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Abstract

In this paper, we investigate a joint source and relay precoding design scheme for an amplify-and-forward (AF)
multiple-input multiple-output (MIMO) relay system with absence of the direct link. The joint optimization problem,
which is to minimize an objective function based on the mean square error (MSE), is formulated as a nonconvex
optimization problem in the AF MIMO relay system. Instead of the conventional iterative method, we use an
inequality to derive a lower bound of the MSE under the power constraint for obtaining a suboptimal solution of the
objective function, which makes the optimization problem convex and also approaches the existing upper bound of
the MSE, especially at the high signal-to-noise ratio (SNR). Numerical results show that this scheme outperforms the
previous schemes in terms of either MSE or bit error rate (BER).
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Introduction
As the relay channel was initially introduced in wire-
less networks [1, 2], the cooperative relay communication
has been developed rapidly these days [3]. The known
relay protocols have been classified as amplify-and-
forward (AF), decode-and-forward (DF), and compress-
and-forward (CF) [4].
Compared with DF and CF protocols, the AF proto-

col suffers from the noise enhancement, but it is still
considered as a hot issue in wireless networks since it
usually leads to low complexity and low consumption of
power. On the other hand, the multiple-input multiple-
output (MIMO) technology was introduced to increase
the channel capacity and improve the reliability of wireless
networks in [5]. Therefore, using the MIMO technology
into a relay system and the optimization design in the
MIMO relay system have gained much attention [6].
The main optimizing processing of an AF MIMO

relay system is to maximize or minimize objective func-
tions, such as mutual information (MI), mean square
error (MSE), sum of rate and signal-to-interference-plus-
noise ratio (SINR). For example, Fang et al. proposed an
approach to maximize the MI for an optimal design of

*Correspondence: moonho@jbnu.ac.kr
1Department of Electronics and Information Engineering, Chonbuk National
University, Baekje Road, Jeonju, South Korea
Full list of author information is available at the end of the article

source covariance matrix and relay matrix [7]. Similar
results were achieved while taking a source covariance
matrix as an identity matrix [8, 9]. In addition, an opti-
mization of the joint power constraint was designated
to maximize the MI [10]. The minimization of the MSE
for MIMO relay systems was derived for a joint optimal
design of source matrix and relay precoding matrix [11].
Furthermore, unified frameworks were developed to opti-
mize the source and relay precoding matrix while design-
ing an iterative algorithm to allocate the optimal power
to the relay channels [12]. Due to the high computational
complexity of the iterative algorithm, a suboptimal algo-
rithm was also developed to reduce its computational
complexity [13, 14]. As for the precoding multi-relay net-
works, the joint source-relay optimization design was
proposed to maximize SINR [15]. The optimization of
achievable rate and channel capacity was also derived [16].
Moreover, the optimizations of two-way relay systems
were investigated using the precoding approach in a sim-
ilar scenario as the previous literatures [17–19]. For the
optimization of the AF MIMO relay systems, Sanguinetti
et. al. not only summarized various kinds of optimization
problems but also suggested several related solutions for
each problem [20].
In this paper, we suggest a joint optimal design of the

source and relay precoding matrices for AF MIMO relay
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systems. For simplicity, we assume that the perfect chan-
nel state information (CSI) is available at the relay and
destination. We will derive an objective function on the
basis of the MSE. Since the proposed objective function is
not convex, we further derive a lower bound of the objec-
tive function to make it convex which is different from the
upper bound in [14]. The numerical results show that the
lower bound has a better performance than the previous
schemes. It approaches to the known upper bound at the
high signal-to-noise ratio (SNR).
The rest of this paper is organized as follows. In the

“System model” section, we introduce the system model
for the AF MIMO relay system. The lower bound of the
MSE is derived in the “Lower bound of MSE” section. In
the “Numerical results” section, numerical results are pre-
sented. The “Conclusions” section concludes this paper.
Notations: Boldface upper- and lowercase letters denote

matrices and column vectors, respectively. (·)H stands for
Hermitian transpose. C represents the complex number
field. IM is an identity matrix of size M × M. CN (μ, ν)

stands for the complex Gaussian distribution with mean
μ and covariance ν. E{·} denotes the expectation operator.
tr{·} and rank{·} denote the trace and rank of a matrix. Aij
denotes the (i, j)-th element of matrix A. (·)−1 stands for
matrix inversion.∇2(·) denotes the second-order gradient
of a function. (·) � 0 stands for a semi-positive definite
matrix.

