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Abstract

In this paper, we develop a framework that can be used to analyze the outage probability of a dual-hop fixed-gain
amplify-and-forward relay system performing single relay selection. We consider three selection strategies: (1)
first-hop selection, whereby the relay is chosen to maximize the signal-to-noise ratio (SNR) at the relay irrespective of
the second-hop channels; (2) second-hop selection, in which the relay is chosen such that the second-hop SNR is
maximized; and (3) dual-hop selection, where the end-to-end SNR is maximized. The proposed analytical framework is
capable of treating systems operating in heterogeneous fading conditions, where all or a subset of the source-relay
and relay-destination channels has non-identical distributions or even experience completely different fading
processes. We apply the framework to calculate new exact series representations of the outage probability for the
three aforementioned cases of relay selection when all channels adhere to the Nakagami-mmodel. Our analysis is
corroborated by simulations. Finally, we provide a discussion of how the proposed framework can be applied to
analyze other fading configurations using the techniques detailed herein.
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Introduction
The paradigm of cooperative communication has been
shown to provide significant advantages in cellular net-
works (and many other applications) for more than a
decade [1]. With the deployment of LTE networks across
the world in recent years [2] and the shifting of focus in
the research community to 5G cellular technology [3], the
ideas surrounding cooperative communication are evolv-
ing. Of particular interest in the discussion of 5G is relay-
aided communication. The heterogeneous structure of 5G
networks will consist of layers of macrocells, small cells,
relays, and device-to-device (D2D) networks [4]. In areas
lacking a wired backhaul infrastructure, relays are, and
will continue to be, deployed to act as picocell base sta-
tions to local user equipments (UEs) and to mimic (for the
most part) a UE in the view of the macrocell base station.
Within the D2D networking paradigm, relays will form
a key component in the control infrastructure of a 5G
network, linking D2D networks to the macrocell base sta-
tion [4]. This idea can be further extended to connect D2D
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clusters to the macrocell by using one of the constituent
UEs in the cluster as a relay [5, 6].
Fixed-gain amplify-and-forward (FGAF) relay systems

have attracted a lot of attention recently due to their low
complexity in practical implementation. To date, numer-
ous efforts have been devoted to the performance analysis
of dual-hop FGAF relay systems (see [7] and the references
therein), including error rate, capacity, and outage calcula-
tions. With regard to the latter, closed-form outage prob-
ability expressions for dual-hop FGAF were derived in [8]
for Rayleigh fading channels, in [7, 9, 10] for Nakagami-
m channels, and in [11] for Rician channels. In [12], a
moment generation function (MGF) approachwas used to
analyze the performance of dual-hop FGAF systems oper-
ating in arbitrary, or generalized, fading conditions. Het-
erogeneous fading conditions were also considered in [13]
in the context of systems employing maximum ratio com-
bining and transmit antenna selection at the relay. Many
of these reported results were recently generalized and
incorporated into a multi-hop framework in [14].
Relay selection, the process by which one relay is cho-

sen among all the available relays to forward the data from
the source to the destination [15], has been shown to be a
simple and effective scheme that offers the same diversity
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order as cooperative schemes that use all available relays
[16]. Recently, this concept has been considered within
the 5G framework [17]. Three main selection schemes
have been considered in the literature: (1) first-hop selec-
tion (FHS), in which the selected relay maximizes the
signal-to-noise ratio (SNR) at the first hop; 2) second-hop
selection (SHS), in which the second-hop SNR is maxi-
mized; and (3) dual-hop selection (DHS), where the the
end-to-end SNR is the objective to be optimized1. Sev-
eral published works have analyzed the outage probability
for dual-hop AF relay selection systems [18–21]. However,
the outage probability analysis carried out to date for such
systems presents three main limitations:

1. Much of the published literature considers FHS or
DHS, neglecting the case of SHS despite the fact that
the latter is an important practical model.

2. Source-relay (S-R) and relay-destination (R-D)
channels have largely been assumed to follow
Rayleigh, Nakagami-m, or Rician distributions in
relay selection systems, with some important fading
distributions having been largely ignored (e.g.,
Weibull and Hoyt).

3. Heterogeneous fading conditions have generally not
been studied for relay selection channels, although
such scenarios may arise in a plethora of applications,
such as a cellular base station transmitting to a relay
located in an enterprise zone, which then conveys the
signal to users inside an office block.

