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In this contribution, a high-resolution parameter estimation algorithm is derived based on the Space-Alternating
Generalized Expectation-maximization (SAGE) principle for extracting multipath parameters from the output of sliding
correlator (SC). The SC allows calculating channel impulse responses with a sampling rate less than that required by
Nyquist criterion, and hence is widely used in real-time wideband (e.g., >500 MHz) channel sounding for the fifth
generation wireless communication scenarios. However, since the sounding signal needs to be sent repetitively, the
SC-based solution is unacceptable for time-variant channel measurements. The algorithm proposed here estimates
multipath parameters by using a parametric model of both low- and high-frequency components of the SC's output.
The latter was considered as distortions and discarded in the conventional SC-based channel sounding. The new
algorithm allows estimating path parameters with less repetitions of transmitting the sounding signal and still exhibits
higher estimation accuracy than the conventional method. Simulations are conducted and illustrate the root mean
square estimation errors and the resolution capability of the proposed algorithm with respect to the bandwidth and
the length of the SC's output. These studies pave the way for measuring time-variant wideband propagation channels

Keywords: Millimeter-wave propagation channel; Maximum-likelihood estimation; High-resolution parameter

1 Introduction
Measurement-based channel models are important for
verifying the performance of wireless communication sys-
tems in realistic propagation scenarios [1, 2]. Geometry-
based stochastic channel models, such as the WINNER
spatial channel models [3], IMT-Advanced models [4],
and COST2100 multiple-input multiple-output (MIMO)
models [5], have been proposed in various standards and
widely used to generate single- and multi-link channel
realizations at the carrier frequency up to 6 GHz with a
bandwidth up to 100 MHz.

Recently, researches on the fifth generation (5G) wire-
less communications have been paid a lot of attention. The
European 7th framework project “Mobile and wireless
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communications Enablers for the Twenty-twenty Infor-
mation Society (METIS)” announced a white paper which
describes the typical applications and propagation envi-
ronments considered in 5G [6]. According to the defini-
tion by the METIS project, the candidate frequency bands
for 5G applications range from 0.45 to 85 GHz, and the
bandwidth is from 0.5 up to 2 GHz [6]. At present, the
shortage of measurement-based channel models for these
frequencies, particularly in the millimeter (mm)-wave
bands hinders both the progress of 5G standardization
and the designing of 5G-based communication systems
and networks. Characterization of mm-wave channel with
bandwidth beyond 0.5 GHz for various types of applica-
tions and environments began to attract much research
attentions recently .

Data acquisition for wideband channels is usually per-
formed by using the equipment such as oscilloscope, spec-
trum analyzer, and vector network analyzer. The latter two
kinds of equipment usually do not have the capability of
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recording the complex time-domain signals, and thus not
suitable for investigating the wideband channel charac-
teristics extracted from multipath parameters. For sam-
pling the mm-wave signals, the oscilloscope devices are
required to have sampling rate up to 100 GHz, which
is not easy to achieve. Furthermore, due to the small
storage in the oscilloscope devices, measurement of wide-
band channel becomes very time-consuming. A solution
tackling these problems is to down-sample the received
wideband signals and store the data at a low speed which
allows transferring data in real-time from local memory
to external disk. Then by using a so-called sliding correla-
tion (SC) technique, a time-dilated approximate channel
impulse response (CIR) can be calculated by low-pass fil-
tering (LPF) the received data if the sounding signals can
be sent repetitively. The LPF in the receiver is applied to
remove the distortion components which have higher fre-
quencies [7]. It has been shown in [8] that pre-filtering
techniques can also be applied in the transmitter side to
achieve the same objective. Due to the benefits of low
complexity in the receiver design and acceptable costs,
the SC-based data acquisition has been widely adopted
[9-12].

However, the SC-based data acquisition has two prob-
lems. First, the higher-frequency components in the SC’s
output considered as distortions still carry information
of channel parameters and, thus, should be exploited to
improve the accuracy of parameter estimation. A draw-
back resulted when higher-frequency components are
considered is that the time-dilated approximation of CIR
is unavailable, and as a consequence, conventional peak-
searching estimation methods adopted in the SC-based
channel estimation are inapplicable. Second, the time-
dilated CIR generated by the conventional SC requires
the sounding signal being sent repetitively. The number
of the repetitions, also called as sliding factor, is usu-
ally in the 10® order of magnitude or even higher [7].
In the cases where channels are time-variant, the CIR
may not be calculated within the channel coherence time.
As a consequence, the mobile to mobile (M2M) channel
measurements cannot be conducted by using the SC-
based solution. Recently, a Space-Alternating Generalized
Expectation-maximization (SAGE) estimation approach
was introduced in [13] which is derived based on a para-
metric model characterizing the SC’s output, allowing
the estimation of multipath parameters by using higher-
frequency components. However, this solution still relies
on the SC’s output obtained by sending the sounding
signals many times. No thorough investigation has been
carried out so far for the feasibility of accurate parameter
estimation based on the SC’s outputs without sending the
sounding signals repetitively.

In this contribution, the SAGE algorithm originally
derived in [13] based on a parametric model for both low-
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and high-frequency components of SC’s output is elabo-
rated. Its performances in estimating multipath parame-
ters are investigated extensively by using simulations. It
shows that without discarding the higher-frequency com-
ponents of SC’s output, the estimation accuracy, particu-
larly for delay parameters, can be improved substantially.
In addition, another benefit of this novel estimation algo-
rithm not found previously is discovered; that is, the esti-
mation of path parameters, including Doppler frequency,
can be performed by using only a fraction of the SC’s
output. Hence, the overall observation span can be kept
less than channel coherence time in time-variant cases,
and characterizing time-variant channels through SC-
based measurements, which cannot be performed before,
becomes feasible. Simulations are carried out to com-
pare the performance of the proposed algorithm with
the conventional method, and investigate the impact of
selecting different bandwidth of LPF and the length of the
SC’s output on the RMSEEs, resolution capability of the
algorithm.

The rest of the paper is organized as follows. Section 2
describes the parametric signal model. In Section 3, a
SAGE algorithm is presented. Section 4 describes the
simulation results for the performance of the proposed
algorithm. Finally, conclusive remarks are addressed in
Section 5. To improve the understandings of the math-
ematical notations adopted in this contribution, Table 1
lists all the symbols introduced and corresponding
explanations.

