upper trian-
gular matrix with the main diagonal being 0, ŝ is the hard
decision at the output of the BDFE, and the soft output of
the BDFE filter, s̃n, can then be represented by

s̃n = An(yd − Ĥd s̄n) − Bn(ŝ − s̄n) + s̄n, (28)

where the soft output s̃n is used for the detection of sn.
Since Bn is strictly upper triangular, the detection is per-

formed in a reverse order, that is, sn+1 is detected before
sn and the hard decision of sn+1 is fed back to facilitate the
detection of sk for k < n + 1.
Based on the common assumption of correct past deci-

sions, the error vector εn = s̃n − s can be written as

εn = An(yd − Ĥd s̄n) − (Bn + INc)(s − s̄n). (29)

With the orthogonality principle, E
[
εnyHd

] = 0, the
feedforward matrix An can be derived as

An = (Bn + INc)RsyR−1
yy = (Bn + INc)Gmmse, (30)

where Gmmse = RsyR−1
yy is the linear MMSE matrix for

estimating s from yd, Rsy = E

[
(s − s̄n)

(
yd − Ĥd s̄n

)H]
,

and Ryy = E

[(
yd − Ĥd s̄n

) (
yd − Ĥd s̄n

)H]
. From (27),

we have

Rsy = √
EcRss(Ĥd�)H , (31)

Ryy = Ec(Ĥd�)Rss(Ĥd�)H + EcE (T) + σ 2
z INc , (32)

where Rss = diag
[
σ 2
1 , · · · , σ 2

Nc

]
with σ 2

n being the a priori
variance of sn, T = Ed

(
�Rss�H)

EH
d . Since Ed is diagonal,

the (m, n)-th element of T is (T)m,n = eme∗nv̄mn, where em
is the m-th element of the channel estimation error vec-
tor e, and v̄mn is the (m, n)-th element of the matrix V =
�Rss�H . Thus E

[
(T)m,n

] = (Ree)mn · vmn. Therefore, the
matrix E (T) = Ree
V, where (A
B)m,n = (A)m,n(B)m,n
is the element-wise multiplication between two matrices.
Combining (29) and (30) yields εn = (Bn+INc)ξn, where

ξn = RsyR−1
yy (yd − Ĥd s̄n) − (s− s̄n) is the error vector of a

linearMMSE equalizer. Based on the orthogonal principle
E(ξnyHd ) = 0, we have�ξξ = E

(
ξnξHn

) = Rn
ss−RsyR−1

yy RH
sy.

Combining (31), (32), and the matrix inverse lemma, we
have

�ξξ =
[
(Rss)

−1+ �HĤH
d

(
Ree
V+ 1

γc
INc

)
−1Ĥd�

]−1
.
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Fig. 1 The soft-input soft-output block decision feedback equalizer

The covariance matrix of the BDFE error vector εn can
then be calculated as �εε = (Bn + INc)�ξξ (Bn + INc)

H .
We need to identify the feedback matrix Bn such that
trace(�ξξ ) is minimized under the constraint that Bn
is strictly upper diagonal. The problem can be solved
through the Cholesky decomposition of �−1

ξξ as [15]

�−1
ξξ = LHL = UH

ξ DξUξ , (33)

whereUξ ∈ CNc×Nc is an upper triangularmatrix with unit
diagonal elements,Dξ ∈ RNc×Nc is a diagonal matrix, and
L = √

DξUξ . With the Cholesky decomposition described
in (33), the feedback matrix Bn can be calculated as Bn =
Uξ −INc . Consequently, the error covariance matrix of the
BDFE equalizer is �εε = D−1

ξ .

5.2 Error performance analysis
The pairwise error probability (PEP) and a BER lower
bound of the rate 1 DDM system with imperfect CSI is
developed in this subsection.
Based on the estimated channel coefficients, (6) can be

rewritten as

yd = √
EcXdĥd + wd, (34)

where wd = √
EcXded + zd is the equivalent noise com-

ponent associated with the estimation error and AWGN.
If we treat wd as noise, then the maximum likelihood rule
for deciding between two possible codewords for MPSK
modulated systems, cα and cβ , is

‖yd − √
EcXαĥd‖2

cα

≶
cβ

‖yd − √
EcXβ ĥd‖2, (35)

where Xα = diag(cα) and Xβ = diag(cβ).
Based on the ML decision rule in (35), the PEP of

deciding in favor of Xβ when Xα is transmitted can be
calculated as

P(Xα → Xβ) = P(Qz < 0|Xα sent), (36)

where Qz = ‖yd − √
EsXβ ĥd‖2 − ‖yd − √

EsXαĥd‖2.