In this paper, we aim to overcome the aforementioned
limitations by presenting a framework for analyzing the
outage probability of FGAF systems employing relay
selection in heterogeneous channel conditions. The pro-
posed framework applies generally for arbitrary config-
urations of S-R/R-D channels, e.g., Nakagami-m/Rician,
Hoyt/Weibull, etc. In order to facilitate exposition, we
focus on Nakagami-m fading in this work and derive the
outage probability for systems operating in heterogeneous
channels for FHS, SHS, and DHS selection strategies. We
also provide complete diversity results for each selection
mechanism and qualitatively discuss the application of the
framework to other fading configurations.
The rest of the paper is organized as follows. The dual-

hop FGAF system model is presented in the “System
model” section. The analytical framework is detailed in
the “Analytical outage probability framework” section,
which is then applied in the “Analysis for Nakagami-m”
section to study heterogeneous Nakagami-m scenarios.
The analysis is corroborated with numerical results in
the “Simulation results and discussion” section. Extending
the framework to other more general fading configura-
tions is discussed and concluding remarks are given in the
“Conclusions” section.

Systemmodel
Consider a dual-hop transmission system where N ≥ 1
relays are available to forward information from a source
node to a destination node using an FGAF protocol (see
Fig. 1). There is no direct S-D link. Suppose the nth relay
is selected among the N available relays. A complex sym-
bol with unit average power is transmitted from the source
to the selected relay over a flat fading channel h1,n. The
received signal at this relay is then amplified with a fixed
gain G, then transmitted from the relay to the destina-
tion over a flat fading channel h2,n. We assume that h1,n
and h2,n are independent but not necessarily identically
distributed random variables.
Define γ̄ as a reference average received SNR parameter.

Clearly, the average received SNR values corresponding
to different hops will be different in practice. This is
accounted for in the model by denoting the variances of
the zero mean additive white Gaussian noise at the nth
relay and the destination as σ 2

1,n and σ 2
2 , respectively, and

defining parameters ρ1,n and ρ2 such that γ̄ = ρ1,n/σ
2
1,n

for n = 1, . . . ,N and γ̄ = ρ2/σ
2
2 . Thus, the SNR at the nth

relay of the first hop is given by Xn = |h1,n|2
ρ1,n

γ̄ , and the SNR
corresponding to the local channel at the destination (i.e.,
not the end-to-end SNR) is Yn = |h2,n|2

ρ2
γ̄ .

For the relay selection process, a single relay is cho-
sen among the N available relays according to the FHS,
SHS, or DHS selection criteria. For FHS, the selection
is made at the source to maximize the received SNR at
the relay. The chosen relay can be notified of its selec-
tion through, for example, a dedicated control channel.
Exact details of how control signaling might be performed
are beyond the scope of this paper. Consequently, under
the FHS approach, the kth relay is selected such that
k = argmax{Xn}. Analogously, for SHS, we have k =

Source node Destination
node

Relay
node 1

Relay
node 2

Relay
node N

Fig. 1 Relay selection. Illustration of the dual-hop FGAF relay selection
system model. Solid lines indicate the selected path
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argmax{Yn}. Finally, for DHS, global channel knowledge
is used to select the relay that maximizes the end-to-end
SNR, which we denote by γn for the nth path. Thus, in this
case, we can write k = argmax{γn}.

Analytical outage probability framework
Suppose the kth relay is selected to convey the source
message to the destination. Irrespective of the selection
criteria, we can write the end-to-end SNR as

γk = XkYk
Yk + Ck

(1)

where Ck = γ̄ /(G2ρ1k). For DHS, the SNR outage proba-
bility2 can be written as

Po(z) =
N∏

n=1
P(γn ≤ z) (2)

where z is the outage threshold. For both FHS and SHS, we
let ℘h,k denote the probability that the kth relay is selected
according to criteria h ∈ {FHS, SHS}. Applying the law of
total probability, we can write

Po(z) =
N∑
k=1

℘h,kP(γk < z). (3)

Note that we have slightly abused notation here since
P(γk < z) is conditioned on the selection mechanism
(FHS or SHS) and the index of the selected relay k . Never-
theless, the important point is that γk is a function of two
independent variates, Xk and Yk . This enables us to write
a general formula for the cumulative distribution function
(c.d.f.) of γk , which we encompass in the following lemma
(the proof is given in the Appendix).