2 Signal model

As elaborated in [9, 10] and [7], the SC performs a specific
cross-correlation operation, e.g., between a pseudo-noise
(PN) random sequence u(¢) with chip rate f; and another
sequence u'(¢) with chip rate f/. According to [7], both
sequences contain exactly the same chips, and the chip
rates are related as f; = y771fc, where y is called sliding
factor. By sample-wise multiplying these two sequences in
the time domain for multiple cycles which start with lin-
early increasing time-offsets and summing the products
over individual cycles of #'(¢), a time-dilated approxi-
mate a,(t/y) of the autocorrelation function a,(t) =
E[u(t)u*(t — 7)] can be calculated by low-pass-filtering
the SC’s output with bandwidth B = [—f./v, f./v |-

In the channel sounding cases, the received signal is the
convolution of the transmitted sequence u(¢) with the CIR
h(7), the output of the SC after the LPF with bandwidth B,
is the time-dilated approximate h (t/y) of the CIR. Here,
I (t/y) is a time-dilated version of h (t) = h(r) xa, (1)
with * denoting the convolution operation. It is well-
accepted that only }Az(;) obtained with the LPF bandwidth
B can be used to estimate the channel parameters [7, 14].
Whether the components obtained with larger B, e.g.,
B, =[—nf./y,nf:/y], n > 1, are applicable for estimating
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Table 1 Explanation of adopted symbols
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Table 1 Explanation of adopted symbols (Continued)

Explanation
Symbol

u(t) Transmitted pseudo-noise (PN) binary chip sequence

L Number of chips in the sequence of u(t)

Vo Magnitude of the chips in u(t)

a Values of the chips in u(t) with i being chip index.
aiel—1,1]

fe Chip rate of the sequence u(t)

u'(t) PN sequence correlated with received signals

fl Chip rate of u/(t)

y *Sliding factor” of the sliding correlator. y = fc/(fe — f})

ay(t) Auto-correlation function of u(t) in the delay domain ©

au(t/y) Time-dilated version of a, (t)

B Bandwidth of a low-pass-filter (LPF) applied to sliding
correlator's output

h(z) Channel impulse response in the delay domain

ﬁ(r) Estimate of h(t)

(T) Estimate of given argument

n Half of the width of the LPF normalized by f./y

B, Width of the LPF 8, = [—nfc/y, nfc/v]

N Number of frequency components of the signals

r(f) Baseband representation of received signals in the
frequency domain

M Total number of propagation paths in a channel

7 Complex attenuation coefficient of the £th path

7] Delay of the £th path

Ve Doppler frequency of the £th path

n(f) White Gaussian noise represented in the frequency
domain

w(f) White Gaussian noise with spectral height equal to Ny

y(f) Output of sliding correlator

s(f) The signal component of the output of sliding correlator

n'(f) The noise component in the output of sliding correlator

p(f; e, ve) Convolution results between u(f) distorted by a channel
and the clean sequence U/ (f)

y Concatenated received signals in frequencies, i.e.
y=[yife*r,....00]

(S) The parameters of propagation paths in a channel

(:)[O] Initial estimates of @

ém Estimates of @ obtained in the jth SAGE iteration

C:)SAGE The estimates of ® obtained when the SAGE algorithm
converges.

xe () Admissible hidden data defined in the SAGE algorithm

() Likelihood function of the parameters 6,

)?B] (f) Estimated admissible hidden data in the E-step of the ith
SAGE iteration

w Diagonal matrix with its diagonal elements equal to

E(In 1] f=h,..., fiy.

n(t,v) Objective function maximized in the M-step
0 Fraction of total length of SC's output
T The time duration of the CIR
Notations
()* Complex conjugate operation
o} Transpose operation
O Hermitian transpose operation
* Convolution operation
E[] Expectation operation
arg main Minimization operation with respect to a
arg maax Maximization operation with respect to a
(W)*1 Inverse operation of matrix W

the characteristics of /() is necessary to investigate. It is
worth mentioning that the time-dilated CIRs with band-
width of B, can be obtained by averaging the temporal
output of a SC received within the time of L/ (f/n).

Let us consider the case where a time-variant chan-
nel consists of M specular paths which are dispersive in
the delay and Doppler frequency domains. The baseband
representation r( f) of the received signal expressed in
frequency domain can be written as

M
r(f) = Yeesp | —2mfr)u(f - v) +u(f), M
=1

where oy, 70, and v, denote the complex attenuation,
delay, and Doppler frequency of the £th propagation path,
respectively, and u ( f) is the frequency-domain repre-
sentation of the transmitted maximum-(m-)length PN
sequence of L chips. When a rectangular pulse shape is
applied, u (f) can be written as [7]

L

keZ i=1
2)

where Z represents the set of integers, Vj is the chip
magnitude, and a; €[ —1,1], i = i,...,L are specified by
the m-sequence. The noise component # (f) in (1) is a
standard white complex Gaussian random variable:

n (/) =w(f)28( _ka) w () ~ CA'(0, No).
3)

The expression ' (f) for the lower chip-rate sequence
u' (t) is similar to u ( f ) in (2) but with f; substituted by



Yin et al. EURASIP Journal on Wireless Communications and Networking (2015) 2015:165

f!. The SC’s output y (f) = r(f) * ' (f) is the result of
convolution operation in the frequency domain, i.e.,

y(f)=s()+7(f), @)

where the signal component s ( f ) can be calculated as

M
s(f) = Zaep (f37eve) (5)

=1
with
p(fiteve) = exp{—j2nfrodu (f —ve) *u' (f)  (6)

calculated by invoking the equality § (f —fl)*8 (f —fz) =
8(f— (f1 +f2)) as

2 i c . ,
p(fite,ve) = <‘ZO) Z e_’z”(j¥+”l)fz—lf(k+k)

kk'ez

3<f_w_fck-;fck>

7)

L

ane (E)ane (£) 3557

i=1i=1

[(2ai — 1)(261; — 1)8*1'%(ki+k/i/)]
and

n (f) =n(f) ' (f)

Vo fek+fIKN K\ _izp
=T w(f)S(f—L)smc(L)e’L
kez
L
Z(Zai — l)e_/zTn(k/i).
i=1

8)

The parameters @ =[ay,ve, 7;€ = 1,...,M] in (4) are
unknown and need to be estimated. For simplicity, let us
assume that the datay = [y (f);f € (fi,..../v)] with N
being the total number of frequency bins, obtained within
the duration long enough for generating one observation
of i’\l(%), is available. Estimation of ® needs to be car-
ried out given y. Notice that this assumption is realistic
in the case where the channel coherence time is so short
that the SC cannot generate multiple consecutive CIRs
for a stationary channel. However, the parameter estima-
tion algorithm derived in the later part of the paper can
be easily extended to the case where multiple CIRs are
available.

