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Abstract

Principal component (PC) algorithm has recently been shown as a very accurate blind detection technique in
comparison with other covariance-based detection algorithms. However, it also has a higher complexity owing to the
computation of the eigenvectors. We propose a low-complexity Lanczos principal component (LPC) algorithm that
utilizes Lanczos iterative method to compute the eigenvectors. In comparison with the PC algorithm, the proposed
LPC algorithm offers significant reduction in complexity while giving a similar detection performance. Low-complexity
LPC algorithm allows for the use of larger sized covariance matrix that further improves the detection performance.
Maximum-minimum eigenvalue (MME) algorithm is also included in the comparison and it gives an inferior
performance as compared to both PC and LPC algorithm. All the algorithms were tested with experimental data while
using universal software radio peripheral (USRP) testbed that was controlled by GNU radio software.
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1 Introduction
Cognitive radio has the ability to communicate over the
unused frequency spectrum intelligently and adaptively.
Spectrum sensing in a cognitive radio (CR) is crucial
in generating awareness about the radio environment
[1]. Blind detection methods such as covariance-based
detection (CBD) algorithms enable signal detection in
low signal-to-noise ratio (SNR) conditions without rely-
ing on the prior knowledge of the primary user’s (PU)
signal. CBD techniques also overcome the issue of noise
power uncertainty that exists in an energy detector [2, 3].
These methods use the covariance and variances of the
received signal and do not require information about the
noise variance. The performance of the CBD algorithms
is associated with the number of samples involved in the
detection. However, using a large number of samples also
increases the sensing time and complexity [4–8]. Recently,
principal component analysis (PCA) has been applied for
spectrum sensing in cognitive radios [9–11]. The princi-
pal of dimension reduction has been used in [12] to devise
PC algorithm that outperforms other CBD algorithms,
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such as Maximum-minimum eigenvalue (MME), maxi-
mum eigenvalue detection (MED), and energy with maxi-
mum eigenvalue (EME). PCA reduces the dimensionality
of the data and retains the most significant components
that account for the greatest variation of the original data
[13–16]. However, the PC algorithm also has the highest
complexity in comparison with other CBD techniques.
As envisaged in internet of things (IoT), the number

of things (or devices) connected to the network might
exceed the number of human users. The same idea also
derives the research on 5G networks where the network
capacity will be enhanced by a 1000 fold. Opportunistic
spectrum access may help in this scenario where multi-
ple overlaid devices try to access the spectrum. Spectrum
sensing can help eradicate collisions and excessive con-
tention delay experienced by dense node deployment.
Such devices/sensors have embedded computing nature,
hence energy efficiency is their major concern. There-
fore, low complexity, energy efficient spectrum sensing
algorithms are vital for implementation in such devices.
In this paper, we firstly analyse the performance of the

PC algorithm while considering the effect of dimension
reduction on the detection performance and the related
complexity. Next we describe the proposed Lanczos prin-
cipal component (LPC) algorithm, which is an energy
efficient version of the PC algorithm. The LPC can be used
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in low powered devices (e.g. sensors employed in IoT) for
blind signal detection. The performance of LPC is com-
pared with PC as well as MME algorithms. MME has been
included in the comparison as it is the best-known CBD
technique. All the algorithms were tested with actual wire-
less microphone signals using a universal software radio
peripheral (USRP)2 testbed and GNU radio software. The
specific contributions of this paper are as follows.

• The detection performance of the PC algorithm is
analysed under a low SNR (< −15 dB) scenario while
varying the number of principal components
included in the decision test statistic. The effect of
dimension reduction on the sensing performance is
also considered along with the complexity involved in
each case.

• A low-complexity LPC algorithm is proposed that
employs an iterative approach to compute the
principal components and achieves the similar
detection performance as of the PC algorithm with a
reduced complexity. This reduction in complexity
saves the sensing time and improves the energy
efficiency.

• The performance of the proposed LPC algorithm is
compared with the PC and the MME algorithms
while using the actual signals. In addition,
computational complexity of all the three algorithms
(MME, PC and LPC) is also computed and compared
mathematically and graphically.

