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Abstract

In this work, we propose structured root-low-density parity-check (LDPC) codes and design techniques for
block-fading channels. In particular, quasi-cyclic root-LDPC codes, irregular repeat-accumulate root-LDPC codes and
controlled doping root-LDPC codes based on progressive edge growth (PEG) techniques for block-fading channels
are proposed. The proposed root-LDPC codes are both suitable for channels under F = 2, 3 and 4 independent fading
per codeword. The performance of the proposed codes is investigated in terms of frame error rate (FER). The
proposed root-LDPC codes are capable of achieving the channel diversity and outperform standard LDPC codes. For
block-fading channel with F = 2 our proposed PEG-based root-LDPC codes outperform PEG-based LDPC codes by
7.5 dB at a FER close to 10−3.
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1 Introduction
The most recent IEEE wireless local area network
(WLAN) 802.11ad standard [1] argues that to achieve
high throughput the devices must operate with LDPC
codes [2, 3]. As wireless systems are subject to multi-
path propagation and mobility, these systems are charac-
terized by time-varying channels with fluctuating signal
strength. In applications subject to delay constraints and
slowly-varying channels, only limited independent fad-
ing realizations are experienced. In such conditions also
known as non-ergodic scenarios, the channel capacity is
zero since there is an irreducible probability, termed out-
age probability [4], that the transmitted data rate is not
supported by the channel. A simple and useful model
that captures the essential characteristics of non-ergodic
channels is the block-fading channel [5, 6]. It is especially
important in wireless communications with slow time-
frequency hopping (e.g. cellular networks and wireless
local area networks) or multi-carrier modulation using
orthogonal frequency division multiplexing (OFDM) [7].
Codes designed for block-fading channels are expected to
achieve the channel diversity and to offer excellent coding
gains.
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1.1 Prior and related works
A family of LDPC codes called root-LDPC for block-
fading channels with F = 2 fading per codeword was
proposed in [7]. Root-LDPC codes are able to achieve the
maximum diversity of a block-fading channel and have a
performance near the limit of outage when decoded using
the Sum Product Algorithm (SPA). Root-LDPC codes are
always designed with code rate R = 1/F , since the Sin-
gleton bound determines that this is the highest code
rate possible to obtain the maximum diversity order [7].
Y. Li and M. Salehi in [8] have presented the construction
of structured root-LDPC codes by means of tiling circu-
lant matrices, i.e. by designing quasi-cyclic low-density
parity-check (QC-LDPC) codes [9]. It is also shown that
the QC-LDPC codes can perform as well as randomly
generated root-LDPC codes over block-fading channels.
Uchoa et al. in [10] proposed a PEG-based algorithm to
design LDPC codes with root-check properties, thus pro-
viding root-LDPC codes with larger girths. A strategy that
imposes constraints on a PEG-based algorithm which are
required by root-LDPC codes was devised. This approach
has provided better performance in terms of FER and BER
than the works in [7, 8]. Duyck et al. in [11] proposed the
design of a random LDPC codes which are able to achieve
full diversity in block-fading channels with F = 2 fad-
ings. Healy and de Lamare in [12] extended the work in
[11] for the case of block-fading channels with F = 3
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and F = 4 fading per block transmitted. Uchoa et al.
in [13] proposed iterative detection and decoding (IDD)
algorithms for multiple-input multiple-output (MIMO)
systems operating in block fading and fast Rayleigh fading
channels.

1.2 Contributions
We propose in this work three structures to design
root-LDPC codes which are quasi-cyclic, repeat and
accumulate and controlled doping. Preliminary results
toward PEG-based algorithm to design QC-LDPC codes
with root-check properties for block-fading channel
with F = 3, 4 fading per codeword were reported in
[14]. Here, in this work we present a more detailed
analysis of quasi-cyclic root-check-based LDPC codes.
Furthermore, initial results for a PEG-based algorithm
to design irregular repeat-accumulate (IRA) LDPC codes
with root-check properties for block-fading channels
were discussed in [15]. Here, we present a more detailed
analysis of irregular repeat-accumulate and accumulate
IRAA root-check structure for F = 2, 3 independent
fading.
In general, the parity check bits of root-LDPC codes are

not in full diversity. Boutros in [16] proposed a controlled
doping via high order root-LDPC codes, which are able to
guarantee full diversity for the parity check bits. Such a
design becomes really important when iterative detection
and decoding (IDD) is used in spread spectrum [17, 18]
andMIMO systems [19–21]. In IDD systems, the detector
and the decoder exchange their extrinsic information in
an iterative way. Therefore, if the parity bits are not in full
diversity, the overall IDD system performance will lead to
a degradation in terms of bit error rate (BER) instead of
improvements as stated in [17].
In this paper, we also propose a novel full diversity

controlled doping root-check RA-based LDPC codes for
block-fading channels of F = 2, 3, 4 fading which includes
the code rates R = 1

2 , R = 1
3 and R = 1

4 .
Themain contributions of this work can be summarized

as follows:

• Root-LDPC codes for block-fading channels
including structured, unstructured, controlled doping
and RA designs are developed.

• New PEG-based algorithms for several root-LDPC
code structures are presented.

• A comprehensive simulation study of root-LDPC
codes and design algorithms is detailed.

The rest of this paper is organized as follows. In
Section 2, we describe the system model. In Section 3,
we discuss the prior and related works on the design of
root-LDPC codes and their structure. In Section 4,
the proposed PEG-based quasi-cyclic root-LDPC codes,

irregular repeat-accumulate root-LDPC codes and con-
trolled doping root-LDPC codes and their structure are
presented. In Section 5, a discussion of which a root-
LDPC code is more appropriate for a specific scenario is
provided. In Section 6, the simulation results are shown,
while Section 7 concludes the paper.