3 Parameter estimation

The maximum likelihood estimate (MLE) of ® can be
derived based on the signal models (4) to (8). How-
ever, obtaining the MLE of © requires solving a 4M-
dimensional optimization problem. The computational
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complexity involved prohibits any practical implementa-
tion. In the following, we present the SAGE algorithm
which can iteratively update the subsets of ® and output
the approximate of the MLE of ® when the estimation
process converges [15, 16].

Figure 1 depicts the diagram of the SAGE algorithm
derived in the case considered lﬁ(ﬁre. To execute the SAGE
algorithm, an initial estimate ® ~ of the unknown param-
eters O is necessary, which can be obtained by using,
e.g., the Bartlett beamforming method [17], or parametric
approaches based on successive interference cancelation,
such as the non-coherent MLE proposed in [18]. The over-
all parameter estimates are split into multiple subsets. In
each iteration of SAGE algorithm, the parameter estimates
in a selected subset are updated under the conditions
that the observations of received signals are available and
that the unknown parameters are assumed to be identi-
cal with their estimates that have been calculated from the
previous iterations. The SAGE algorithm guarantees that
the likelihood of the overall parameter estimates mono-
tonically increases and becomes stabilized after a certain
number of iterations, i.e., the so-called “convergence” of
the algorithm is achievable. Empirically, when the incre-
ment of likelihood as the iteration continues becomes
insignificant, or the changes of the parameter estimates
compared from a previous iteration are negligible, we may
consider that the algorithm converges practically. In such
cases, the iterative updating procedure is stopped, and the
parameter estimates obtained are outputted as the final
results.

In the case considered here, we choose the subset
of the parameters to be updated in each iteration of
the SAGE algorithm to be 6, = [y, v, T¢], ie., the
parameters of individual paths. The admissible hidden
data x, ( f) for estimating 6 is naturally defined as the

Initialization

For¢=1,...,L
SAGE iteration step
for updating 6,

i i+1

é[’iH}

Convergence No
achieved 7

¢ Yes

Osace
Fig. 1 Diagram of the SAGE algorithm
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contribution of the fth propagation path and the noise
components, i.e.,

x¢ (f) = aep (fiteve) + 1 (). )

A SAGE iteration for updating 0, consists of two steps,
i.e., the so-called Expectation (E-)step and Maximization
(M-) step. In the E-step of the ith iteration, the expectation
of the loglikelihood of 6, given y and the estimates of @

obtained from the ith iteration, denoted with é)[l]
calculated as

, can be

N

[A(b’z)ly, m] = |:—210g27f - ZlOgE I (f)1] =

S=h

N 2
(e (f) — aep (f3 e ve)) ~ [i]
fgﬁ E(l7 (f) 2] »e- |

(10)

By dropping the constant terms in the right-hand side of
(10), it can be shown that

’ N (g}[i] (f) —aep (f; Tty Vl)>2
A (1] ¢
E[A 001y, © ]“—Z E[ |7 (f) 2] ’

f=h
(11)

[i]] can be calculated as

where X xz (f) =E [xg (f) |y,(:)

M -
1 () =y (1) = Y E [ (Fie,ve) 16]
U£e
t; 12)
=y (f) = Y allp (£:2l0l)
ey
with &E = [apd(ay — Ol[l])d()lg/ and [f], ‘A)e[l'] obtained

similarly.

For notational convenience, " is used in the sequel to
represent = [&[i] (f) if € [fl, ... ,fN]].

In the maximization (M-) step of the ith iteration,
the estimates v[LH] Ag[iH], and ozZH] can be calculated
by maximizing the expectation of loglikelihood function

obtained in the E-step
(ﬁ([iﬂ],f([iﬂ],&yﬂ]) =arg max E [A(05)|y, []]
Ve, Ty,
(13)
& [i+1]

As shown in Appendix 1, &,

linear function of vélﬂ], A[[’H] as

p( E+1],f£[z+1]> W71&[i]

1] ali+1 1 (~li+1] Ali+1
p(ve[z+ ]’ e[H— ]) w p(Ve[H_ ],_L,[[H- ])

can be expressed as a

&lgl‘-‘rl] — (14)
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with p(v,7) = [p(f; LV f=f,... ,fN] being a column
vector and W being a diagonal matrix with its diagonal
elements equal to E [|n’(f)|2] f = fi,...,fn. Inserting

(14) to the right-hand side of (13), v A[IH] and T[l+1] can be
obtained by solving the following max1mlzat10n problem

(ﬁgﬂ], f}iﬂ]) = argmaxn (v, 7¢) , (15)
Ve, Te

where the objective function 1 (v, 7) is shown in Appendix
2as

P, 0 w2
PO, DWW Ip(v, 1)
A~ [i41]

(16)

nw,7) =

The amplitude estimate &,
(14).

When the convergence is achieved, e.g., the parame-
ter estimates do not change as the iteration continues,
the estimation procedure is suspended, and the parameter
estimates obtained in the current iteration are considered
to be the final result.

can be calculated by using

3.1 Discussion of the complexity of algorithm
implementation and its influence on the SC device

The complexity of the proposed SAGE algorithm
increases along with the number of paths to estimate, the
total number of iterations, and the values of B, ¢ which
determine the number of data samples to be considered
when calculating the objective function (16). Reducing
the algorithm complexity can be performed in different
ways. For example, instead of estimating a large number of
multipath components, we may determine an appropriate
model order in advance by applying the Akaike Infor-
mation Criterion [19], and furthermore, the complexity
involved in the parameter estimate updating procedure
can be reduced by using advanced searching methods
[20, 21].