Lemma 1. Let γk be defined as in (1). Then, the c.d.f. of
γk can be written as

P(γk < z) = 1 − 1
2π i

∫ c+i∞

c−i∞
λk(s, z) ds (4)

where c is a real constant3, and

λk(s, z) = (Ckz)−s

s

∫ ∞

0
xsfXk (x+ z) dx

∫ ∞

0
ysfYk (y) dy.

(5)

Although the lemma seems somewhat inaccessible due
to the integrals, we note that it provides an exact expres-
sion as a functional of the first- and second-hop fading
density functions, regardless of the underlying distribu-
tions. The only stipulation is that the channels corre-
sponding to the two hops are statistically independent, a
condition that is often, if not always, satisfied in practice.
We will revisit that and apply this lemma to a great effect
in the next section.

Turning our attention to FHS and SHS, it remains to
calculate ℘h,k . For FHS, this quantity is given by

℘FHS,k = P
(
max{X1, . . . ,Xk−1,Xk+1, . . . ,XN } ≤ Xk

)
=

∫ ∞

0
fXk (x)

∏
n�=k

P(Xn ≤ x) dx (6)

where it is assumed that {Xn} are statistically indepen-
dent. The expression for ℘SHS,k is the same, but with Y
replacing X.
Applying Lemma 1, we can now write the outage prob-

ability for DHS as

Po(z) =
N∏
k=1

(
1 − 1

2π i

∫ c+i∞

c−i∞
λk(s, z) ds

)
(7)

and the outage probability for FHS and SHS as

Po(z) = 1 −
N∑
k=1

℘h,k
1
2π i

∫ c+i∞

c−i∞
λk(s, z) ds (8)

Consequently, to apply this framework, we must be able
to calculate the functional λk(s, z) as well as the contour
integral

ιk(z) = 1
2π i

∫ c+i∞

c−i∞
λk(s, z) ds. (9)

Since λk(s, z) is determined by the channel distributions,
it can often be calculated easily. For the contour integral,
we will exploit the pole structure of λk(s, z) and apply
the residue theorem from complex analysis to solve the
integral, thus yielding series expressions of the outage
probabilities in general. These technical details will be the
focus of the next section.

Analysis for Nakagami-m
For the purpose of presenting how the analytical frame-
work can be applied, we assume the channels for the two
hops adhere to the same class of distribution, but may
have different parameters. The same approach can be
used to study arbitrary combinations of fading distribu-
tions for the different channels.
Suppose all channels adhere to a Nakagami-m small-

scale fading model. In this case, the probability density
function (p.d.f.) of Xn is given by

fXn(x) = ρ
m1,n
1,n xm1,n−1e−

ρ1,n
θ1,n γ̄

x

θ
m1,n
1,n γ̄m1,n
(m1,n)

, x ≥ 0 (10)

and the p.d.f. of Yn is defined similarly. The corresponding
c.d.f. of Xn is given by

P(Xn ≤ x) = γ (m1,n, ρ1,nx/(θ1,nγ̄ ))


(m1,n)
, x ≥ 0 (11)

where γ (a, x) = ∫ x
0 t

a−1e−t dt is the lower incomplete
gamma function [22]. The parameter m1,n > 1/2 is the
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shape parameter of the distribution (denoted by m2,n for
the p.d.f. of Yn) while θ1,n = E[ |h1,n|2] is effectively the
scale parameter (correspondingly, θ2,n for Yn).

FHS
To calculate Po(z) for the FHS scheme, let us first con-
sider the probability that the kth relay is selected. Using
the absolutely convergent series expansion

γ (a, x) = 
(a)xae−x
∞∑
k=0

xk


(a + k + 1)
(12)

along with (6) enables us to write

℘FHS,k = 1

(m1,k)

N∏
n=1

(
ρ1,n

θ1,nβ1

)m1,n

×
∑
Lk


(m̃1,k)
N∏
n=1
n�=k

(
ρ1,n

θ1,nβ1

)ln 1

(m1,n + ln + 1)

(13)

where the summation is (N − 1)-fold, with the indices
being the set Lk = {l1, . . . , lk−1, lk+1, . . . , lN }, with ln =
0, 1, 2, . . . for all n. In addition, β1 = ∑N

n=1 ρ1,n/θ1,n and
m̃1,k = ∑N

n=1m1,n + ∑N
n=1, n�=k ln.