2 Systemmodel
Consider a block-fading channel, where F is the number
of independent fading blocks per codeword of length N.
Following [8], the tth received symbol is given by:

rt = hf st + ngt , (1)

where 1 ≤ t ≤ N , 1 ≤ f ≤ F , f and t are related by
f = �F t

N �, where �φ� returns the smallest integer not
smaller than φ, hf is the real Rayleigh fading coefficient
of the f th block, st is the transmitted signal, and ngt is
additive white Gaussian noise with zero mean and vari-
ance N0/2. In this paper, we assume that the transmitted
symbols st are binary phase shift keying (BPSK) modu-
lated. We assume that the receiver has perfect channel
state information and that the SNR is defined as Eb/N0,
where Eb is the energy per information bit. The informa-
tion transmission rate is R = K/N , where K is the number
of information bits per codeword of lengthN. For the case
of a block-fading channel, we consider R = 1/F , since
then it is possible to design a practical diversity achiev-
ing code [8]. The performance of a communication system
in a non-ergodic block-fading channel can be investi-
gated by means of the outage probability [4], which is
defined as:

Pout = P(I < R), (2)

where P(φ) is the probability of event φ and I is
the mutual information. The mutual information IG, for
Gaussian channel inputs is [8]:

IG = 1
F

F∑
f=1

1
2
log2

(
1 + 2R

Eb
N0

h2f

)
, (3)

so that an outage occurs when the average mutual infor-
mation among blocks is smaller than the attempted infor-
mation transmission rate.

3 Root-LDPC codes
Root-LDPC codes are those which use the graph structure
comprising special root-check nodes to ensure full diver-
sity on the block fading channel with greatest possible
code rate. These root-checks offer connection from each
information node in the graph to the parity bits affected
by fading coefficients distinct from that affecting the
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information node in question. Thus, the information node
can be recovered provided at least one fading coefficient
is large enough. Since for each information node there is a
root-check node for all other fading coefficients, the root-
checks appear as identity matrices in the parity-check
matrix of the root-LDPC codes. The properties offered by
the root-check node structure are full single-iteration con-
vergence on the noise-free block binary erasure channel
and thus full diversity performance on the block fading
channel of (1) [7].
In this section, the parity check matrix of the most rel-

evant root-LDPC codes are discussed. The number of
fadings considered are F = 2, 3 and 4 which correspond
to code rates R = 1

2 ,
1
3 and 1

4 .

3.1 Random root-LDPC codes
Here, we will introduce some definitions and the notation
adopted in this work. The binary LDPC code in systematic
form is specified by its parity-check matrixH:

H = [IN−K P] , (4)

where IN−K is the identity matrix of size (N-K) and P is
an (N-K)-by-K matrix. Then the generator matrix for the
code is:

G =
[
PT IK

]
, (5)

where (·)T refers to the transpose operation.
The variable node degree sequence Ds is defined to

be the set of column weights of H as designed and is
prescribed by the variable node degree distribution λ(x)
as described in [22]. Moreover, Ds is arranged in non-
decreasing order. The first proposed root-LDPC codes
were devised by Boutros et al. in [7]. Therefore, the gen-
eral structure of the parity-check matrix for a random
root-LDPC code for F = 2 can be defined as

1i 2i 1p 2p

H = 1c
2c

(
I H2i 0 H2p

H1i I H1p 0

)
,

(6)

where the nodes (1i and 2i) represent the information
symbols that are sent over two independent fadings, the
same happens to nodes (1p and 2p) which are the parity
symbols; (1c and 2c) are the check nodes. In the parity-
checkmatrixH, there are eight sub-matrices of size N

4 ×N
4 .

I is an identity sub-matrix, 0 is a null sub-matrix, H1i
andH2i are sub-matrices of Hamming weight 2 connected
to the information symbols, H1p and H2p are also sub-
matrices of Hamming weight 3 connected to the parity

symbols. In a similar fashion, it can be devised for the case
of F = 3 as stated in [7].

3.2 Quasi-cyclic root-LDPC codes
Following the idea of Boutros et al. in [7], Li and Salehi
in [8] devised a quasi-cyclic root-LDPC codes. The parity-
check matrix H of a QC-LDPC code can be defined as
[23]:

H =

⎡
⎢⎢⎢⎣

H0,0 H0,1 · · · H0,w−1
H1,0 H1,1 · · · H0,w−1
...

...
. . .

...
Hc−1,0 Hc−1,1 · · · Hc−1,w−1

⎤
⎥⎥⎥⎦ , (7)

where Hij is an n × n circulant or all-zeros matrix, and
c and w are two positive integers with c < w. The null
space of H gives a QC-LDPC code over GF(2) of length
N = wn. The rank ofH is at most cn. Hence the code rate
is at least w−c

w .
For the case of quasi-cyclic root-LDPC codes the parity-

check matrix follows the same idea as (6), although the
sub-matrices become a set of quasi-cyclic matrices. Con-
sequently, I becomes

I(top−left) =

∣∣∣∣∣∣∣∣
I0,0 0 0 0
0 I1,1 0 0
0 0 I2,2 0
0 0 0 I3,3

∣∣∣∣∣∣∣∣
, (8)

H1i as

H1i =

∣∣∣∣∣∣∣∣
I4,0 I4,1 0 0
0 I5,1 I5,2 0
0 0 I6,2 I6,3
I7,0 0 0 I7,3

∣∣∣∣∣∣∣∣
(9)

and forH1p we define it as

H1p =

∣∣∣∣∣∣∣∣
0 I4,5 I4,6 I4,7
I5,4 0 I5,6 I5,7
I6,4 I6,5 0 I6,7
I7,4 I7,5 I7,6 0

∣∣∣∣∣∣∣∣
, (10)

where each Ii,j is a circulant permutation matrix, a cir-
culant matrix with row and column weights 1. Each 0
is a null matrix. The matrix H2i is similarly formed of
tiled circulant permutation matrices with random cyclic
shift and constrained random placement of the non-null
matrices to achieve the required column and row weights.
The matrix H2p has the same form as (10) in order that
the parity part of the matrix has full rank, but with dis-
tinct random cyclic shifts [8]. The example presented in
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Eqs. (8), (9) and (10) are for a regular QC-root-LDPC
code C(3, 6). QC-root-LDPC codes were proposed with
the aim of providing fast encoding and to save memory to
store the generator matrix. Li and Salehi in [8] have shown
that the QC-LDPC codes can perform as well as ran-
domly generated root-LDPC codes [7] over block-fading
channels.