When being implemented in reality, the proposed esti-
mation method requires the SC’s outputs that are the
results of filtering the original received sequence by using
a LPF of bandwidth B,, n > 1. It can be shown that the
relationship B, < f is maintained if # < y — 1 is selected.
Therefore, enlarging the bandwidth of the SC’s output up
to B, with n < y — 1 would not introduce any additional
requirement on increasing the sampling rate at the input
of the SC. In such a case, the original complexity in the
SC device is not influenced by B,;, 1 < n < y — 1. The
studies in the sequel are conducted under the constraint
l1<n<y-1

4 Simulation study

Simulation studies are conducted to evaluate the perfor-
mance of the proposed algorithm under the influence
of different B, settings and the fraction o of SC’s out-
put being considered. These two parameters determine
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how the SC’s output is selected and applied for channel
estimation. With larger B,, more high-frequency com-
ponents can be involved in parameter estimation, which
may improve the estimation accuracy. In the conventional
SC-based channel estimation, ¢ = 1 is usually adopted.
In the proposed algorithm, ¢ < 1 can be selected,
which allows reducing the observation time required
in each snapshot, and consequently, measurements of a
time-variant channel can be performed within channel
coherence time. The impact of B, and ¢ on the perfor-
mance of the proposed algorithm is of importance for
understanding the effectiveness of the algorithm. There-
fore, we select B,, and ¢ as parameters in the simulation
studies.

It is worth mentioning that the conventional channel
parameter estimation based on the SC’s output was per-
formed with LPF’s bandwidth set to B = [—fc/)/,fc/y]
[7-9]. Therefore, the simulated algorithm’s performance
under B = Bj can be viewed as the performance
achievable when the conventional SC-based estimation is
applied. Furthermore, the method proposed here allows
estimating the Doppler frequencies of multipath com-
ponents with SC’s outputs collected in a time period
less than that required for calculating a complete esti-
mate of CIR. Since this function is not supported by
the conventional SC-based approaches, no references
can be provided for comparing with when Doppler
frequency estimation results are demonstrated. With-
out being specifically mentioned, the parameter settings
reported in Table 2 are adopted in the simulations. It is
worth mentioning that y = 93 is specifically selected here
in order to maintain a tractable computational complexity
for the simulations. However, y with larger values may be
selected in empirical SC’s applications.

The performance of the proposed SAGE algorithm can
be investigated from two perspectives, i.e., the RMSEEs in
the case where paths are well-separated, and the resolu-
tion capability in separating multipath in the case where
paths are closely spaced. Sections 4.1, 4.2, and 4.3 are ded-
icated to the investigation of the RMSEE behavior of the
SAGE algorithm in the case with well-separated paths,
and Section 4.4 to the resolution capability of the algo-
rithm. When a channel consists of well-separated paths,
the received signals of multipath components are mutually
orthogonal, and the behavior of the SAGE algorithm can
be represented by that of maximum-likelihood estimation
(MLE) method in the single-path scenarios [16]. There-
fore, the performance of MLE in single-path scenarios are
studied in Sections 4.1, 4.2, and 4.3.

4.1 SC's output with B, and g as parameters

Figure 2 depicts the magnitude frequency spectrum and
the channel power delay profile (PDP) calculated by using
of the SC’s output with B,, n = 1 and 7, respectively.
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Table 2 Parameter setting of the simulations
Values

Parameters for SC configuration

Type of PN sequence m-sequence

Chip rate of PN sequence u(t) 500 MHz

Chip rate of PN sequence U/ (1) 494.62 MHz

Sliding factor y 93

Normalized sliding factor y /L 3

Number L of chips in u(t) 31

Over-sampling rate 2

Repetition times of u(t) in Tx 93

Repetition times of ' (t) in Rx 92

Time duration T for complete IR 5.766 us

Bandwidth B, of LPF By =[—nk,nfn=1,2...

Fraction o of the SC's output
Parameters of synthetic paths
Unif. dist. within [ 20, 70] ns

Unif. dist. within [—1 x 10°, 1
x10°] Hz?

Delay
Doppler frequency

Complex attenuation coefficient Circularly symmetric Gaussian

random variables with

magnitude within the range
of [1-1075,4/2-1079]

Noise’s properties in synthetic channels

Noise spectral height max([|a¢l; € =1,...,M])-

10-SNR/20

with SNR represented in dB and

max([|agl; € =1,..., M]) being
the maximum of the path
magnitudes

4The Doppler frequencies of synthetic paths are set within the range that can be
estimated unambiguously by the system

The synthetic channel consists of one path with delay
of 53 ns, 0 Hz Doppler frequency, and complex ampli-
tude equal to 1 - 107°. The SNR is set to 30 dB. It can
be observed from Fig. 2b that for B = Bj, the channel
PDP exhibits a dominant peak located at abscissa close to
the true delay. For B = By, i.e., high-frequency compo-
nents as shown in Fig. 2c are considered, the PDP exhibits
a single peak with severe fluctuations on the top. From
these results, we can see that the conventional method of
delay estimation, which relies on finding the maximum of
channel PDP, owns larger estimation errors when the LPF
bandwidth increases. In addition, it can be observed from
Fig. 2 that in the cases where only a part of the SC’s out-
put is considered, the time-dilated IR obtained with B;
can be used for estimating the parameters of a path pro-
vided oT > 7/, i.e., the acquired part of the SC’s output
contains the impulse response of the path. In the case of
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Fig. 2 a-d Magnitude frequency spectrum, power delay profile of the CIR calculated by using the low-pass-filtered signals with the bandwidth of
Bn, n = 1and 7, respectively. The true path parametersaret =53 ns,v =0Hz, and o = 1 x 1076

large By, since higher frequency components are consid-
ered in the estimation, the part of the IR with o7 < T’
may still contain the necessary information for estimating
path parameters. It will be shown later than along with the
increase of By, less o can be considered for estimating path
parameters.