Now consider the calculation of λk(s, z) in Lemma 1.
The second integral in (5) is a gamma function. The cal-
culation of the first integral follows from an application of
the theory of order statistics (cf. [12, eq. (17)]) to obtain an
expression for fXk . Using the series expansion for the lower
incomplete gamma function mentioned above, the result
can be written as

λk(s, z) = e−
zβ1
γ̄


(m2,k)

N∏
n=1

(
ρ1,nz
θ1,nγ̄

)m1,n N∑
n=1

1

(m1,n)

×
∑
Ln

N∏
q=1
q �=n

(
ρ1,qz
θ1,qγ̄

)lq 1

(m1,q + lq + 1)

× As
k
(s)
(s + m2,k)U(s + 1, m̃1,n + s + 1, zβ1/γ̄ )

(14)

where Ak = G2ρ1,kθ2,k/ρ2 and

U(a, b, x) = 
(a)−1
∫ ∞

0
ta−1(1 + t)b−a−1e−xt dt (15)

is the confluent hypergeometric function (Tricomi’s solu-
tion) [23].
We are now in a position to calculate the integral ιk(z)

and thus the outage probability, which is made much eas-
ier than it may first appear through the use of the residue
theorem [24]. More specifically, we note that for a fixed
third argument,U(·, ·, ·) is entire in its first two arguments
[23]. Furthermore, for some complex number a, 
(x + a)
has simple poles at x = −a − j for j = 0, 1, . . .. It follows

from the Mellin inversion theorem [25] that the path of
integration that defines ιk(z) is a line extending from−i∞
to i∞ just to the right of the imaginary axis, i.e., c > 0 in
(9). By noting that we can construct a path in the left half s-
plane such that as |s| → ∞ then | ∫ λk(s, z) ds| → 0 along
this path4, we can close the path of integration over which
ιk(z) is defined with a semi-circular arc traversing this
half plane counter-clockwise from i∞ to −i∞, thereby
encircling the poles of λk(s, z). Finally, we can employ the
residue theorem to obtain a series expression for ιk(z). For
the case wherem2,k is not an integer5, we end up with the
expression

ιk(z) = e−
zβ1
γ̄


(m2,k)

N∏
n=1

(
ρ1,nz
θ1,nγ̄

)m1,n N∑
n=1

1

(m1,n)

×
∑
Ln

N∏
q=1
q �=n

(
ρ1,qz
θ1,qγ̄

)lq 1

(m1,q + lq + 1)

∞∑
j=0

(−Ak)
−j

j!

×
(


(m2,k − j)U
(
1 − j, m̃1,n + 1 − j,

zβ1
γ̄

)

+ A−m2,k
k 
(−j − m2,k)U

(
1 − j − m2,k , m̃1,n + 1 − j

−m2,k ,
zβ1
γ̄

))
.

(16)

Applying (16) to (8) gives the outage probability for FHS
in Nakagami-m channels.
Although the outage probability is expressed as an infi-

nite series, we will verify later that truncating the series
to only a few terms provides an excellent approximation.
Moreover, the hypergeometric function U(·, ·, x) is well
behaved for small arguments6, and thus, it is possible to
construct an asymptotic series of Poincaré type for γ̄ →
∞. Discussion of such an activity is rather involved and
would detract from the focus of this paper; hence, we defer
it to a future contribution.
We also note that the outage expression given above

applies to the general case where each of the N avail-
able channels at a given hop is subject to non-identical
Nakagami-m fading with different scale and shape param-
eters, i.e., m1,n �= m1,q for n �= q and so on. The result
is therefore more general than that given in [19], where
the outage probabilities are obtained for the case where
m1,n = m1 andm2,n = m2 for all n.
To conclude this subsection, we provide a brief note on

the case where m2,k is an integer. Under this condition,
λk(s, z) has second-order poles at s = −m2,k ,−m2,k −
1, . . .. The residue theorem can still be applied, but the
calculations become cumbersome, and careful bookkeep-
ing must be enforced in order to ensure the resulting
series expansion is accurate. This is particularly true when
m̃1,n has certain properties (such as being an integer), as
this will cause the structure of the expansion to vary. For
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our practical purposes, however, it is much more intuitive
and efficient to evaluate the outage probability using non-
integer values of m2,k to approximate integers. We will
show through simulations that this simple approximation
works very well in practice.