Define z1 = √
Es(Xα −Xβ)ĥd +wα and z2 = wα , where

wα = √
EsXαed + zd. Conditioned on Xα and Xβ , both

z1 and z2 are complex Gaussian distributed. Then Qz can
be expressed in a quadratic form of a complex Gaussian
random vector as

Qz = [
zH1 zH2

] [
INc 0
0 −INc

] [
z1
z2

]
. (37)

The characteristic function (CHF) of Qz is given by [13]

�Qz(t) = 1
det(I2Nc − jtWz)

, (38)

whereWz has the form

Wz =
[
Rz1 Rwα

Rwα Rwα

] [
INc 0
0 −INc

]
= Rz · K, (39)

with Rz1 = Es(Xα − Xβ)Rd̂d̂(Xα − Xβ)H + Rwα , Rwα =
E

[
wαwH

α

] = EsXαReeXH
α + σ 2

z INc .
Performing eigenvalue decomposition of Rz yields Rz =

UzDzUH
z . The CHF in (37) can be alternatively repre-

sented by

�Qz(t) = 1

det
(
I2Nc − jtD

1
2
z UH

z KUzD
1
2
z

) (40)

=
Nw∏
i=1

1
1 − jtλi

, (41)

where λi is the i-th non-zero eigenvalue of the rank-Nw

matrix D
1
2
z UH

z KUzD
1
2
z .

When the values of λi are all unique, which is usually
the case for practical systems, we can rewrite the CHF
through partial fraction expansion as

�Qz(t) =
Nw∑
i=1

μi
1 − jtλi

, (42)

where μi = ∏Nw
n=1,n�=i

λi
λi−λn

.



Zhou et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:140 Page 8 of 12

The PDF ofQz can be derived from the CHF as fQz(x) =
1
2π

∫ ∞
−∞ �Qz(t)e−jxtdt, and the result is

fQz(x) =
Nw∑
i=1

μi · 1
|λi| exp

(
− x

λi

)
u(sgn(λi)x), (43)

where u(x) is the unit step function, and sgn(x) = 1 if
x ≥ 0 and −1 otherwise.
Without loss of generality, assume the eigenvalues are

ordered in an ascending order, and there are N−
w negative

eigenvalues, the PEP can be written as

P(Xα → Xβ) =
∫ 0

−∞
fQz(x)dx =

N−
w∑

n=1

Nw∏
i=1,i�=n

λn
λn − λi

,

where λn for n = 1, . . . ,N−
w are the negative eigenvalues.

For a pair of information vectors, sα and sβ , their Ham-
ming distance are defined as DH(sα , sβ) = ‖sα − sβ‖0,
where ‖a‖0 is the l0 norm operator that returns the num-
ber of non-zero elements in the vector a. Intuitively, the
BER can be reduced by assigning codeword pairs with
smaller PEP to information vector pairs with larger Ham-
ming distance, such that the probability of error events
with a large number of bit errors is small. Equivalently,
whenDH(sα , sβ) is small, a good precoding scheme should
yield a relatively large PEP P(Xα → Xβ) , where Xα and
Xβ are the codewords of sα and sβ , respectively.
Figure 2 shows the PEP of the DDM-precoded sys-

tem with BPSK modulation and different Hamming dis-

tances between information vector pairs. The normalized
Doppler frequency is fDTs = 0.01 and block length is 100.
For a given Hamming distance DH , we randomly generate
an information vector sα , then randomly change DH bits
in sα to get sβ . The PEP for a given Hamming distance is
obtained by averaging over 105 such information vector
pairs. It can be seen that the PEP decreases as DH(sα , sβ)

increases, and the system performance is dominated by
error events with 1 bit information error.
Since the system performance is dominated by error

events with 1 bit information error, we can get a BER lower
bound of a BPSK modulated system by considering only
error events with 1 bit error

Pb ≤ 1
2Nc

2Nc∑
α=1

∑
β :

DH (sα ,sβ )=1

1
Nc

P(Xα → Xβ). (44)

In the equation above, the outer summation with
respect to α is used to average over all 2Nc possible val-
ues of sα . When Nc is large, the averaging operation is
time-consuming. However, it can be evaluated by using a
large number of randomly generated sα instead. It should
be noted that our analysis can be easily extended to any
MPSK modulated system by considering the dominant
error events.

6 Simulation results
Analytical and simulation results are presented in this
section to study the trade-off between Doppler diversity
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Fig. 2 The PEP as a function of Eb/N0 for IDFT precoding systems with imperfect channel state information
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and channel estimation errors and to validate the perfor-
mance of the two precoding schemes in the presence of
imperfect CSI. All systems employ a symbol rate of 0.1
Msym/s and operating at 1.9 GHz. The block length is
N = 100. When the movement speed is between 56.8 and
568.4 km/hr, the corresponding range of Doppler spread
is between 100 Hz (fDTs = 10−3) to 1 KHz (fDTs = 10−2).
Figure 3 compares the performance between the two