4.2 Objective functions of delay and Doppler frequency
with B, and g as parameters

4.2.1 n(z;v =v") versus B,

Figure 3 depicts the objective functions of delay obtained

with the LPF bandwidth B, n = 1, 3,5, and 7 considered

as a parameter in a single-path scenario. The synthetic

Objective function

244 246 248

25.8 26

25.6

25 252 254

Delay [ns]

Fig. 3 Objective functions of delay calculated with different B, in a single-path case with path’s delay equal to 25 ns, Doppler frequency 0 Hz,
complex amplitude 1- 1075, and SNR set to 30 dB. The Doppler frequency is assumed to be known in advance
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channel is generated with the path’s delay equal to 25
ns, Doppler frequency equal to 0 Hz, complex ampli-
tude equal to 1 - 107°. The SNR equals 30 dB. The path’s
Doppler frequency v is assumed to be known. It can
be observed from Fig. 3 that the main-lobes of objec-
tive functions exhibit the same zero-to-zero distance in
the abscissa regardless of B,. This indicates that the res-
olution is maintained the same and irrelevant with B,,.
However, the objective function calculated at the correct
delay increases along with n. Since the objective func-
tion is proportional to the loglikelihood of parameters as
shown in Appendix 2, the observation that the maximum
of objective function increases along with # implies that
enlarging the LPF bandwidth can enhance the likelihood
of the delay estimate.

4.2.2 y(v;t = 1') versusB,

Figure 4 depicts the objective function of Doppler fre-
quency in single-path scenarios. The synthetic channel is
generated with path’s complex amplitude equal to 1-107°,
delay 35 ns, and Doppler frequency 5 - 10* Hz. The SNR
is set to 30 dB. The delay t’ of the path is assumed to be
known in advance. Similar observation with that shown
in Fig. 3 is obtained, i.e., the objective functions exhibit
more peaky main-lobes for larger B,,. This indicates that
by enlarging the LPF bandwidth, the likelihood of Doppler
frequency can be improved. This is reasonable as more
coherent observations are included into the estimation
when B,, increases.

4.2.3 n(z;v =v')versusg

Figure 5 depicts the objective function n(z; v = V') in the
delay domain calculated in a single-path scenario when
the length of the SC’s output considered is set with o = 1,
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1/2, 1/3, and 1/4. The settings for the path and SNR are
the same as those adopted in the simulations described
in Section 4.2.2. It can be observed from Fig. 5 that the
longer the length of SC’s output considered, the higher
is the main peak of the objective function. This indicates
that the likelihood increases by considering more data at
the output of SC. Furthermore, it is observed from Fig. 5
that the zero-to-zero distances of the main peaks of all
objective functions are found to be identical, i.e., with the
duration of 2 ns, corresponding to the limit of the intrin-
sic delay resolution set by 1/B with B = 500 MHz being
the bandwidth of the transmitted signal.

4.2.4 n(v;t = 1')versuso

Figure 6 depicts the objective function n(v;t = ')
of Doppler frequency calculated from the synthetic data
in a single-path scenario with SNR of 30 dB. The true
delay and Doppler frequency equal 35 ns and 5 - 10*
Hz, respectively. The delay is assumed to be known in
the simulations. It can be observed from Fig. 6 that the
longer the length of SC’s output considered, the higher is
the maximum of the objective function. Meanwhile, the
zero-to-zero distance of the main peak of the objective
functions is observed to increase along with . This is rea-
sonable as the total observation span increases when o
takes a larger value, resulting in higher resolution in esti-
mating the Doppler frequency. It can be seen that even
with a lower resolution, detecting the Doppler frequency
is still possible for o < 1.

4.2.5 n(z,v)versusB,

Figure 7 illustrates the objective functions n(v, t) calcu-
lated with the SC’s output in a multi-path scenario with
o = 1, B,n = 1, 7. The synthetic channel consists

Objective function

20 F

Doppler frequency [Hz]

Fig. 4 Objective functions of Doppler frequency calculated with different B, in a single-path scenario where the path’s complex amplitude equals
1-1079, delay 35 ns, and Doppler frequency 5 - 104 Hz. The SNR is set to 30 dB. The path delay is assumed to be known in advance
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Fig. 5 Objective function of delay calculated with the LPF bandwidth set to Bs, and ¢ considered as a parameter in a single-path scenario where the
path has complex amplitude equal to 1 - 107, delay 35 ns, and Doppler frequency 5 - 10* Hz. The SNRiis set to 30 dB. The Doppler frequency of the
path is assumed to be known in advance in the simulation

of a certain number of randomly generated paths with
delays chosen from [0,62] ns and Doppler frequencies
[ —400,400] Hz. The SNR is set to 30 dB with respect
to the maximum path power. It can be observed from
Fig. 7 that when the B, increases, the objective function
becomes more peaky, and thus, the multipath components
can be separated more readily.

Notice that by using the SC’s output that allows generat-
ing one CIR, the Doppler frequency estimation resolution
is very low due to the short observation duration 7. By
using the simulation settings in Table 2, the total obser-
vation span is calculated to be T = Ly/f. = 31-93 -

2-107° = 5.77 us. Thus, the Doppler frequency estima-
tion resolution is 1/(27) = 43 KHz. Since the differences
of Doppler frequencies of paths are empirically much less
than 43 KHz, it is important to jointly estimate the delay
and Doppler frequency in order to resolve the paths in
the delay domain. Furthermore, due to the low Doppler
frequency estimation resolution, observations with high
SNRs are always preferable in order to obtain less estima-
tion errors. Our simulation results here show that the SNR
should be kept beyond 10 and 40 dB in order to obtain
RMSEE(v) less than 10 Hz when the LPF bandwidth B, is
set with n > 5 and n < 3, respectively.