SHS
The outage probability for SHS can be obtained by fol-
lowing a similar approach as was outlined above for FHS.
Without presenting the details of the calculations, we
directly present the outage probability expression to be

Po(z) = 1 −
N∏

n=1

(
ρ2

θ2,nβ2

)m2,n N∑
n=1

1

(m2,n)

×
∑
Ln

N∏
q=1
q �=n

(
ρ2

θ2,qβ2

)lq 1

(m2,q + lq + 1)

×
N∑
k=1

℘SHS,k

(m1,k)

(
ρ1,kz
θ1,k γ̄

)m1,k
e−

zρ1,k
θ1,k γ̄

×
∞∑
j=0

(−1)j

j!

(
G2ρ1,k

β2

)−j (

(m̃2,n − j)U

(
1 − j,m1,k

+1 − j,
ρ1kz
θ1,k γ̄

)
+

(
G2ρ1,k

β2

)−m̃2,n


(−j − m̃2,n)

× U
(
1 − j − m̃2,n, 1 + m1,k − j − m̃2,n,

ρ1,kz
θ1,k γ̄

))
(17)

where β2 and m̃2,k are defined in a similar manner to β1
and m̃1,k .

Single relay
Letting N = 1 corresponds to the case where there is a
single relay, and thus, selection does not take place, i.e., the
system model is the canonical dual-hop FGAF topology
with no direct link. The outage probability can be calcu-
lated from Lemma 1 where, clearly, k = 1 and fXk and fYk
take the form given in (10). The resulting expression for
the outage probability is

Po(z) = 1 −
(

ρ1z
θ1γ̄

)m1
e−

zρ1
θ1 γ̄


(m1)
(m2)

∞∑
j=0

1
j!

(
− ρ2
G2θ2ρ1

)j

×
(


(m2 − j)U
(
1 − j,m1 + 1 − j,

zρ1
θ1γ̄

)

+
(

ρ2
G2θ2ρ1

)m2


(−j − m2)U
(
1 − j − m2,m1

−m2 + 1 − j,
zρ1
θ1γ̄

))
(18)

where θq and mq are the scale and shape parameters for
the Nakagami-m channel at the qth hop, and ρq = σ 2

q γ̄

where σ 2
1 and σ 2

2 are the noise variances at the relay and
the destination, respectively.
Although an outage expression for dual-hop FGAF sys-

tems with a single relay operating in Nakagami-m fading
channels was provided in [7, eq. (20)], the result presented
here is simpler and easier to evaluate numerically. To the
best of our knowledge, (18) has not been reported in the
literature.

DHS
The outage probability for DHS is obtained by substitut-
ing the expression for Po(z) given by (18) for the quantity
in the brackets of (7), i.e., 1− 1

2π i
∫ c+i∞
c−i∞ λk(s, z) = Po(z). In

doing so, all parameters should be replaced by those cor-
responding to the kth path for k = 1, . . . ,N . We omit the
explicit expression for brevity.

Diversity analysis
As mentioned above, one may obtain asymptotic expan-
sions for the outage probabilities corresponding to the
abovementioned scenarios. Although a full asymptotic
theory is rather involved and beyond the scope of this
paper, it is relatively straightforward to obtain the diver-
sity order for FHS, SHS, and DHS. This can be done in a
rather cumbersome manner by invoking the series expan-
sion representation of U(·, ·, x) (cf. [23]) and retaining the
leading order in γ̄ . It is, however, much more straight-
forward to use the theorem recently reported in [14]. For
the two-hop relay selection schemes treated here, this
theorem states that the outage probability of the system
decays asymptotically like O

(
(ln γ̄ )κ−1 γ̄ �(s0)

)
where s0 is

the pole (of order κ) of the function

G(s) = E
[
Zs
1
]
E

[
Zs
2
]

(19)

that lies furthest to the right in the s-plane, with Z1 and
Z2 respectively denoting the local first- and second-hop
SNRs after selection. A consequence of this theorem is
that the diversity order, defined in the usual way as

d = lim
γ̄→∞

lnPo(z)
− ln γ̄

, (20)

is simply given by (see [14] for details)

d = −s0. (21)