3.3 Unstructured full-diversity LDPC codes
Duyck et al. in [11] proposed the design of random
LDPC codes which are able to achieve full diversity in
block-fading channels with F = 2 fading. The principle
proposed in [11] is to allow a small reduction in coding
rate in order to produce random codes that may achieve
the diversity of the channel, i.e. the error rate achieved
by the code behaves as 1

SNR2 . However, as these codes
achieve the desired error rate performance but do not
have the maximal rate allowed by the Singleton bound,
they may be called full-diversity codes but not blockwise
maximum-distance separable (MDS) codes [24]. Specif-
ically, the codes of [11] place the requirements that the
nodes associated with the information bits have weight
dv = 2 and do not participate in any stopping sets. The
code rate is R ∼= 0.5.
The design of such LDPC codes was achieved by requir-

ing that the number of check nodes in the graph be greater
than N

2 , i.e. that the rate be less than
1
2 , and that the weight

of the first N
2 variable nodes is 2 and that the graph be

constructed by the PEG algorithm [25], which maximizes
cycle length at each placement, ensuring under these con-
ditions no cycles in the sub-graph comprised of the first
N
2 variable nodes alone. The requirement of recoverability
for the worst-case scenario is equivalent to the require-
ment that no information variable node vinf ∈ Vinf ,
affected by α1, is an element of any stopping set found
among the variable nodes V1 ∪ {V2 ∪ V3 ∪ · · ·VF}\Vi.
This requirement must hold for all i = 2, · · · , F for the
information variable nodes to be recoverable on the block
binary erasure channel and thus for the code to achieve
full diversity on the block fading channel. The parity-
check matrix for this general case, with variable node
subset labels and the corresponding fading coefficients are
given in Fig. 1.

3.3.1 Unstructured full-diversity rate 1
3

In (11), a code graph is shown for the case of F = 3
fading per codeword [12] by means of imposing null
matrices on the parity-check matrix, along with restric-
tions on the cycles present in the sub-graphs of the code.
The structured matrices

[
Hα,1Hα2

]
and

[
Hα,2Hα3

]
must

be constructed by the PEG algorithm, as in [11], ensur-
ing the extrinsic connections to V2 and V3, respectively.
The constraints on the code sub-graphs result in the vari-
able nodes of V1 having weight 4. The distribution of the

Fig. 1 Parity-check matrix unstructured general case. Parity-check
matrix for the general case

nodes in V2 and V3 is unconstrained and may be irreg-
ular. In addition to this weight constraint, each of the
sub-matrices

[
Hα,1Hα2

]
and

[
Hα,2Hα3

]
are constrained to

have a rate less than 1
2 , and so the final graph will have a

rate less than 1
3 .

α1 α2 α3

HBF3 =
[
Hα1,1 Hα2 0
Hα1,2 0 Hα3

] (11)

3.3.2 Unstructured full-diversity rate 1
4

The code graph achieving the requirements on stopping
sets among V1, · · · ,V4 containing information variable
nodes is presented in (12) [12]. We can see that with
each additional fading coefficient considered, a straight-
forward graph expansion is carried out, effectively nesting
the F − 1 diversity achieving graph in the code capable of
full-diversity performance on the channel with F fading
coefficients.

α1 α2 α3 α4

HBF4 =
⎡
⎣Hα1,1 Hα2 0 0
Hα1,2 0 Hα3 0
Hα1,3 0 0 Hα4

⎤
⎦ (12)

4 Proposed PEG-based root-LDPC codes
In this section, the proposed PEG-based root-LDPC codes
are discussed. The number of fadings considered are F =
2, 3 and 4 which correspond to code rates R = 1

2 ,
1
3 and 1

4 .

4.1 QC PEG-based root-LDPC codes
Preliminary results on the design of a PEG-based quasi-
cyclic root-LDPC codes for block-fading channel with F =
3, 4 fadings per codeword were presented by Uchoa et al.
in [14]. The codes generated by this strategy can achieve
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a significant performance in terms of FER with respect
to the theoretical limit. These codes can save up to 3 dB
in terms of signal to noise ratio to achieve the same FER
when compared to other codes.
A root-LDPC code requires a designer to divide both

variable and check nodes in F equal parts. Following the
root-check-based structure reported in [7], the parity-
check matrix becomes:

H = [S1P1, · · · , SFPF ] , (13)

where the subscripts represent the variable nodes (infor-
mation and parity, respectively) under a specific fading
block. The parity-check matrix of (13) can be reordered to
H =[ S1, · · · , SFP1, · · · ,PF ], with the blocks Si associated
with information nodes and the blocks Pi associated with
parity nodes. In order to obtain the generator matrix, the
sub-matrix B formed by parity matrices P1, · · · ,PF must
be a non-singular matrix, which means it is invertible
under GF(2) [8].
To design a practical code for F = 3 which is able to

achieve the channel diversity, the highest possible rate of
such a code is R = 1

F = 1
3 . As a result, the parity-check

matrix for R = 1
3 can be defined as in (14),

1i 2i 3i 1p 2p 3p

H=

⎡
⎢⎢⎢⎢⎢⎢⎣

I0,0 H0,1 0 0 0 0 H0,6 H0,7 H0,8
I1,0 0 H1,2 0 0 0 0 H1,7 H1,8
H2,0 I2,1 0 0 0 0 0 0 H2,8
0 I3,1 H3,2 H3,3 0 0 0 0 0

H4,0 0 I4,2 H4,3 H4,4 0 0 0 0
0 H5,1 I5,2 H5,3 H5,4 H5,5 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(14)

where the n × n matrices Hij are circulant matrices
of column and row weight as required by the degree
distribution of the code, Iij are n × n circulant per-
mutation matrices, while 0 is an all-zeros matrix. The
notation Iij was used to reinforce that such connections
are the root-check connections [7]. The restrictions that
should be imposed are only the Iij to be placed in the
positions described in (14) and the upper and down
triangular sub-matrices in the parity part, B, of H. In
order to perform a PEG-based design, the only restric-
tion imposed is that the sub-matrices Iij and the upper
and down sub-matrices of (14) are kept. The other sub-
matrices can be placed following a quasi-cyclic PEG-based
algorithm.
The parity-check matrix for F = 4 with code rate R = 1

4
is structured similarly to (14), and the same restrictions
may be imposed to the design to construct a PEG-based
QC-root-LDPC code for this scenario.