120
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80

60

Objective function

40

20

0 — =

o=1/4

is set to 30 dB. The delay is assumed to be known in the simulations

-3 -2 -1 0
Doppler frequency in Hz

x 10°

Fig. 6 Objective function of Doppler frequency calculated with the LPF bandwidth set to Bs, and o considered as a parameter in a single-path
scenario where the path has complex amplitude equal to 1 - 107, delay and Doppler frequency equal to 35 ns and 5 - 10% Hz, respectively. The SNR
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4.3 RMSEEs of delay and Doppler frequency

4.3.1 RMSEE(t) versus B,

The benefits by enlarging the LPF bandwidth can also
be evaluated by examining the RMSEE of delay and of
Doppler frequency. Figure 8 depicts the RMSEE of delay
versus the SNR with B, as a parameter. Single-path sce-
narios are considered where the Doppler frequencies
of the synthetic paths are uniformly distributed within
[—1 x 10°,1 x 105] and the delays of the paths are

uniformly selected from 20 to 70 ns. It is worth mention-
ing that the maximum Doppler frequency for the syn-
thetic paths was set below the maximum frequency that
can be measured unambiguously by the system. Totally,
400 Monte-Carlo simulations were conducted. The result
obtained by using the conventional estimation method
is also illustrated, which searches the estimates of path
delays by finding the maxima of channel PDP. This is only
feasible when the LPF bandwidth is set to B;. Considering

RMSEE(7) [s]
S

1wo"E o B

—X—Bg

—6— Bs

—*%— Br7
L

— & — Conventional method with B

Fig. 8 RMSEE(7) versus SNR with B,, as a parameter
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that such maxima-searching spectral-based methods are
widely used in parameter estimation when the conven-
tional SC is implemented, its performance is taken as a
reference of comparison for the parametric estimation
algorithm proposed here. It can be observed from Fig. 8
that for a fixed SNR, the RMSEE(t) when the proposed
algorithm is used is at least one order of magnitude lower
than those obtained with the conventional method. The
worse performance of the conventional method is due to
the fact that the time-dilated channel impulse response
estimated by using the conventional method consists of 93
samples in the delay domain. In the case where the true
path delay is different from integer times of delay samples,
by using the maxima-searching method, large estimation
errors are resulted. However, in the case where a paramet-
ric model-based estimation is performed, searching the
maximum of objective function can be performed with
refined steps in such a way that more accurate estimates
are obtained. In addition, it is observed that RMSEE(t)
decreases when B,, increases, indicating that the estima-
tion accuracy can be improved by taking into account the
high-frequency components when the proposed parame-
ter estimation method is applied.

4.3.2 RMSEE(z) versus o
As shown in Fig. 5, the resolution capability of the esti-
mator in the delay domain would not be changed when
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different values of o are considered. This is confirmed
by simulations of RMSEE(7) for two paths with the sep-
aration of the two paths in delay taken as a parameter.
Figure 9 depicts the results for SNR set to 30 dB and with
Bg. In the simulation, both paths’ delays are randomly
selected with specified separation. The fraction g of the IR
ranges from [i, %, %, 1]. Totally 300 snapshots are run for
collecting the random samples for computing RMSEEs.
It can be observed from Fig. 9 that when the separation
At is larger than 2 ns, the RMSEE(7) reduces to a sta-
ble level, which does not change significantly when At
keeps increasing. This is consistent with the fact that the
signal bandwidth of 500 MHz provides the resolution of
2 ns. These results indicate that using the parts of the
sliding correlator’s output for parameter estimation would
not lead to the reduced resolution. Furthermore, it can
also be observed from Fig. 9 that when o increases, the
RMSEE decreases. This is due to the reason that the SNR
for parameter estimation increases when more observa-
tions are included during the calculation of the objective
functions.

4.3.3 RMSEE(v) versus B,

Figure 10 illustrates the RMSEE of Doppler frequency
versus SNR calculated from 250 snapshots in single-path
scenarios. The LPF bandwidth B, changes withn = 1, 3, 5,
and 7. The value of g is fixed to 1. It can be observed
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w
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Fig. 9 RMSEE(7) of a path 1 and b path 2 versus the separation of two paths in delay with o being a parameter

(b) Path 2
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from Fig. 10 that for fixed SNRs, the RMSEE(v) decreases
as B, increases. The upper floor of RMSEE(v) observed
for low SNRs in Fig. 10 is due to the Doppler frequency
estimation range of [—1,1] KHz specified during the
simulations. Furthermore, we observed that the improve-
ments in RMSEE(v) obtained when the LPF bandwidth
changes from B; to B3z and from Bs to B; are insignif-
icant compared with that resulted when the bandwidth
increases from Bj to Bs. This is because the components
in the frequency domain do not have the same spectral
heights. Although the RMSEE monotonically decreases
with respect to the increasing B, the decreasing rate is
not constant and is actually dependent on the exact range
of the abscissa considered.

4.3.4 RMSEE(v) versus g

As shown in Fig. 6, the width of main peak of the objec-
tive function is enlarged when less fractions of the SC’s
output results are taken into account in the estimation.
Simulation studies are conducted to verify the resolu-
tion ability of the estimator in two-path scenarios when
o changes. In the simulations, the bandwidth of the SC
output is set to Bg, and o is set to [1,1/2,1/3,1/4]. The
Doppler frequency resolutions «, can be calculated based
on k, = 1/(2T) to be 7 x 10°, 3.4 x 10°, 2.4 x 107,
and 1.7 x 10° for ¢ = 1/4,1/2,3/4 and 1, respectively.
The SNR is set to —10 dB. Figure 11a, b depicts respec-
tively the RMSEE(v;) and RMSEE(v;) for two paths versus
their separation in the Doppler frequency domain. The
same delay is set for both paths in the simulations and is
assumed to be known in advance in parameter estimation.
It can be observed from Fig. 11a, b that both RMSEE(v;)
and RMSEE(vy) decrease when Av increases. Practically,
we can define the empirical resolution as the separation
of two paths beyond which the resultant RMSEE(v) for
both paths becomes stabilized. It can be observed from

Fig. 11 that the empirical resolutions are consistent with
the theoretical intrinsic resolutions which are defined to
be the inverse of the total observation span, and more-
over, the empirical resolutions are found to increase when
o decreases. These results show that it is possible to esti-
mate Doppler frequency using parts of the SC’s output,
and that the length of the SC’s output determines the
resolution of separating paths in the Doppler frequency
domain. It is worth mentioning that significant fluctu-
ations can be observed for RMSEE(v;) and RMSEE(v)
graphs when the Doppler frequency separation is less
than the intrinsic resolution of the estimator. This is due
to the biases in the Doppler frequency estimates. When
Av between two synthetic paths is less than the resolu-
tion, the maximum of the objective function calculated
for estimating the Doppler frequency of the first path in
the initialization step is usually found between the true
Doppler frequencies. Although the SAGE algorithm can
change the estimates with more iterations, such biases
may still exist in the final estimation results. In addi-
tion, since the biases have different values depending on
Av, the RMSEE graphs obtained with Av less than the
intrinsic resolution exhibit significant fluctuations.