First, consider the FHS scheme, and suppose all shape
parameters in the first hop are distinct7. For this case, let

n
 = argmax
n

{Xn} (22)
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such that Z1 = Xn
 and Z2 = Yn
 . The p.d.f. of Z1 is

fZ1(z) = ∂

∂z
{P(X1 ≤ z) · · ·P(XN ≤ z)}

=
N∑

n=1
fXn(z)

∏
k �=n

P(Xk ≤ z) (23)

where fXn(z) and P(Xk ≤ z) are given in (10) and (11),
respectively. Using (12), it is straightforward to show that

E[Z1]=
∫ ∞

0
zsfZ1(z) dz = a0
(ζ + s)

+ a1
(ζ + 1 + s) + . . .

(24)

where ζ = ∑N
n=1m1,n. Consequently, the pole that lies

furthest to the right in the s-plane is s = −ζ . Moreover, it
is easy to see that

E[Z2]∝ 
(m2,n
 + s) (25)

which has a dominant pole at s = −m2,n
 . In systems
employing selection diversity, it is well known that outage
is dominated by the worst case channel. Since all second-
hop channels are independent, this pertains to the case
where the selection process results in the second channel
having the minimum shape parameter. It follows from this
fact and the calculations above that the diversity order for
FHS is

d = min
{ N∑
n=1

m1,n,m2,1, . . . ,m2,N

}
. (26)

Using a similar approach, it can be shown that the
diversity order for SHS is

d = min
{ N∑
n=1

m2,n,m1,1, . . . ,m1,N

}
. (27)

To calculate the diversity order for DHS, it is easiest to
substitute (2) into (20), which leads to

d =
N∑

n=1
min{m1,n,m2,n}. (28)

These results are summarized in Table 1. One can con-
firm that these diversity orders specialize to the previous
published results when the scale parameters and shape

Table 1 Diversity orders for FHS, SHS, and DHS in Nakagami-m
fading

Selection scheme Diversity order

Single relay min{m1,m2}
FHS min

{∑N
n=1 m1,n ,m2,1, . . . ,m2,N

}
SHS min

{∑N
n=1 m2,n ,m1,1, . . . ,m1,N

}
DHS

∑N
n=1 min{m1,n ,m2,n}

parameters are the same for allN channels for a given hop
(see [19, Th. 3]).

Simulation results and discussion
In this section, we present numerical results in an effort to
validate the analysis presented above. For all of the results
presented below, we consider the case where there are two
relays available, i.e., N = 2, and the ρ and θ parameters
are all set to 1 if not otherwise stated.
Various channel configurations were considered; Table 2

provides an overview, and the corresponding diversity
orders are given in Table 3. For configurations Nak-1 and
Nak-2, we considered the case where there is only a single
relay, and the channels in both hops are non-identically
or identically distributed, respectively. For configurations
Nak-3, Nak-4, and Nak-5, we considered systems with
relay selection, where Nak-3 and Nak-4 represent the
cases where the N channels are identically distributed at
the second hop and the first hop, respectively, and Nak-5
describes the case where all channels at all relays in both
hops are identically distributed. Nak-6 considered the
generalized case where the fading parameters are arbitrar-
ily chosen such that channels corresponding to each relay
for each hop are non-identically distributed, and the θ and
ρ parameters for this case are also arbitrarily chosen to be
θ1,1 = 0.6, θ1,2 = 0.8, θ2,1 = 0.9, θ2,2 = 1.1, ρ1,1 = 1,
ρ1,2 = 0.9, and ρ2 = 0.8. Note that for the Nak-2 config-
uration, we have deliberately chosen the parameters such
that m2 is an integer. The effect of second-order poles in
this case was discussed in the “Analysis for Nakagami-m”
section. Here, instead of considering the residues at the
second-order poles, we simply use a non-integer value
of m2 to obtain approximate numerical results. It will
be shown that such an approximation yields reasonably
accurate results compared with numerical simulations.
Figures 2, 3, and 4 depict the results for channels Nak-1

to Nak-5 with FHS, SHS, and DHS, respectively. It is
shown that the analytical results agree well with the
simulations for all SNR values, even though the series
expressions were truncated to ten terms. In addition, the
diversity orders given in Table 3 can be verified from the