• All the algorithms has been evaluated under both
single and multiple receive antenna system with
actual wireless microphone signals. Experimental
setup is established using USRP2 and GNU radio
software.

2 Systemmodel, detection withMME and PCA
2.1 Systemmodel
We have considered both a single and a multiple receive
antenna system. fs is the signal’s sampling rate and
fs >> w, here w is the received signal’s bandwidth. The
signal is over-sampled to get a high correlation between
the samples. Let Ts = 1/fs be the sampling period. We
define y(n) � y(nTs), s(n) � s(nTs) and w(n) � w(nTs),
where y(n) is the received signal after passing through
the channel, s(n) is the PU’s signal and w(n) is the addi-
tive white Gaussian noise (AWGN).w(n) follows a normal
distribution w(n) ∼ N (0, 1). Complex baseband samples
from a single receive antenna system can be represented
as

y(n) = [
y1(n), y1(n − 1), · · ·, y1(n − N + 1)

]
. (1)

Where N is the total number of samples used in making
a single decision about the signal’s presence under both
hypotheses. For a multiple receive antenna system withM

radio frequency (RF) front ends, the complex base band
samples are represented as

y(n) = [
y1(n), · · ·, yM(n), y1(n − 1) · ··, yM(n − 1),
y1(n − N/M + 1) · ··, yM(n − N/M + 1)

]
.
(2)

Spectrum sensing can be expressed as

y(n) =
{
w(n) : H0
s(n) + w(n) : H1,

(3)

Where H0 is the null hypothesis that shows the absence
of the PU’s signal. H1 is the alternative hypothesis which
indicates the presence of the signal. Probability of detec-
tion (Pd) and probability of false alarm (Pfa) characterizes
the sensing performance. Where Pd = Pr(H1|H1) and
Pfa = Pr(H1|H0).

2.2 MME
MME algorithm calculates the eigenvalues (λ) and finds
the ratio of maximum to minimum eigenvalue [7].

λmax/λmin > ψ (4)

PU’s signal exists if the ratio is greater than ψ , where ψ

is the threshold set according to desired probability of
false alarm. MME is a blind detection algorithm with-
out noise uncertainty issue, but calculation of eigenvalues
using conventional method is computationally intensive.

2.3 PC Algorithm
Considering L consecutive outputs where L is the smooth-
ing factor and N samples are involved in making a detec-
tion decision. Data set consists of baseband samples that
are complex, and follow a normal distribution. k = 2M
dimensional data set in the matrix form is

X = [X(n), X(n − 1), ...., X(n − N + 1)] . (5)

We have a finite number of samples which needs to
define a sample covariance matrix instead of a statistical
covariance matrix, expressing X(n − i) as Xi covariance
matrix will be

R(N) = 1
N

N∑
i=1

XiX
T
i . (6)

Let λ1 ≥ λ2 ≥ λ3 ≥ .....λk be the eigenvalues of R such
that

|R − λI| = 0, (7)

Here I is the identity matrix with dimension as of covari-
ance matrix R. γ1, γ2, γ3....γk are the characteristic vectors
of R. To form a feature matrix, first, we need to select
G, that is, the number of most significant eigenvector
corresponds to the highest eigenvalues where 1 ≤ G ≤ k.
Principal components associated with eigenvalues larger
in magnitude than the average of the eigenvalues are
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taken. The transformation of the original data set is as
below

pi = FTxi, (8)

F is the feature matrix containing G most significant
eigenvectors i = 1, 2, ..,N complete PC can be expressed
as Pj =[ pj1, pj2, . . . , pjN ], j = 1, 2, . . . .G. The set of PCs
with no redundant data isP =[P1,P2, . . . ,PG]T with g row
vectors each containing N entries.

N∑
i=1

p2ji = λj. (9)

(9) follows that jth PC gives the distribution of the energy
given by the jth eigenvalue [15]. Test statistic T to distin-
guish between signal and noise is as follows [12]

T = 1/N
g∑

j=1
p2j1 + p2j2 + p2j3 + . . . + p2jN > ψ . (10)

Here pji is the ith element of jth PC and ψ is the detection
threshold determined empirically at a desired probability
of false alarm. PU exists if T > ψ .