4.3.5 RMSEE(7) versus B, and o

The aforementioned investigations focus on the behavior
of the estimator with respect to either B,, or 0. We now
try to evaluate how ¢ and B, jointly influence the perfor-
mance of the proposed estimation algorithm. Figure 12
illustrates RMSEE(7), i.e., the RMSEE of delay in a single-
path scenario with B, varying within the range n = 1,2, 3,
and the fraction o of the SC’s output taking values among
[%, %, %] The SNR of 10 dB is considered in the sim-
ulations. Totally, 300 snapshots are applied to get the
RMSEE(r) graphs. The true parameters of the path are
7 = 25ns, v = 0 Hz, |a| = 3. The estimation of delay
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is perfromed under the assumption that the Doppler fre-
quency is known in advance. It can be observed from
Fig. 12 that when we take only a part of the SC’s output for
estimating the parameters, only for the bandwidth B > nk

¥
with n = 3, the parameters can be estimated.

4.3.6 RMSEE(v) versus B, and o
Figure 13 depicts RMSEE(v), i.e., the RMSEE of Doppler
frequency with the bandwidth B, being variable within

the range [n%, n=1,2, 3], and the fraction g of the SC’s

output taking values among [%, %, %] Simulation settings
for the path parameters as in the simulations for gen-
erating Fig. 12 are applied. The estimation of Doppler
frequency is conducted under the assumption that the
delay is known in advance. It can be observed from Fig. 13
that when we take only a part of the SC’s output for esti-
mating the parameters, for the bandwidth » > 3, the
parameter estimation returns RMSEEs that start to be
stabilized. This is consistent with the observations from
Fig. 12. It can be also observed from Fig. 13 that the
RMSEE(v) graphs fluctuation when # varies. A possible
reason for this effect is that a larger # does not necessarily
lead to more signal components included into the esti-
mation. From Fig. 2, we observed that when # increases
from 1 to 7, the number of the mainlobes of signal com-
ponents increases from 1 to 5, which implies that the
signal contribution to the observations applied in param-
eter estimation does not increase linearly with respect
to n. We postulate that this uneven increments of signal
components generates the fluctuations of the RMSEE(v)
shown in Fig. 13.
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4.4 The SAGE performance in two-path scenarios

4.4.1 RMSEE(t) and RMSEE(v) versus B,

The performance of the derived SAGE algorithm is eval-
uated in a two-path scenario, where the parameters of
the paths are (r1,vi,01) = (22 ns,—40 Hz,3) and
(t2,v2,2) = (28 ns,40 Hz, 1), respectively. The noise
components are added with No = max (Ja;/% |a2/?)
107%/19 where max(a, b) returns the maximum of the
given arguments « and b, ¢ denotes the SNR in dB. To limit
the simulation times, the SAGE algorithm was executed to
estimate the parameters of two paths within maximum 5
iterations. Since the true paths are set with different mag-
nitudes, the path estimated by the SAGE algorithm with
larger magnitude is considered to the estimate of the first
path, and the other estimated path is the estimate of the
second path, i.e., the weaker path.

Figure 14 depicts the RMSEEs of delay and Doppler fre-
quency for the two paths versus SNR obtained from 250
simulation snapshots. It can be observed from Fig. 14 that
the RMSEEs of parameters for the second path are always
larger than their counterparts for the first path. This is rea-
sonable since the path 2 has lower SNR than the path 1
when synthetic channels were generated. Furthermore, by
comparing Fig. 14a, b, we observe that the decrease of the
RMSEE of Doppler frequency for the second path when
the LPF bandwidth increases from Bs to B is more sig-
nificant than that obtained for the first path. We postulate
that this effect of larger improvement in parameter esti-
mation obtained for weaker paths by increasing the LPF
bandwidth is due to two reasons, i.e., a higher objective of
the parameters can be resulted when B, is enlarged, and
additionally, the interference cancelation in the E-steps of
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Fig. 13 RMSEE(v) calculated in single-path scenarios with known delay and SNR equal to 10 dB
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the SAGE algorithm can be performed more efficiently,
especially for paths with lower power.

4.4.2 RMSEE(t) and RMSEE(v) versus o

The performance of the derived SAGE parametric esti-
mation algorithm developed is investigated in two-path
scenarios. In the simulations, the bandwidth B, is equal to
6%, and the fraction o is set to the values within [%, %, %]
The SNR varies from 0 to 30 dB in step of 10 dB in the sim-
ulations. The true path parameters are set to [ 1, v, @] =
[22 ns, —40 Hz, 2] and [ 71, v1, 1] =[ 28 ns, 40 Hz, 1]. The
RMSEE graphs were generated by using 300 snapshots.
It can be observed from Fig. 15 that when the fraction
o increases, the RMSEEs reduce. Since less ¢ may also
influence the resolution in Doppler frequency domain, the
improvement in RMSEE(v) attributed to a larger value of
o is more significant than that observed for RMSEE(r).