Table 2 Shape parameter definitions for different dual-hop
Nakagami-m fading configurations. Values that span two
columns indicate a single-relay system

Configuration m1,1 m1,2 m2,1 m2,2

Nak-1 1.3 2.5

Nak-2 4 4

Nak-3 1.3 0.7 2.5 2.5

Nak-4 2.5 2.5 1.3 0.6

Nak-5 2.5 2.5 2.5 2.5

Nak-6 0.9 1.3 2.5 3.5
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Table 3 Diversity orders corresponding to configurations
outlined in Table 2

Configuration FHS SHS DHS

Nak-1 1.3 1.3 1.3

Nak-2 4 4 4

Nak-3 2 0.7 3.2

Nak-4 0.6 1.8 3.1

Nak-5 2.5 2.5 5

Nak-6 2.4 0.9 3.4

figures. In particular, it is observed in Fig. 4 that the out-
age probability corresponding to Nak-5 outperforms that
for Nak-2 at SNR values greater than 10 dB due to the
higher diversity gain associated with Nak-5. An additional
interesting feature that is brought out in these results is
the importance of properly choosing the selection scheme
according to the prevailing statistical channel conditions.
Observing Figs. 2 and 3, we see that the Nak-4 relay selec-
tion system performs worse than the single-relay Nak-1
system for SNR values greater than 10 dB when FHS is
employed (see Fig. 2). This is due to the comparatively low
diversity order resulting from the selection process (see
Table 3). However, if SHS is employed in theNak-4 system,
the diversity advantage offered by the selection scheme is
realized, as shown in Fig. 3.
Figure 5 illustrates the outage probability for the Nak-6

configuration. Again, the numerical results are shown to
agree with the simulation results for all selection schemes.
In addition, it is observed that for this particular config-
uration, FHS significantly outperforms SHS owing to the
fact that the diversity order offered by the former is 2.4,

whereas it is 0.9 in the latter case. The disparity in the
diversity orders due to the use of different selection strate-
gies provides significant insights into practical design for
relay selection systems.
In Fig. 6, we present the numerical results obtained by

setting the shape parameters to 1 (i.e., Rayleigh fading)
at the second hop or at both hops, thus depicting
Nakagami-Rayleigh or Rayleigh-Rayleigh fading scenar-
ios. The results in Fig. 6 were obtained by using m1,1 =
1.3 and m1,2 = 2.5 at the first hop for the Nakagami-
Rayleigh configuration. It is observed that for all three
selection methods, the Nakagami-Rayleigh configuration
provides better performance than the Rayleigh-Rayleigh
mode, which satisfies intuition since Rayleigh channels
exhibit more severe fading than Nakagami-m channels. It
is also interesting to observe that SHS yields an outage
gain compared to FHS in the Nakagami-Rayleigh channel,
indicating the advantage of performing selection at the
hop that experiences more severe fading.

Conclusions
The framework presented herein can be applied to analyze
many practical system configurations. The key compo-
nents that are required are derived from Lemma 1, whence
we see that density functions of the effective channel gains
Xk and Yk are required along with integrals that are closely
linked to their Mellin transforms. Certainly, having this
information available makes the calculation of ℘h,k possi-
ble in re (6) as a series expansion if not in a simple closed
form.
Taking a step back, it is clear that the example discussed

in the previous section was made possible by the pole
structure of λk(s, z), which in turn arose from the Mellin
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Fig. 2 FHS outage probability. Outage probability of dual-hop FGAF systems with FHS
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Fig. 3 SHS outage probability. Outage probability of dual-hop FGAF systems with SHS

transform properties of the densities fX and fY . These
p.d.f.s are simply gamma kernels, and thus, it stands to
reason that very similar techniques can be brought to bear
to analyze systems involving other related distributions.
To illustrate this point further, let us consider the case
where each hop experiences Weibull fading. In this case,
the first integral in (5) will have the form

θ s
(s/m + 1) (29)

for some shape and scale parametersm and θ , the poles of
which lie at s = −m(1 + j) for j = 0, 1, . . .. Thus, we can

see that problems involvingWeibull distributions will also
experience a rich pole structure, and the full power of the
residue theorem will be applicable.
Other fading distributions are also worth consider-

ing within this framework. Rician and Hoyt densities
involve Bessel functions, which lead to hypergeomet-
ric functions (1F1 in the case of Rician and 2F1 in
the case of Hoyt) through the evaluation of the inte-
gral