4.1.1 Proposed design algorithm
Here, we introduce some definitions and notations. Then,
we present the pseudo-code of our proposed algorithm
for PEG-based quasi-cyclic root-LDPC codes. The block-
fading channels with F = 3 and F = 4 are considered.
In extending to a greater number of fadings, F > 4,
the general structure presented is maintained, with the
information variable nodes for each fading possessing
root-check identity matrices connecting to parity variable
nodes in each of the other fading blocks only, ensur-
ing the upper and lower triangular sections of parity bits
observed in (14). The placement of the remaining cyclic
sub-matrices is required to maintain this relationship and
provide satisfactory final code degree distribution. The
LDPC code is specified by its sparse parity-check matrix
H =[A | B], where A is a matrix of size M-by-K, and
B is an M-by-M matrix. The generator matrix for the
code is G = [

(B−1A)T | IK
]
, IK is an identity matrix of

size K.
The variable node degree sequence Ds is defined as

the set of column weights of the designed H and is pre-
scribed by the variable node degree distribution λ(x) as
described in [22]. Moreover, Ds is arranged in a non-
decreasing order. The proposed algorithm, called QC-
PEG root-LDPC, constructs H by operating progressively
on variable nodes to place the edges required by Ds. The
variable node of interest is labelled vj and the candidate
check nodes are individually referred to as ci. The PEG
root-LDPC algorithm chooses a check node ci to connect
to the variable node of interest vj by expanding a con-
strained sub-graph from vj up to maximum depth l. The
set of check nodes found in this sub-graph are denoted
Nl
vj while the set of check nodes of interest, those not cur-

rently found in the sub-graph, are denoted Nl
vj . For the

QC-PEG root-LDPC algorithm, a check node is chosen at
random from theminimumweight check nodes of this set.
To impose the root-LDPC structure, it is necessary sim-

ply to initialize the graph with root-check connections,
which appear as the identity matrices in the parity-check
matrix of the code, and to ensure no additional edge place-
ment is made either in the identity matrices or the null
matrices specified by the root-LDPC structure. This is
achieved in the PEG algorithm by modification of the
indicator vector presented in [10]. Zeros in the indica-
tor vectors, as presented in the following section, exclude
check nodes from the expanded tree of the PEG algo-
rithms and this exclude edge placement connecting to
those check nodes.

4.1.2 Pseudo-code for the QC-PEG-root-LDPC algorithm
Initialization: A matrix of size M × N is created with the
circulant permutation matrices Ii,j in the positions shown
in (14) and zeros in all other positions. We define the
indicator vectors z1, · · · , zF2 for the R = 1

3 case as:
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z1 =
[
01× 2N

9
, 11×N

9
, 01×N

9
, 11×N

9
, 01×N

9

]T
,

z2 =
[
11×N

9
, 01× 4N

9
, 11×N

9

]T
,

z3 =
[
01×N

9
, 11×N

9
, 01×N

9
, 11×N

9
, 01× 2N

9

]T
,

zχ =
[
01× (i−1)·N

9
, 11× (7−i)N

9

]T
for χ = 4, 5, 6,

zγ =
[
11× (i−6)·N

9
, 01× (12−i)N

9

]T
for γ = 7, 8, 9,

(15)

The indicator vectors for the construction of the QC-
PEG-root-LDPC code with R = 1

4 designed similarly to
(14) but for the channel with F = 4 are:

z1 =
[
01× 3N

16
, 11× N

16
, 01× N

16
, 11× 2N

16
, 01× 2N

16
,

11× N
16
, 01× N

16
, 11× N

16

]T
,

z2 =
[
11× N

16
, 01× N

16
, 11× N

16
, 01× 4N

16
, 11× N

16
,

01× 2N
16
, 11× 2N

16
,
]T

,

z3 =
[
01× N

16
, 11× N

16
, 01× N

16
, 11× 2N

16
, 01× 4N

16
,

11× 2N
16
, 01× N

16

]T
,

z4 =
[
11× N

16
, 01× N

16
, 11× 2N

16
, 01× N

16
, 11× N

16
,

01× 2N
16
, 11× N

16
, 01× 3N

16
,
]T

,

zχ =
[
01× (i+1)N

16
, vALT (0: (11−i)N

16 −1)
]T

for χ = 5, · · · , 10,
zγ =

[
vALT (

(17−i)N
16 : 7N16 −1), 01× (22−i)N

16

]T
for γ = 11, · · · , 16,

(16)

vALT =
[
11× N

16
, 01× N

16
, 11× N

16
, 01× N

16
, 11× N

16
, 01× N

16
, 11× N

16

]
(17)

These indicator vectors are modelled on that of the orig-
inal PEG algorithm [25], indicating submatrices for which
placement is permitted, thus imposing the required form.
The degree sequence as defined for LDPC codes must be
altered to take into account the structure imposed by root-
LDPC codes, namely the circulant permutation matrices,
Ii,j, of (14) and similarly the structure defined by (16).
The pseudo-code for our proposed QC-PEG root-LDPC
algorithm is detailed in Algorithm 1, where the indicator
vector, zi, is taken from (15), (16) for constructing codes
of rate R = 1

3 , R = 1
4 , respectively.

Algorithm 1QC-PEG root-LDPC Algorithm
1. for j = 1 : F2 do
2. for k = 0 : Ds(j) − 1 do
3. if j ≥ N

F & k == 0 then
4. Place edge at random among minimumweight

submatrices permitted by the indicator zj, with
a random first edge placement within the cho-
sen submatrix, in column (j−1)·N

F2 -th.
5. Place remaining edges in the submatrix by

circulant shift of the first placement.
6. Null the entry in the indicator vector zj in the

position of the chosen submatrix, preventing
further placements in that submatrix.

7. else
8. Expand the PEG subtree from the (j−1)·N

F2 -th
variable node to depth l such that the tree con-
tains all check nodes allowed by the indicator
vector or the number of nodes in the tree does
not increase with an expansion to the (l+1)-th
level.

9. Place edge connecting the (j−1)·N
F2 -th variable

node to a check node chosen randomly from
the set of minimum weight nodes which were
added to the subtree at the last tree expansion.

10. Place remaining edges in the submatrix by
circulant shift of the first placement.

11. Null the entry in the indicator vector zj in the
position of the chosen submatrix, preventing
further placements in that submatrix.