2.4 Performance analysis of the PC algorithm
Wireless microphone signals were used to formulate the
PU, simulations were done using N samples. The value
of N is set to 20,000. Figure 1 represents the probabil-
ity of detection versus SNR curves with varying number
of PCs. It can be seen from the figure that the probabil-
ity of detection is improved as we include more principal

components for detection; in Fig. 1, ‘pc’ represents the
number of principal components included in test statistic.
It is also clear that the first two PCs retain the most use-
ful information as compared to the last ones. There is
an improvement in detection performance while moving
from one to two and two to three PCs, but no significant
improvement is observed when we include all four PCs,
that is the point where we encounter the redundant data
that can be discarded to save the sensing time. This sup-
ports the statement that the variables with little variances
could be discarded without significantly influencing the
total variance, thereby reducing the number of variables.
The use of smaller number of PCs not only reduces the
sensing time but also loses some useful info that results in
a low probability of detection in our case. As we increase
the number of PCs, detection time also increases because
it gets involved more number of operations to calcu-
late the test statistic that increases the complexity of the
algorithm.

3 Proposed LPC algorithm
From the performance analysis of the PC algorithm, it is
observed that the detection performance can be improved
by including more PCs while using larger sized covariance
matrix. However, doing so increases the complexity. In
this section, we propose the LPC algorithm that uses the
iterative method to compute the eigenvectors, required
to generate PCs; the use of this approach significantly
reduces the complexity. The proposed method performs
much faster than the existing method, as it only computes

Fig. 1 Analysis of the PC algorithm. Improvement in probability of detection with increasing number of principal components at 10% probability of
false alarm and N = 20, 000
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the eigenvectors corresponding to the highest eigenvalues,
whereas the direct method computes all the eigenvec-
tors, thus wasting resources in computing in significant
eignvectors. This approach is more efficient as it obvi-
ates the calculation of all the eignvectors and then sorting
them at the end. Advance algorithms such as Lanczos and
Arnoldi save this data and use the Gram-Schmidt pro-
cess or Householder algorithm to reorthogonalize them
into a basis spanning the Krylov subspace correspond-
ing to the matrix. As the matrix size increases, the direct
method becomes very slow, therefore not feasible prac-
tically, while the proposed method only calculates the
desired eigenvectors via an iterative approach.
There are many iterative approaches like Arnoldi

algorithm, Jacobi-Davidson algorithm and Lanczos algo-
rithm [17]. We found Lanczos algorithm appropriate for
our scenario as it has the least convergence time as com-
pared to other approaches [17]. A disadvantage of this
algorithm is that the number of iterations can be large.
To cater for this issue, a variation of the Lanczos algo-
rithm known as implicitly restarted Lanczos algorithm
(IRLA) is used to compute the desired eigenvectors [18].
Implicitly restart (IR) extracts the useful information from
a large Krylove subspace and resolves the storage issue
and the difficulties associated with the standard approach.
IR does this by compressing the useful data into a fixed
size k dimensional subspace. IRLA is summarized in
Algorithm 1 [18]. A is the symmetric matrix of inter-
est v is the starting vector, Tk ∈ �k×k is real, symmetric
and tridiagonal with nonnegative subdiagonal elements.
Vk ∈ Cn×k (the columns of Vk) are the Lanczos vectors.
Here k represents the desired number of eigenvectors

to calculate and r is the residual. Selection of shift μj
depends upon the user’s required set of vectors. o steps of
shifted QR iterations are applied to Tm using μ1,μ2, ....μo
as shifts. [βk = Tm(k + 1, k)]= 0 if we use exact shifts.
LPCA can be summarized as follows:

1. Calculate the covariance matrix as in (6).
2. Decompose the covariance matrix via implicitly

restarted Lanczos algorithm as described in
Algorithm 1.

3. Generate the principal components.
4. Calculate test statistic T as in (9).
5. Decide between H1 and H0 by comparing the T with

a predetermined threshold (Empirically determined
at the desired probability of false alarm).