Systemmodel
We consider an AFMIMO relay system as shown in Fig. 1,
where the source, the AF relay and the destination are
equipped with Ns, Nr and Nd antennas, respectively. The
half-duplex mode is used for this system, where each node
cannot transmit and receive simultaneously. The direct
link is not considered and the flat fading is applied for all
channels.
The transmission will take two time slots. In the first

time slot, the source transmits a symbol vector s ∈ C
K to

the relay, where E{ssH} = IK . The received signal at the
relay can be described as

yr = H1W1s + n1, (1)

where H1 ∈ C
Nr×Ns denotes the channel matrix between

the source and the relay, W1 ∈ C
Ns×K denotes the source

precoding matrix and n1 denotes a Gaussian noise vec-
tor with n1 ∼ CN (0, δ21INr ). For the simplicity, the power
constraint P1 at the source is given by

tr
{
W1W1

H} ≤ P1. (2)

In the second time slot, the relay forwards the received
signal after using a precoding matrix W2 ∈ C

Nr×Nr . With
the power constraint P2 at the relay, we can obtain

tr
{
W2

(
H1W1WH

1 H
H
1 + δ21INr

)
WH

2
} ≤ P2. (3)

Subsequently, the received signal at the destination can be
derived as

yd = H2W2H1W1s + H2W2n1 + n2, (4)

where H2 ∈ C
Nd×Nr denotes the channel matrix between

the relay and the destination and n2 denotes a Gaussian
noise vector with n2 ∼ CN (0, δ22INd ). In the end, a lin-
ear receiver G ∈ C

k×Nd is applied at the destination.
Therefore, the estimated signal at the destination can be
achieved as

s̄ = Gyd . (5)

Lower bound of MSE
In order to derive an optimization processing with a lower
bound for the AF MIMO relay system, we consider the
MSE matrix given by

M(W1,W2) = E
{
(s̄ − s)(s̄ − s)H

}
= E

{
GydydHGH − GydsH − sydHGH} + I. (6)

Substituting (4) and (5) into (6), we obtain

M(W1,W2) = GRydG
H − GH − HHGH + I, (7)

where the whole channel matrix H, the noise covariance
matrix R and the covariance matrix of the received signal
Ryd are described as follows

H = H2W2H1W1, (8)
R = δ21H2W2WH

2 H
H
2 + δ22INd , (9)

Ryd = HHH + R. (10)

Fig. 1 The system model for the AF MIMO relay system



Li et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:175 Page 3 of 7

3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNR
s
(dB)

A
M

S
E

 

 
NAF
PMF
Upper bound
Lower bound

Fig. 2 AMSE vs SNRs . Ns = Nr = Nd = 3

The matrix G to minimize the MSE matrix is given by
Wiener filter, i.e.,

G = (H)H(HHH + R)−1. (11)

By substituting (11) into (7), the minimal MSE matrix can
be derived as

M(W1,W2) = I − HH(HHH + R)−1H
= (HHR−1H + IK )−1, (12)

which is achieved on a basis of the matrix inversion
transformation

(A + BCD)−1 = A−1 −A−1B
(
DA−1B +C−1)−1DA−1.

(13)

In what follows, we will consider how to minimize the
MSE matrix for the AF MIMO relay system. The arith-
metic MSE (AMSE) [12] is given by

AMSE =
K∑
i=1

[M(W1,W2)]i,i , (14)

where the MSE matrix M is chosen as a diagonal matrix.
Then the SINR [21] can be expressed as

SINR =
K∑
i=1

(
1

[M(W1,W2)]i,i
− 1

)
. (15)

It implies that minimizing the MSE is equivalent to max-
imizing the SINR. Also, the symbol error rate [22] can be
described as

Pe(SINR) = αQ
(√

βSINR
)
, (16)

where α and β are constants that depend on the signal
constellation, and Q is the Q-function defined as Q(x) =
(1/

√
2π)

∫ ∞
x e−λ2/2dλ. Namely, minimizing the symbol

error rate or bit error rate is also equivalent to minimizing
the MSE. Using the abovementioned analysis, the optimal
processing can be derived as

min
W1,W2

[M(W1,W2)]i,i , 1 ≤ i ≤ K , (17)

s.t. tr
{
W1W1

H} ≤ P1,
tr

{
W2

(
H1W1WH

1 H
H
1 + δ21INr

)
WH

2
} ≤ P2.