12. end if
13. end for
14. end for

4.2 RA-based root-LDPC codes
Preliminary results on the PEG-based design of irregu-
lar repeat-accumulate (IRA) LDPC codes [26] with root-
check properties were reported in [15]. We considered a
block-fading channel with F = 2 and F = 3. Here, in this
section, we synthesize the most relevant information on
the design of IRA root-LDPC codes.
A repeat-accumulate (RA) code consists of a serial con-

catenation, through an interleaver, of a single rate 1/q
repetition code with an accumulator having transfer func-
tion 1

1+D , where q is the number of repetitions for each
group of K information bits. Figure 2 shows a typical
repeat-accumulate code block diagram. The implemen-
tation of the transfer function 1

1+D is identical to an
accumulator, although the accumulator value can be only
0 or 1 since the operations are over the binary field ([27]
pp. 267–279). As discussed in ([27] pp. 267–279), to
ensure a large minimum Hamming distance, the inter-
leaver should be designed so that consecutive 1s at its
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Fig. 2 RA code block diagram. A systematic repeat-accumulate code
block diagram, where K is the number of information bits and p denotes
the parity bits

input are widely separated at its output. The RA-based
codes proposed in [15] were systematic. The main limita-
tion of RA codes on Gaussian channels is the code rate,
which cannot be higher than 1

2 . This limitation is not rel-
evant for block-fading channels as the rate is constrained
to be R ≤ 1

2 in order to achieve a diversity order greater
than or equal to 2.
Irregular repeat-accumulate (IRA) codes generalize the

concept of RA codes by changing the repetition rate for
each group of K information bits and performing a linear
combination of the repeated bits which are sent through
the accumulator. Furthermore, IRA codes are typically
systematic. IRA codes allow flexibility in the choice of the
repetition rate for each information bit so that high-rate
codes may be designed. Their irregularity allows opera-
tion closer to the capacity limit ([27] pp. 267–279).
The parity-check matrix for a systematic RA and IRA

codes has the form H = [
Hu Hp

]
, where Hp is a square

dual-diagonal matrix given by

Hp =

⎡
⎢⎢⎢⎢⎢⎣

1
1 1
. . . . . .

1 1
1 1

⎤
⎥⎥⎥⎥⎥⎦ . (18)

For RA codes, Hu is a regular matrix having column
weight q and row weight 1. For IRA codes, Hu has irregu-
lar columns and rows weights. The generatormatrix (GM)
can be obtained asG =

[
IK HT

uH−T
p

]
, where IK is an iden-

tity matrix of dimension K ×K , and the matrixH−T
p is the

well-known inverse transpose of (18).

4.2.1 IRA root-LDPC rate 1
2

The design of a root-LDPC code with an IRA struc-
ture imposes some constraints in terms of parity-check
matrix to guarantee the root-check properties. Following
the notation adopted in [28], for the case of a systematic
rate 1

2 with F = 2, the parity-check matrix must be like

H =
[
IN
4

H2 0N
4

H3

H2 IN
4

H3 0N
4

]
, (19)

whereH2 andH3 are N
4 × N

4 sub-matrices with Hamming
weight two and three, respectively, while 0N

4
is a null sub-

matrix with dimension N
4 × N

4 . Therefore, to impose the
RA structure and root-check properties the parity-check
matrix of an IRA root-LDPC is

H =
[
IN
4

H2 0N
4

Hp

H2 IN
4

Hp 0N
4

]
, (20)

whereHp is a dual diagonal matrix with dimension N
4 × N

4 .

4.2.2 IRA root-LDPC rate 1
3

For the case of rate 1
3 with F = 3, we followed a similar

structure to the one adopted in [7, 14]. The accumulator
used is a transfer function given by 1

1+D+D
N
9

as sug-
gested by [29] for the Gaussian channel, and used here to
improve coding gain by allowing amore complete connec-
tion between the parity bits and the root-check identity
matrix throughHp. As a result of the root-check structure
of the graph where each root-check identity matrix must
connect through a matrix of size N

9 × 2N
9 to a set of parity

bits affected by some other fading coefficient,Hp must be
redefined as

Hp =
[
Hp1
Hp2

]
, (21)

Hp1 =

⎡
⎢⎢⎢⎢⎣
1 0 · · · · · · · · · · · · · · · 0
1 1 0

. . . . . . . . . . . . 0
...
. . . . . . 0

. . . . . . . . . 0
0 0 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , (22)

Hp2 =

⎡
⎢⎢⎢⎢⎣
1 0 · · · 0 1 0 · · · 0
0
. . . 0 0 1 1 0 0

... 0
. . . 0 0

. . . . . . 0
0 0 0 1 0 0 1 1

⎤
⎥⎥⎥⎥⎦ , (23)

whereHp1 andHp2 are sub-matrices with dimensions N
9 ×

2N
9 . Therefore, the parity-check matrix H = [

Hu|Hp
]
for

this particular case of an IRA root-LDPC rate 1
3 as

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

IN
9

H1 0N
9

| 0 Hp2 0
IN
9

0N
9

H1 | 0 0 Hp1

H1 IN
9

0N
9

| Hp1 0 0
0N

9
IN
9

H1 | 0 0 Hp2

H1 0N
9

IN
9

| Hp2 0 0
0N

9
H1 IN

9
| 0 Hp1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (24)

where H1 and IN
9
are sub-matrices with dimensions N

9 ×
N
9 and H1 is a sub-matrix with Hamming weight equal to
1. The null sub-matrices 0 on the right-hand side of (24)
have dimensions N

9 × 2N
9 while on the left-hand side the

dimensions are N
9 × N

9 .
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4.3 IRAA root-LDPC design
The general structure of an irregular repeat-accumulate
and accumulate (IRAA) encoder can be seen in Fig. 3. In
this figure, some b extra parity bits are indicated in addi-
tion to the normal p parity bits. The b parity bits can be
punctured to obtain a higher code rate. For instance, in
general an IRAA code has rate 1/3 without puncturing,
while by puncturing b parity-checks a code with rate 1/2
can be obtained.
The parity-check matrix of an IRAA LDPC code can be

represented by

H =
[
Hu Hp 0
0

∏
1 Hp

]
, (25)

where
∏

1 must be a sub-matrix with rows and columns
with Hamming weight one.
In order to obtain IRAA root-LDPC codes some con-

straints must be imposed on the standard IRAA design.
We have noticed that the IRAA root-LDPC codes led to
a more flexible rate compatible code. For further details
refer to [15].

4.3.1 IRAA root-LDPC rate 1
2

We applied the root-check structure from (20) in (25) to
obtain the following parity-check matrix for rate 1/2

H =

⎡
⎢⎢⎢⎣

IN
9

H2 0N
9

Hp 0 0N
9

H2 IN
9

Hp 0N
9
0N

9
0N

9
0N

9
0N

9
∏

1
0N

9
Hp

0N
9
0N

9
Hp 0N

9

⎤
⎥⎥⎥⎦ , (26)

where IN
9
, H2, Hp and 0N

9
are all N

9 × N
9 in dimension,

while
∏

1 is N
3 × N

3 . The key point to guarantee the full-
diversity property is the puncturing procedure. Instead of
puncturing b parity bits, we have punctured p. The reason
why puncturing p instead of b guarantees the full diversity
is due to the fact that the root-check structure of the code
is kept unchanged.