∫
xsfX(x) dx in (5). But these functions are either

entire or meromorphic in the arguments and thus can
be dealt with by calculating the residues just as was
done for Nakagami-m fading. Although the method is
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Fig. 4 DHS outage probability. Outage probability of dual-hop FGAF systems with DHS
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Fig. 5 Outage probability for non-identically distributed channels. Outage probability of Nak-6 dual-hop FGAF systems for FHS, SHS, and DHS

straightforward, the exact results are often challenging
to interpret in written form given only a few pages in
which to do so, and thus, we have omitted them from this
discussion.
It should be clear by now that the fading distributions

corresponding to each hop in the network need not belong
to the same class, e.g., Rician, Weibull, etc. Indeed, the
power of the framework is that it is relatively agnostic to
the functions fX and fY , as long as the related integrals

given in (5) exist and the result facilitates contour integra-
tion vis-à-vis (4).
As a final note, we have liberally made use of infi-

nite series representations of special functions through
this analysis. For the examples discussed in the previ-
ous section, these series were convergent and thus well
behaved under the operation of integration. However,
if one is concerned mostly with asymptotics (e.g., high
SNR), this condition need not be satisfied. In fact, very
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Fig. 6 Outage probability for heterogeneous channels. Outage probability of dual-hop FGAF systems using three selection schemes for different
channel configurations
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accurate approximations to the outage probability of some
relatively complex systems can be attained from truncated
asymptotic series. Again, we leave the details to another
forum due to space restrictions.

Endnotes
1The term partial selection is also used in the literature

to describe relay selection based on channel knowledge
pertaining to a single hop.

2As is customary, we consider SNR outage since there
is a one-to-one relationship between this performance
metric, mutual information outage, and many
symbol-error-rate outage expressions encountered in
practice when flat fading is assumed.

3This constant arises from the use of the Mellin
inversion theorem [25] and basically separates the poles
of the integrand in a particular and well-defined way for a
given function λk . The interval in which c lies is explored
for specific examples in the next section.

4This follows from Stirling’s formula [22] and an
application of Jordan’s lemma [26].

5We will return to the case wherem2,k is an integer later.
6Technically, there is a singularity at x = 0, but for the

purposes of our system analysis, this condition will never
hold.

7When the shape parameters are not distinct, the same
approach that is outlined in this section can be taken, but
the algebra and differentiation become cumbersome.

Appendix
The following is a proof of Lemma 1. First, recall that the
Mellin transform of a function f is defined as M[ f ; s]=∫ ∞
0 xs−1f (x) dx when the integral converges. Moreover,
the inverse transform is given by

f (x) = 1
2π i

∫ c+i∞

c−i∞
x−s

M[ f ; s] ds (30)

for c ∈ R in the strip of analyticity of M[ f ; s]. It can be
shown using integration by parts that if fX(x) is the p.d.f. of
X, defined for x ≥ 0, and FX(x) = ∫ ∞

x fX(t) dt is the
complementary c.d.f (c.c.d.f.) of X, then

M[FX ; s]= s−1
M[ fX ; s + 1] (31)

for probability distributions with exponentially decaying
tails. Finally, we recall that given two independent ran-
dom variables X and Y and their product Z = XY ,
the Mellin transform of the density fZ is the product of
the transforms of the densities fX and fY , i.e., M[ fZ ; s]=
M[ fX ; s]M[ fY ; s].
Now, omitting the subscript k, we can write P(γ < z) as

1 − P(XY ≥ z(Y + C))

= 1 − P(X > z)P((X − z)Y ≥ Cz|X > z).
(32)

Define the variateW = X − z conditioned on X > z, and
let U = WY . We seek the c.c.d.f. of U. The density of W
is given by fW (w) = fX(w + z)/FX(z). But from the prop-
erties of Mellin transforms detailed above, we can write

M[ fU ; s]=
∫ ∞

0
ws−1 fX(w + z)

FX(z)
dw

∫ ∞

0
ys−1fY (y) dy.

(33)

The result stated in the lemma follows by using (31) along
with the inversion formula (30) and substituting into (32).
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