3.1 Computational complexity comparison
As of the other covariance-based detection techniques,
complexity of the PC algorithm also comprises of two
major steps, one is the computation of the covariance
matrix as in (6) and the other is the decomposition of
the covariance matrix to calculate eigenvectors in our

case. As the covariance matrix is a block Toeplitz and
Hermitian, due to these properties of covariance matrix,
we only need to evaluate its first block. Calculation of
the covariance matrix requires (M2LNs) multiplications
and O(M2L(Ns − 1)) additions; here M is the number
of receive antennas, L is the smoothing factor and Ns is
the number of samples [4]. Eigen decomposition of the
covariance matrix requires O(M3L3) multiplications and
additions [5].
Therefore, the total complexity of eigenvalue-based

detection algorithm (i.e. MME) is O(M2LNs) + O(M3L3).
Hence, after sorting, the total complexity of the PC
algorithm becomes O(M2LNs) + O(M3L3) + O(L2), the
complexity involved in the generation of principal com-
ponents is negligible as compare to the calculation and
decomposition of covariance matrix. The use of the iter-
ative approach reduces the complexity up to 2L2 [17].
Complexity with purposed LPC algorithm reduced to
O(M2LNs) + O(M3L). Figure 2 shows the lognormal plot
of the complexity of all three algorithms (MME, PCA and
LPCA).

Algorithm 1: Implicitly restarted Lanczos algorithm
Starting from v1 = v/‖v‖
here v is the starting vector
Compute an m-step Lanczos factorization (m = k + o)
AVm = VmTm + rme∗m
Repeat until convergence (Tk = Dkdiagonal)
Compute σ(Tm) and select p shift μ1μ2, ....,μo
Initialize Q = Im
For j = 1, 2, ...., o
QR-factorize QjRj = Tm − μjI
Update Tm = Q∗

j TmQj, Q = QQj
End For
rk = v(k+1)βk + rmσk ,with
βk = Tm(k + 1, k) and σk = Q(m.k)
Vk = VmQ(:, 1 : k), Tk = Tm(1 : k, 1 : k)
Beginning with k − steps Lanczos Factorization
AVK = VkTk + rke∗k
To get a new m-step Lanczos Factorization do apply
on additional steps
AVm = VmTm + rme∗m
End repeat

4 Experimental setup
The algorithms were tested using the USRP testbed.
Two receiver systems with single (M = 1) and multiple
antenna (M = 2) were set up with the help of USRP2 for
receiving correlated wireless signals, as shown in Fig. 3.
Transmission parameters were set as in [12]. USRP and
USRP2 are generally used hardware platforms in the field
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Fig. 2 Lognormal plot of complexity. Complexity plot of proposed LPCA, existing PC and MME method

of cognitive radios and SDR provided by Ettus Research
[19]. It consists of a motherboard and a selectable RF
daughter boards along with a gigabit ethernet port that
can be attached to a host computer for further process-
ing. WBX was connected to the motherboard. It has a
single transmit and receive antenna and covers a wide
frequency range of 50 MHz to 2.2 GHz [19]. One of
the advantages of USRP2 is that it works with GNU
radio, open source software along with an abundance of
resources, which simplify its usage [20]. Signal reception

and down conversion was performed by the RF daugh-
terboard. Afterwards a gigabit ethernet was used to pass
the down-converted signal to host computer for further
processing. A master/slave configuration was established
to connect the two USRPs. The host computer was con-
nected to the master USRP through an ethernet interface.
The twoUSRP kits were interconnected via aMIMO cable
that enables the synchronization between them. In addi-
tion, it also transfers down-converted signals from slave
to master. Synchronization is achieved by feeding two

Fig. 3 Experimental setup. Experimental setup with two receive antennas
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reference signals to the master USRP. A frequency refer-
ence is provided by a 10-MHz signal and sample time is
synchronized by a one pulse per second (1 PPS) signal.
In our experimental setup, the PU was emulated using
an Rhode & Schwarz SMF100A microwave signal gener-
ator that transmits an FM signal at a frequency of 410
MHz with a bandwidth of 200 kHz [21]. The SNR was
varied by changing the transmit power of the signal gen-
erator. The sampling rate of the received signal was 6.25
Mega samples per second. A high correlation between the
samples is achieved by over-sampling. The received sig-
nals were fed to the host computer through an ethernet
cable for subsequent performance analysis. The SNR was
measured by tuning off the transmitter and recording the
noise at each RF front end. The power of the signal at
Mth front end is calculated by PM = 1/S

∑S
n=1 |XM(n)|2.