4.3.2 IRAA root-LDPC rate 1
3

For the case of rate 1/3, we considered the design done
in (24) and we apply the constraints in (25) to obtain the
following parity-check matrix

Fig. 3 IRAA code block diagram. A systematic irregular repeat-accumulate
and accumulate code block diagram. Where K are the information
bits, b and p are the parity bits

H =
[
Hu | Hp 0
0 | ∏

1 Hp

]
. (27)

It must be noted that without puncturing the code rate is
1/5.

4.3.3 Pseudo-code for the IRA-PEG root-LDPC algorithm
Initialization: A matrix of size M × N is created with the
identity matrices IK and parity matrices Hp in the posi-
tions shown in (20), (24), (26), (27) and zeros in all other
positions. We define the indicator vectors z1, · · · , zF for
the cases R = 1

2 , R = 1
3 respectively as:

z1 = [
01×γ , 11×γ

]T ,

z2 = [
11×γ , 01×γ

]T ,
(28)

z1 = [
01×2χ , 11×χ , 01×χ , 11×χ , 01×χ

]T ,

z2 = [
11×χ , 01×4χ , 11×χ

]T ,

z3 = [
01×χ , 11×χ , 01×χ , 11×χ , 01×2χ

]T , (29)

where γ = N
2 for the case of IRA, while for IRAA design

γ = N
4 . We have χ = N

9 for the case of IRA, while for
IRAA design χ = N

15 . In addition, for rate R = 1
2 under

IRAA design zi = [
zi, 04×γ

]
, while for rate R = 1

3 under
IRAA design zi = [

zi, 06×χ

]
.

These indicator vectors are modelled on that of the
original PEG algorithm [25], indicating sub-matrices for
which placement is permitted, thus imposing the form
of (20), (24), (26), (27). The degree sequence as defined
for LDPC codes must be altered to take into account
the structure imposed by root-LDPC codes, namely, the
identity matrices IK and the parity matrices Hp, of (20),
(24), (26) and (27). The pseudo-code for our proposed
IRA-PEG root-LDPC algorithm is detailed in Algorithm 2,
where the indicator vector zi is taken from (28) and (29)
for constructing codes of rate R = 1

2 , R = 1
3 respectively.

Algorithm 2 PEG root-LDPC algorithm
1. for j = 1 : K do
2. for k = 0 : Ds(j) − 1 do
3. Expand the PEG tree from the jth variable node

to depth l such that the tree contains all check
nodes allowed by the indicator vector or the
number of nodes in the tree does not increase
with an expansion to the (l+1)th level.

4. Place the edge connecting the jth variable node
to a check node chosen randomly from the set of
minimum weight nodes which were added to the
sub-tree at the last tree expansion.

5. end for
6. end for
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4.4 Controlled doping root-LDPC codes design
Boutros in [16] proposed a controlled doping via high
order root-LDPC codes. Such root-LDPC codes are able
to guarantee full diversity for the parity check bits. First
of all, we have made some modifications in the origi-
nal doped root-LDPC code parity-check matrix described
in [16].

4.4.1 Controlled doping root-LDPC codes R = 1
2

The modifications we have made was to take the advan-
tages of easy encodability of IRA-based LDPC codes.
Furthermore, a PEG-based design to improve the local
girth of the generated LDPC codes was considered. Dop-
ing refers to the diversity achieved in the parity bits
of the root-LDPC graph, and when incidental is called
uncontrolled. Controlled doping is used to intention-
ally improve the energy coefficient of information bits
after solving parity bits. The energy coefficients relate the
error rate achieved with the messages passed in decod-
ing, in terms of the fading coefficients to which the code
word is subjected [30]. Then, the parity bit should trans-
mit a high-confidence message to a new information
bit. Diversity population evolution (DPE) is an analytic
method for studying the propagation of diversity in the
graph during iterative decoding of a root-LDPC code [30].
Uncontrolled doping corresponds to a DPE steady-state
parameter p∞ = 7.82 % for a C(3, 6) regular root-LDPC
code [16]. Controlled doping can achieve a fraction p∞
as high as 100 %. The sub-matrix (18) is modified as for
the root-LDPC-III code of [16] by introducing a smaller
identity matrix for the parity bits. Therefore, the root-
LDPC code with 50 % of controlled doping, Hp is rede-
fined, to ensure a lower-triangular form and thus efficient
encoding, as

Hp =
[
IN
8

0N
8

PN
8
DDN

8

]
, (30)

where I is an identity matrix, 0 is a null matrix, P is a per-
mutation matrix with Hamming weight 1, DD is a dual
diagonal matrix and all sub-matrices of Hp are N

8 × N
8

in dimension. Accordingly, the final parity-check matrix
becomes

H =

1i 2i 1p 2p⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

IN
4

H2i 0N
4

IN
8

0N
8

P2 DDN
8

H1i IN
4

IN
8

0N
8

P1 DDN
8

0N
4

, (31)

where subscripts in P1 and P2 means that are distinct
permutation sub-matrices with hamming weight 1. The

sub-matricesH1i andH2i are in dimension N
4 × N

4 . P1 and
P2 are in dimension N

8 × N
8 . The PEG algorithm will work

through the sub-matricesH1i andH2i.

4.4.2 Controlled doping root-LDPC codes R = 1
3

The parity-check matrix for the case of code rate R = 1
3

has followed a similar design as for an IRA root-LDPC
code rate R = 1

3 in (24). Therefore, the parity-check
matrix for the proposed PEG controlled doping root-
LDPC code (PEG-CDRC LDPC) has the structure as
presented in (32),

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

H2 I 0 | I 0 0 0 0 0
H2 0 I | P1 DD 0 0 0 0
I H2 0 | 0 0 I 0 0 0
0 H2 I | 0 0 P2 DD 0 0
I 0 H2 | 0 0 0 0 I 0
0 I H2 | 0 0 0 0 P3 DD

⎤
⎥⎥⎥⎥⎥⎥⎦
, (32)

where the subscripts of Pi in (32) means that are distinct
permutation sub-matrices. The sub-matrices of Eq. (32)
are all N

9 × N
9 in dimension. In addition, the left-hand side

of (32) are connected to the information symbols while the
right-hand side are connected to the parity check bits.