precoding schemes with both analytical and simulation
results. For the rate 1

Nc
repetition coded system, the ana-

lytical BER described in (26) serves as the lower bound
for Doppler diversity system in the presence of chan-
nel estimation error, while the simulated BER is obtained
by utilizing the optimum receiver described in (20). The
rate 1 DDM system employs the suboptimum SISO-BDFE
receiver and the analytical results are obtained by using
(44). The value of fDTs is 0.01, and the energy allocation
factor is selected as η = 0.1. The analytical BER of the
rate 1 system matches very well with the corresponding
simulation results. The analytical BER lower bound of the
DDM-precoded system can reasonably predict the perfor-
mance of the system with the sub-optimum SISO-BDFE
receivers. For both systems, the pilot percentage has sig-
nificant impacts on the BER performance.When δ = 0.02,
the BER performance is dominated by channel estimation
errors, such that the Doppler diversity gain is very small.
When δ = 0.05, the repetition coded system can achieve
the maximum Doppler diversity order as the system with
perfect CSI. The BER of the DDM precoded system is 1.9
dB worse than the repetition coded system at 10−3 and
δ = 0.05, mainly due to the interference introduced by

the rate 1 precoder. Similar performance is observed for
high-level modulations.
Similar results are given in Fig. 4 with highermodulation

order. For the rate 1
Nc

repetition code, the analytical BER
is approximated by dividing the SER over log2(M), and a
perfect match is observed between the analytical and sim-
ulation SER. For the rate 1 DDM scheme, the analytical
results serve as the lower bound for the simulation results.
Figure 5 shows the analytical and simulated BER as

a function of the energy allocation factor η for system
with the repetition precoding scheme. The normalized
Doppler spread is fDTs = 0.01 and Eb/N0 = 16 dB. Simu-
lation and analytical results match very well. For all system
configurations, the BER is convex in η. The optimum η

increases as δ increases. The optimum η is 0.06, 0.09,
0.1, 0.1 and 0.1 for systems with δ = 0.01, 0.02, 0.05, 0.1,
and 0.5, respectively. A larger δ means more pilot sym-
bols per slot; thus, more energy needs to be allocated to
the Np pilot symbols in order to achieve a good chan-
nel estimation quality. Similar results are also observed
for systems with DDM precoders. We will use the energy
allocation factor 0.1 for all subsequent examples, and it
provides a robust and good performance for all system
configurations.
Figure 6 shows the analytical BER lower bound as a

function of pilot percentage, under various values of fDTs.
The energy allocation factor is η = 0.1 and Eb/N0 = 16
dB. When δ is small, e.g., δ < 0.05 for fDTs = 0.01,
increasing δ slightly yields significant performance gains
because the performance is dominated by channel estima-
tion errors. Once δ reaches a threshold, e.g., δ ≥ 0.1 for
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Fig. 4 The analytical and simulation results for both rate 1
Nc
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fDTs = 0.01, increasing δ further has very small impact
on system performance, due to the fact that the impacts
of channel estimation error is small once δ becomes large.
It is interesting to note that increasing δ from 0.1 to
0.5 might degrade system performance because Ep is a
decreasing function in δ. More importantly, when δ is
small (e.g. δ < 0.02), a higher fDTs might result in a
worse BER due to channel estimation errors. On the other

hand, when δ is large enough such that the channel esti-
mation quality is good enough, the BER performance
increases with fDTs due to the higher Doppler diversity
gains collected by the proposed systems.
To illustrate the impact of Doppler shift on error perfor-

mance, the BER of system with repetition code is shown
as a function of fDTs in Fig. 7, under various values of
pilot percentage. The Eb/N0 is fixed at 16 dB. For all

0 0.2 0.4 0.6 0.8 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Energy Factor η

B
E

R

Analytical
Simulatedδ = 0.1

δ = 0.05

δ = 0.5

δ = 0.01

δ = 0.02

Fig. 5 The BER as a function of η for rate 1
Nc

system with BPSK modulation and imperfect channel state information
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systems, the BER is a quasi-convex function of fDTs. The
performance first improves as fDTs increases due to the
Doppler diversity and then degrades due to the channel
estimation errors. For systems with δ = 0.02, 0.05, and
0.1, the minimum BER is achieved at fDTs = 0.004, 0.015,
and 0.045, respectively. A higher pilot percentage may not
always yield a better performance, and the performance
improvement is not significant when the channel estima-
tion is good enough.

7 Conclusions
The maximum Doppler diversity transmissions for high-
mobility systems in the presence of channel estimation
errors have been studied in this paper. The trade-off
between Doppler diversity and channel estimation errors
has been studied by using a repetition code and a rate
1 Doppler domain multiplexing scheme. The analytical
performance of both systems have been obtained by ana-
lyzing the statistical properties of the channel estimation
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errors, and they quantitatively identify the impacts and
interactions of a number of system parameters, such as the
pilot percentage, the maximum Doppler spread, and the
energy allocation factor between pilot and data symbols,
etc. It has been shown that the error probability is quasi-
convex in Doppler spread and monotonically decreasing
in the pilot percentage. The performance of systems with
a sufficiently high pilot percentage can approach that of
a system with perfect CSI. On the other hand, if the
pilot percentage is too low, the benefits of Doppler diver-
sity are offset by channel estimation error such that a
system with a lower Doppler spread could get a better
performance.
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