Where S is the total samples used for computing power,
PM,1 represents the power of signal and PM,0 is the power
of noise.

SNRM = 10log10[ (PM,1 − PM,0)/PM,0] . (11)

5 Results and discussions
This section describes the performance comparison of
the LPC, PC and MME algorithms. Figure 4 shows the
performance analysis of the three algorithms in terms
of probability of detection vs. SNR at 10% probability
of false alarm for single (M = 1) and multiple (M = 2)
receive antenna cases. Probability of detection improves
for the M = 2 case as the use of multiple antennas at the
receiver overcomes the effect of channel fading and also

enhances the robustness against interference [22]. Anten-
nas were configured for correlated reception (i.e antenna
spacing < λc/2) which enhance the received signal’s cor-
relation between the samples. The results obtained from
the PC and LPC algorithms were with G = 2 and the
number of samples used inmaking a single detection deci-
sion N was kept constant for all the three algorithms.
It was observed that the proposed method (LPCA) gives
similar detection performance as of the PC method with
significantly reduced complexity and it also outperforms
the MME algorithm. There is no effect on the detec-
tion test statistic except the reduction in computational
complexity, this allows the inclusion of more PCs that ulti-
mately improve the detection performance. The proposed
algorithm reduces the complexity by using an iterative
approach and subspace method. Improvement in proba-
bility of detection is attained using LPCA, this improve-
ment is achieved by using the covariance matrix of order
L = 6 instead of L = 4 while in case of PC andMME algo-
rithm L = 4. With this L the complexity of PC algorithm
is L3 + L2 = 80 and MME has the complexity L3 = 64
while that of the LPCA is L = 6, the proposed LPCA gives
the better detection with low complexity even using large
covariance matrix.
The direct method becomes slow as the matrix size

increases; therefore, it is not feasible practically. With the
direct method, while getting the required eigenvector, we
also got a series of vectors, which were, finally, discarded,
this can result in a large amount of disregarded informa-
tion; LPCA overcomes this issue and makes the things
simpler. Receiver operating curves at different SNR are

Fig. 4 Performance comparison. Comparison of performance in term of probability of detection for single and multiple receive antennas cases at
10% probability of false alarm G = 2,N = 60, 000
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Fig. 5 ROC. Receiver operating curve probability of detection (Pd) vs. probability of false alarm (Pf ) at SNR −15 and −20 dB

shown in Fig. 5 for MME, PC and LPCA at SNR −15
and −20 dB with L = 4 and N = 60, 000. Detection
threshold was empirically calculated by considering the
normalized histogram of the test statistic under H0 and
corresponds to probability of false alarm of range 0 to
1. It can be seen from the figure that receiver operating
characteristics (ROC) of both PC and LPCA are almost
the same (Fig. 5). As expected, the proposed algorithm
gives the same performance as that of the PC algorithm
with a reduced complexity and significantly exceeds the
sensing requirements defined by the FCC, that is, achiev-
ing 90% Pd with 10% Pf a at SNR of −12 dB for wireless
microphone signals.

6 Conclusion
Complexity is a major issue in blind signal detection algo-
rithms that are based on a covariance matrix. The use of
a large number of received samples increases the size of
the covariance matrix and as a result the complexity. In
this paper, we proposed a novel algorithm for blind signal
detection, i.e. LPC algorithm that has an iterative nature
which reduces the complexity and saves sensing time.
LPC achieves the same detection performance as PC, yet
its complexity is significantly less than the PC algorithm.
Thus, LPC can be used in even low-powered devices
for blind signal detection. The performance of LPC is
compared with PC as well as MME algorithms. The pro-
posed method gives the best sensing performance while
reducing the complexity from O(L3 + L2) to O(L). All
the algorithms are tested with actual wireless microphone
signals while using a USRP2 testbed and GNU radio

software. In the future, these algorithms can be tested
on a stand-alone platform for real-time performance
evaluation.
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