4.4.3 Controlled doping root-LDPC codes R = 1
4

For the case of rate 1
4 with F = 4, the root-LDPC code

structure with controlled doping is produced by a similar
expansion of the parity-check matrix as from the graph
for F = 2 to the graph for F = 3 described above.
However, in addition, we have adjusted the part of the
matrix associated with the parity bits to account for the
dimension requirements of the root-LDPC structure at
this rate, where each of the four Hp matrices have dimen-
sion 3N

16 × 3N
16 and as such have been adjusted to take the

structure of (33).

Hp =
⎡
⎢⎣

I N
16

0 N
16

0 N
16

P N
16

I N
16

0 N
16

P N
16

P N
16

DDN
8

⎤
⎥⎦ , (33)

and the matrices I, P and DD are as defined previously
for the cases of F = 2 and F = 3. Note in particular
that the permutation matrices P each have distinct cyclic
shifts.

4.5 Proposed design algorithm
Here, we introduce some definitions and a specific nota-
tion. Then, the construction for the proposed codes is
carried out by the pseudo-code previously introduced
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in Algorithm 2, along with appropriate initialization and
using the indicator vectors defined in the following. In this
work, the scenarios of a block-fading channel with F = 2,
F = 3 and F = 4 are considered. In extending to a greater
number of fadings, F > 4, the general structure presented
is maintained.

4.5.1 Pseudo-code for the PEG-CDRC LDPC algorithm
Initialization: A matrix of size M × N is created with the
identity matrices I, dual diagonal matrices DD and parity
matrices Pi in the correct positions and zeros in all other
positions, as shown in (31) and (32), and similarly for the
code for the F = 3 channel, using instead Hp of (33). We
define the indicator vectors z1, · · · , zF for the cases R = 1

2 ,
R = 1

3 and R = 1
4 respectively as:

z1 = [
01×γ , 11×γ

]T ,

z2 = [
11×γ , 01×γ

]T ,
(34)

z1 = [
01×2χ , 11×χ , 01×χ , 11×χ , 01×χ

]T ,

z2 = [
11×χ , 01×4χ , 11×χ

]T ,

z3 = [
01×χ , 11×χ , 01×χ , 11×χ , 01×2χ

]T ,
(35)

z1 = [
11×3ζ , 01×5ζ , 11×ζ , 01×ζ , 11×ζ , 01×ζ

]T ,

z2 = [
01×3ζ , 11×3ζ , 01×2ζ , 11×2ζ , 01×2ζ

]T ,

z3 = [
11×ζ , 01×ζ , 11×ζ , 01×2ζ , 11×3ζ , 01×4ζ

]T ,

z4 = [
11×ζ , 01×2ζ , 11×ζ , 01×5ζ , 11×3ζ

]T ,
(36)

where γ = N
4 , χ = N

9 and ζ = N
16 .

These indicator vectors are modelled on the basis of
the original PEG algorithm [25], indicating sub-matrices
for which placement is permitted, thus imposing the con-
trolled doping root-LDPC form. The degree sequence as
defined for LDPC codes must be altered to take into
account the structure imposed by Root-LDPC codes,
namely, the identity matrices I, the permutation matrices
Pi, the dual diagonal matrices DD and the parity matri-
ces Hi, of (31), (32) and the multiple uses of (33). The
proposed CDRC-LDPC construction algorithm is then
implemented using Algorithm 2, with the parity-check
matrix suitably initialised with matrices I,DD and distinct
random permutation matrices Pi in the appropriate posi-
tions. The indicator vectors zi are taken from (34), (35)
and (36) for constructing codes of rate R = 1

2 , R = 1
3 and

R = 1
4 respectively.

5 Discussion
In this section, we analyse the advantages and disadvan-
tages of different types of PEG-based root-LDPC codes
discussed in the previous sections.
In terms of performance, the PEG-based root-LDPC

codes are able to get closer to the outage curve than their
counterpart root-LDPC codes. However, the complexity
of encoding standard PEG-based root-LDPC codes can be
prohibitive for some hardware implementations.
The quasi-cyclic PEG-based root-LDPC codes have the

advantage of performing better than quasi-cyclic root-
LDPC codes and both codes require low memory to
store the parity-check matrix. Moreover, quasi-cyclic-
based LDPC codes can be encoded by using simple shift
registers.
RA PEG-based root-LDPC codes have the advantage

of being simple to encode and also simple to design the
parity-check matrix. Furthermore, the parity part of an
RA-based parity-check matrix is a dual diagonal which is
straightforward to obtain the generator matrix ([27] pp.
267–279). Such codes perform very close to the channel
capacity which is usually upper-bounded by the outage
curve. In addition, RA-based LDPC codes can provide:
low complexity to encode, simplicity on the design of
the parity-check matrix and low memory is required to
store them. On the other hand, the main limitation of
RA-based codes is the code rate, which cannot be higher
than 1

2 .
In the case of unstructured full-diversity LDPC codes,

they draw an important path in terms of designing the
parity-check matrix which avoids the constraints that
must be imposed to produce root-check-based LDPC
codes. Nonetheless, they require a more complex encod-
ing process which is the same complexity as the case of
random LDPC codes.
As discussed previously, the PEG-controlled doping

root-LDPC codes are able to guarantee full diversity for
the parity check bits. These LDPC codes are relevant
for the case of IDD in MIMO systems. The results pre-
sented in [31] demonstrate how useful are PEG-CDRC
LDPC codes for MIMO systems in a block-fading chan-
nel. In addition, our proposed PEG-CDRC LDPC codes
have the advantage of being RA-based encodable which
are simple to encode and the parity-check matrix is easily
designed.

6 Simulations
The performance of the proposed PEG-based root-LDPC
codes for block-fading channels with F = 2, F = 3 and
F = 4 independent fading blocks is analysed. The block
length of the codes for rates R = 1

2 and R = 1
4 is N =

1024 while for rate R = 1
3 the block length is N = 900.