4.4.3 Performance of the SAGE algorithm in a multipath
propagation scenario

The performance of the SAGE algorithm is investigated
in the case where a channel consists of 10 paths. The
average SNR equals 10 dB. The SAGE algorithm was
set to estimate 10 paths from the received signals. The
results show that running the SAGE algorithm for 10 iter-
ations is sufficient for observing a stabilized likelihood of
parameter estimates. Figure 16 depicts a comparison of

synthetic and estimated multipath components obtained
after 10 iterations. It is obvious by comparing Fig. 16a, b
that the parameters of the estimated paths are not exactly
the same as those of true paths. This is reasonable since
the SAGE algorithm, which approximates the MLE with
iterative procedures, has an inherent limitation that the
estimates may lead to a local maximum of likelihood
that is usually determined by the initialized parameter
estimation instead of a global maximum. Furthermore,
the erroneous results may also attribute to the limits of
the intrinsic resolutions in delay and Doppler frequency
domains, since paths closely spaced by distances less than
the resolutions cannot be resolved accurately by the SAGE
algorithm. Furthermore, we can also observe that paths
estimated with significant magnitudes in Fig. 16b appear
in the vicinity of their counterparts observed in Fig. 16a.
Figure 17 illustrates the normalized delay-Doppler fre-
quency power spectra (PS’s) Ppartett(t, V) calculated by
using the Bartlett beamforming technique [17] of the
received signals, ﬁBartlett(t,v) of the reconstructed sig-
nal calculated based on the SAGE estimation results, and
Ppartlett (T, v) of the residual signals calculated by subtract-
ing the reconstructed signals from the original received
signals. For comparison convenience, these PS’s are all
normalized by the maximum of Pgaytiett(, V) and repre-
sented in dB in Fig. 17. It can be observed from Fig. 17 that
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Fig. 15 a—d RMSEEs of delay and Doppler frequency for two paths in two-path scenarios with Bs and o considered as a parameter

Ppartiett (T, V) is consistent with Ppartett (T, V) especially in
the portions of larger spectral height, and the maximum of
Ppartiett (T, V) for residual signals is 34 dB below the maxi-
mum of Pgalett (T, V). These results demonstrate that the
proposed SAGE algorithm is capable of extracting domi-
nant components in the multipath channel, although the
estimated paths may not have exactly the same parameters
as the true paths due to the existence of noises, the limited

resolutions caused by finite signal bandwidth and obser-
vation spans, as well as the inherent limitation of the
SAGE algorithm.

5 Conclusions

In this contribution, a parametric generic model was
proposed to describe the output of the sliding correlator
(SC) which is usually utilized to calculate the time-dilated
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Fig. 16 Comparison of the a synthetic and b estimated multipath components
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wideband propagation channel impulse responses (CIRs).
Based on the model proposed, a Space-Alternating Gener-
alized Expectation-maximization (SAGE) algorithm was
derived for extracting the delays, Doppler frequencies,
and complex attenuations of multipath from the SC’s out-
put that contains only one observation of time-dilated
CIR. Simulation results have shown that the conventional
constraint that only the low-frequency component in the
SC’s output is applicable for channel estimation is unnec-
essary when the proposed estimation method is used.
Furthermore, more high-frequency components consid-
ered, the higher the estimation accuracy can be achieved.
Compared with the conventional approach which esti-
mates the channel based on the time-dilated CIR, the
proposed method is applicable not only for estimating
the multipath’s Doppler frequencies but also returns more
accurate estimates than the conventional method, e.g., the
delay estimation errors are at least one order of magni-
tude less than those obtained by using the conventional
method. Simulation results also demonstrated that the
root mean squared estimation errors (RMSEEs) can be
reduced by enlarging the bandwidth of a low-pass-filter
(LPF) applied in the SC. When only a part of the SC’s
output is available, the parameters can still be estimated
provided the bandwidth of the LPF is no less than three
times of the transmitted signal bandwidth divided by the
sliding factor. In cases where only fractions of SC’s output
is considered for estimation, the RMSEEs increase along
with the data amount due to the improved output signal
to noise ratio and the enhanced resolution capability par-
ticularly in the Doppler frequency domain. These results
revealed the potential of applying the proposed high-
resolution method in the SC-based parameter estimation
for mm-wave wideband channel characterization.

Appendix 1: Derivation of (14)

As shown in the right-hand side of (11), the original log-
likelihood function by dropping constant terms can be
rewritten as

I (&E;‘] (f) = (fime w))2

L) = - - 17)
A Ew (e
H ‘
= ( 2 — ap(z, ve)) (5‘1[;] — ayp(Te, Vz)),
(18)
where W is a N x N diagonal matrix calculated as
E[In (A)1%] 0 0 0
0 E[In () 1%] 0 0
W 0 0 E[ln () 1%] ... 0
0 0 0 B[ ()]
(19)

When the parameters 7, vy are given, oy can be deter-
mined by solving the following equation

AL(O)
doy -

(20)

3L(0/z)

From (18) it is easy to show that can be calculated as
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day - day day

0} (p(ze, v T W 1R | 0@ ve) W p(ee, voag

day darg

S -1 ~ % Hyyr—1

=—(xz) W™ p(ze, ve) + &y (p(te, ve))" W p(Te, ve)

(21)
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Applying (21) in (20) yields

il Ho 1 A~ % Hyy—1 _
x, ) W p(re,ve) —a; (p(te, ve) "W p(te,ve) = 0,
(22)

which further leads to the expression of &; as a function
of 74, v¢, and fc%]:

-\ H
(9@[;]) W lp(ze, ve)
P v))IWp (zg,v0)

By taking the complex conjugates of both sides in (23), (14)
is finally obtained.

(23)

a; =

Appendix 2: Derivation of (16)
Substituting oy in (21) by (14) yields for L(0,)
@ (e, v W GIHHW 1 p(cp, ve)
e, ve))T Wlp(ty, vp)
4\ H .
(&#7)" wp(ee,vo (e, vt WA
@t ve ) Wp (g, ve)
S -1
(x[ ) w P(TZ; Ul)
® (te, v W p (e, vp)
® (e, ve) w1z
®(te, v )EW L p(zg, vp)

A H -
6o = (@) wall -

(e, v )T W p(z, ve)

(24)

It is easy to show that the last two terms in (24) are iden-
tical to each other with opposite signs. Thus, (24) can be
rewritten as

S @) W G W, v
_ (4li] —1ali]
L(G@)—(xe) w3l - .
(p(re,v0))” Wp(re, vp)
(25)

\H .
The term (&,[;]) W_I&EZ’] in the right-hand side of (25)
is constant with respect to 8,. By dropping this constant
term, we obtain

@G vt w1z
(e, vo)RW (e, v0)
From (26) it is obvious that minimization of L(0,) with

respect to 0, is equivalent with maximization of an objec-
tive function 1 (1, v¢) defined as shown in (16).

L#p) x (26)
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