Let us denote the singular value decomposition (SVD)
of channels H1 and H2 as

H1 = U1�1VH
1 , (18)

and

H2 = U2�2VH
2 , (19)

where U1, V1, U2 and V2 are unitary matrices, while
�1 and �2 are the diagonal matrices with entries being
arranged in the non-increasing order [10]. In order to
make the MSE matrix as a diagonal matrix, the optimal
matricesW1 andW2 should be chosen as [12]

W1 = V̄1	1, (20)

and

W2 = V̄2	2ŪH
1 , (21)

where V̄1, V̄2 and Ū1 denote the submatrices that contain
the first K columns of V1, V2 and U1, respectively. 	1 and
	2 are the diagonal matrices.
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Fig. 3 BER vs SNRs . Ns = Nr = Nd = 3

Substituting (18)–(21) into (11), the MSE matrix can be
calculated as follows

M(	1,	2) =
(
IK + �̄2

1�̄
2
2	

2
1	

2
2

δ22IK + δ21�̄
2
2	

2
2

)−1

, (22)

where �̄1 and �̄2 denote the diagonal matrices that
contain the first K columns of �1 and �2, respectively.

Therefore, the optimization problem of the AMSE can be
rewritten as

min
σ1,k ,σ2,k

K∑
k=1

(
1 + λ21,kλ

2
2,kσ

2
1,kσ

2
2,k

δ22 + δ21λ
2
2,kσ

2
2,k

)−1

, (23)

where σ1,k , σ2,k , λ1,k and λ2,k denote the kth diagonal entry
of 	1, 	2, �1, and �2, respectively, ∀ k ∈ {1, 2, . . . ,K}.
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Fig. 4 AMSE vs SNRs . Ns = Nd = 4,Nr = 3
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Fig. 5 BER vs SNRs . Ns = Nd = 4,Nr = 3

The whole channel can be divided into K subchannels
with the joint precoding approach where each subchan-
nel gain can be specified as λ21,kλ

2
2,k , while 	1 and 	2 can

be treated as the power allocation. It is obvious the power
allocation is a key parameter for the optimization in the
AF MIMO relay system. After substituting (20) and (21)
into the power constraint (17), we obtain

σ 2
1,k = ak , (24)

and

σ 2
2,k = bk

λ21,kak + δ21
, (25)

where ak and bk are the power allocated to the kth data
stream at the source and the relay, respectively. Further-
more, taking λ̄21,k = λ21,k/δ

2
1 and λ̄22,k = λ22,k/δ

2
2 and

replacing σ1,k , σ2,k , λ1,k and λ2,k in (23), the optimization
problem can be expressed as follows

min
ak ,bk

K∑
k=1

(
λ̄21,kak + λ̄22,kbk + 1

λ̄21,kak + λ̄22,kbk + λ̄21,k λ̄
2
2,kakbk + 1

)
, (26)

s.t.
K∑

k=1
ak ≤ P1,

K∑
k=1

bk ≤ P2.

It is obvious that the abovementioned objective function
is not convex [10]. Namely, it is difficult to get the optimal
solution from (26). Although Rong et al. [12] has proposed
an iterative algorithm for the optimal solution, the com-
putational complexity is still very high. In order to reduce
the computational complexity, an upper bound as a sub-
optimal solution was derived [14], where we can get the

very close performance to an iterative algorithm. In the
following, we will propose a lower bound to achieve the
better performance but having a little high computational
complexity comparing with the upper bound.
There are two known conventional bounds given by

x + y + 1
x + y + xy + 1

≤ x + y + 2
x + y + xy + 1

(27)

and

x + y + 1
x + y + xy + 1

≥ x + y
x + y + xy

, (28)

where x, y > 0 or x < 0, y < 0, xy �= 1.
On the one hand, since λ̄21,kak and λ̄22,kbk in (26) are

positive values in our system, it is suitable to use the two
bounds into the objective function.We substitute (27) into
the objective function (26) and an upper bound can be
calculated as

K∑
k=1

(
λ̄21,kak + λ̄22,kbk + 2

λ̄21,k λ̄
2
2,kakbk + λ̄21,kak + λ̄22,kbk + 1

)

=
K∑

k=1

(
1

λ̄21,kak + 1
+ 1

λ̄22,kbk + 1

)
. (29)

This optimization problem can be solved by two subopti-
mal solutions, i.e.,

min
ak

K∑
k=1

1
λ̄21,kak + 1

, s.t.
K∑

k=1
ak ≤ P1, (30)
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and

min
bk

K∑
k=1

1
λ̄22,kbk + 1

, s.t.
K∑

k=1
bk ≤ P2. (31)

The abovementioned suboptimal solutions are developed
by Rong with theMMSE criterion [14]. On the other hand,
the lower bound can be similarly derived by using the
inequality (28), where the lower bound can be denoted by
f (x, y) = (x + y)/(x + y + xy). It can be proved that this
lower bound is a convex function, i.e.,

∇2f (x, y) = 2
(x + y + xy)3

[
y2(y + 1) −xy

−xy x2(x + 1)

]
� 0.