Iterative message passing is employed at the decoder with
a maximum of 5 iterations for rate R = 1

2 and for rates
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R = 1
3 and R = 1

4 a maximum of 20 iterations were used.
The Gaussian outage limit in (3) is drawn in dashed line in
each figure for reference.
In Fig. 4, we compare the FER performance among the

proposed PEG-CDRC LDPC codes, IRA PEG root-LDPC
code, IRAA PEG root-LDPC codes, QC-PEG-root-LDPC
and PEG-root-LDPC, random root-LDPC and PEG-based
LDPC [25] codes, all for R = 1

2 . From the results, it can be
noted that the proposed PEG-CDRC LDPC code, IRAA-
PEG root-LDPC code and PEG-root-LDPC code achieve
the same FER performance. Moreover, note that all root-
check-based codes are able to achieve the full diversity
order of the channel, while (non root-check based) PEG
LDPC codes fail to achieve full diversity. The PEG-based
root-LDPC codes outperform the PEG LDPC code by
7.5 dB at a FER between 10−2 and 10−3.

In Fig. 5, we compare the FER performance between the
proposed PEG-CDRC LDPC, QC-PEG-root-LDPC, IRA
PEG root-LDPC code, IRAA PEG root-LDPC codes, QC-
PEG LDPC codes and PEG-root-LDPC code, all for R = 1

3 .
From the results, it can be seen that the best performance
is achieved by the proposed quasi-cyclic PEG root-LDPC
code. IRA-PEG root-LDPC and IRAA-PEG root-LDPC
have in average the same performance in terms of FER.
The PEG-CDRC LDPC code is performing marginally
worse than IRA and IRAA PEG root-check based LDPC
codes. It was required to sacrifice the FER performance of
the proposed PEG-CDRC LDPC codes to guarantee the
full diversity of the parity check bits. Moreover, note that
the proposed CDRC-LDPC code outperforms the QC-
PEG LDPC code consistently across the range of FER con-
sidered, with an improvement of 2 dB below a FER of 10−3.

10 12 14 16 18 20 22 24 26
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10
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0

E
b
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0
 in dB

F
E

R

Code Rate R = 1/2

PEG LDPC
Random Root−LDPC
PEG−CDRC LDPC
IRA−PEG Root−LDPC
IRAA−PEG Root−LDPC
PEG−Root−LDPC
Quasi−Cyclic PEG Root−LDPC
outage Gaussian

Fig. 4 FER performance F = 2. FERperformance for the PEG-CDRC LDPC, IRA-PEG root-LDPC, IRAA-PEG root-LDPC, PEG-root-LDPC, random root-LDPC
and PEG LDPC codes over a block-fading channel with F = 2 and N = 1024 bits. The maximum number of iterations is 5
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Fig. 5 FER performance F = 3. FER performance for the CDRC-LDPC, QC-PEG-root-LDPC , IRA-PEG root-LDPC, IRAA-PEG root-LDPC and QC-PEG
LDPC codes over a block-fading channel with F = 3 and N = 900 bits. The maximum number of iterations is 20

The proposed QC-PEG-root-LDPC code outperforms the
QC-PEG LDPC code by about 3.5 dB, also between a FER
of 10−3 and 10−4.
In Fig. 6, we compared the FER performance between

the proposed PEG-CDRC LDPC, QC-PEG-root-LDPC
codes, IRA-PEG-root-LDPC and QC-PEG LDPC codes
all for R = 1

4 . The codeword length is N = 1024 bits.
From the results, it can be noted that the proposed
PEG-CDRC LDPC code outperforms the QC-PEG LDPC
code by about 1.5 dB while the proposed QC-PEG-root-
LDPC code outperforms the QC-PEG LDPC code by
about 2.5 dB. In addition, note that only the PEG-based
root-LDPC codes are able to achieve the full-diversity
order of the channel. For the PEG-CDRC LDPC code,
the FER of the whole code word is also included at both

20 and 100 maximum decoder iterations. Note that the
whole code word error rate at 20 maximum decoder
iterations is dominated by the unsatisfactory perfor-
mance of the parity bits, but at the higher maximum
number of decoder iterations the whole code word FER
has converged to that of the information bits, demon-
strating that the controlled doping has had the desired
effect. Recall that the doping used leads to p∞ = 100 %,
which is the percentage of variable nodes corrected
after an arbitrarily large number of decoder iterations,
and so this behaviour is expected from the PEG-CDRC
code. Finally note that both IRA-PEG-root-LDPC and
PEG-CDRC codes exhibit a loss in performance with
respect to the QC-PEG-root-LDPC code. This results
from the combined repeat-accumulate and root-LDPC
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Fig. 6 FER performance F = 4. FER performance for the PEG-CDRC LDPC, QC-PEG-root-LDPC and QC-PEG LDPC codes over a block-fading channel
with F = 4 and N = 1024 bits. The maximum number of iterations is 20

structures found in the graphs of those codes, which
offer a reduction in encoding complexity and diversity-
achieving performance at the expense of reduced coding
gain.
Figure 7 shows the average number of iterations re-

quired by the proposed PEG-CDRC LDPC codes, IRA
PEG root-LDPC code, IRAA PEG root-LDPC codes, PEG-
root-LDPC, random root-LDPC and PEG-based LDPC
[25] codes, all for R = 1

2 . The decoder was operated to
a maximum of 5 iterations and with the zero syndrome
stopping criterion in place. For the entire SNR region,
in average, we can observe that the proposed PEG root-
check-based LDPC codes require less decoding iterations
than standard PEG LDPC code. It must be mentioned that
for medium to high SNR the average required number of
iterations is less than 2 iterations. The average number

of iterations, less than 2 at medium to high SNR, corrob-
orates with hardware friendly capabilities of structured
LDPC codes [8].

7 Conclusion
Novel PEG-based algorithms have been proposed to
design controlled doping root-LDPC codes, IRA root-
LDPC codes, IRAA root-LDPC codes and quasi-cyclic
root-LDPC codes for F ≥ 2 fading blocks. Based on
simulations, the proposed methods were compared to
non-root-LDPC codes. The results demonstrate that
the root-check-based LDPC codes generated by our
proposed algorithm outperform standard LDPC codes.
Furthermore, for the case of rate R = 1

2 the PEG-
based root-LDPC codes outperform the PEG LDPC code
by about 7.5 dB. As mentioned before, the proposed
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Fig. 7 Iterations performance comparison for F = 2. Average number of required iterations for the proposed PEG-CDRC LDPC codes, IRA PEG
root-LDPC code, IRAA PEG root-LDPC codes, PEG-root-LDPC, random root-LDPC and PEG-based LDPC codes with codeword length N = 1024 bits
over a block-fading channel with F = 2. Maximum number of iterations 5

PEG-CDRC LDPC codes are RA-based LDPC codes
which are simple to encode and the parity-check matrix
can be easily designed.
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