(32)

In the following, we derive another suboptimal solution
which can be written as

min
ak ,bk

K∑
k=1

(
λ̄21,kak + λ̄22,kbk

λ̄21,k λ̄
2
2,kakbk + λ̄21,kak + λ̄22,kbk

)
, (33)

s.t.
K∑

k=1
ak ≤ P1,

K∑
k=1

bk ≤ P2.

Taking the Karush-Kuhn-Tucker (KKT) conditions [23],
we get the solution of the optimization problem, which
yields an equivalent function

F =
K∑

k=1

(
λ̄21,kak + λ̄22,kbk

λ̄21,k λ̄
2
2,kakbk + λ̄21,kak + λ̄22,kbk

)

+υ1(
K∑

k=1
ak − P1) + υ2(

K∑
k=1

bk − P2), (34)

where υ1 and υ2 are the Lagrange multipliers. After mak-
ing the tedious partial derivatives of equation (34), the
solution of the unknown parameters (a1, a2, . . . , ak) and
(b1, b2, . . . , bk) can be derived. Because of the partial
derivatives in the calculation, the computational complex-
ity of the lower bound is a little higher than that of the
upper bound.

Numerical results
In this section, we analyze the derived lower bound for
the AFMIMO relay system. The two-channel matrices are
assumed to be distributed with CN (0, 1). The SNRs at the
relay and the destination are defined as SNRs = P1/σ 2

1
and SNRd = P2/σ 2

2 , respectively.
We compare the upper bound of the proposed scheme

with the initial amplify-and-forward (NAF) algorithm [12]
or Pseudo match-and-forward (PMF) algorithm [24]. In
the NAF-based scheme, the source precoding matrix is
given by

W1 =
√
P1
K

IK , (35)

and the relay precoding matrix is described as

W2 =
√

P2
tr(�)

INr , (36)

where � = H1W1(H1W1)H + INr . In the PMF-based
scheme, the matrix W1 is same as (30), while W2 is given
by

W2 =
√

P2
tr((H1H2)H�H1H2)

× (H1H2)
H . (37)

In order to compare with the PMF-based scheme, we
takeNs = Nd in the following analysis. Firstly, we consider
a case of the same number of antennas at each node.With-
out loss of generality, we assume that Ns = Nr = Nd = 3
and K = 2. Figure 2 shows the AMSE of all algorithms
for the fixed ρ2 = 10 dB. The BER performance of the
algorithms is demonstrated in Fig. 3. It is shown that the
derived lower bound of the joint precoding scheme has
a better performance than that of either NAF-based or
PMF-based scheme. Comparing the lower bound with the
upper bound, the difference of the AMSE is reduced as
the SNR increases, which is shown in Fig. 2, and the two
curves are almost overlapped at SNR around 10 dB. How-
ever, the BER performance of the lower bound is slightly
different from the upper bound, as shown in Fig. 3.
Subsequently, we consider another case of the different

number of antennas. We take Ns = Nd = 4,Nr = 3 and
K = 2 in the simulations. The numerical results of the
AMSE and the BER of the related algorithms are shown
in Figs. 4 and 5, respectively. We also find that the lower
bound is still superior than that of the previous schemes.
The derived lower bound and upper bound approach each
other, especially at the high SNR. This is consistent with
the case of the same number of antennas. It implies that
the derived lower bound is approaching to the true objec-
tive curve at the high SNR. In other words, the accuracy
of the proposed lower bound is great guaranteed with the
increment of the SNR.

Conclusions
We have presented a joint precoding scheme for the AF
MIMO relay system. We derive a lower bound as the sub-
optimal solutions to overcome nonconvexity of the objec-
tive function. Numerical results show that compared with
the previous schemes, the proposed scheme can obtain a
great performance gain in terms of the SNR. In addition,
the performance of the lower bound approaches to that
of the existing upper bound, especially at the high SNR.
Therefore, the accuracy of the proposed lower bound is
guaranteed with the increment of the SNR. In our future
work, we will extend this scheme to the case of imperfect
CSI with the limited feedback, which is more practical in
wireless relay networks.
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