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Abstract

This paper considers a transmission control problem in network-coded two-way relay channels (NC-TWRC), where
the relay buffers randomly arrived packets from two users, and the channels are assumed to be fading. The problem is
modeled by a discounted infinite horizon Markov decision process (MDP). The objective is to find an adaptive
transmission control policy that minimizes the packet delay, buffer overflow, transmission power consumption and
downlink error rate simultaneously and in the long run. By using the concepts of submodularity, multimodularity and
L�-convexity, we study the structure of the optimal policy searched by dynamic programming (DP) algorithm. We
show that the optimal transmission policy is nondecreasing in queue occupancies and/or channel states under
certain conditions such as the chosen values of parameters in the MDP model, channel modeling method, and the
preservation of stochastic dominance in the transitions of system states. Based one these results, we propose to use
two low-complexity algorithms for searching the optimal monotonic policy: monotonic policy iteration (MPI) and
discrete simultaneous perturbation stochastic approximation (DSPSA). We show that MPI reduces the time complexity
of DP, and DSPSA is able to adaptively track the optimal policy when the statistics of the packet arrival processes
change with time.

Keywords: Cross-layer optimization, Discounted Markov decision process, Discrete stochastic approximation,
Dynamic programming, L�,-convexity, Multimodularity, Network coding, Submodularity

1 Introduction
Network coding (NC) was proposed in [1] to maxi-
mize the information flow in a wired network. It was
introduced in multicast wireless communications to opti-
mize the throughput and has attracted significant interest
recently due to the rapid growth in multimedia applica-
tions [2]. It was shown in [3] that the power efficiency
in wireless transmission systems could be improved by
NC. For example, in a 3-node network system, called the
network-coded two-way relay channels (NC-TWRC) [4]
as shown in Fig. 1, the messages m1 and m2 are XORed
at the relay and broadcast to the end users. This method,
compared to the conventional store-and-forward trans-
mission, reduces the total number of transmissions from
4 to 3 so that the transmission power is saved by 25%.
Since then, numerous optimization problems have been
studied in NC-TWRC, e.g., the precoding scheme design
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proposed in [5], the optimal achievable sum-rate prob-
lem studied in [6] and the optimal beamforming method
proposed in [7].
In [8], Katti et al. pointed out the importance of being

opportunistic in practical NC scenarios. It was suggested
that the assumptions in the related research work should
comply with the practical wireless environments, e.g.,
decentralized routing and time-varying traffic rate. This
suggestion highlighted a problem in the existing literature;
the majority of the studies (e.g., [9, 10]) consider static
environments (e.g, synchronized traffic) while ignoring
the stochastic nature of the packet arrivals in the data
link layer. On the other hand, the randomness of traffic
in Fig. 1 poses the problem of how to make an optimal
decision in a dynamic environment with a power-delay
tradeof;: when there are packet inflows in the relay but
no coding opportunities or XORing pairs (e.g., one packet
arrives from one user, but no packet arrives from the
other), waiting for coding opportunities by holding pack-
ets saves transmission power but increases packet delay
and results in more packets to be transmitted in the
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Fig. 1 NC-TWRC [4]. Two users exchange information (m1 andm2) via
the center node R (stands for relay)

future. Since a decision made at any instant affects both
the immediate and future costs, the decision-making is a
dynamic, instead of a one-time, process, i.e., the objec-
tive is to determine a decision rule that is optimal over
time. In [11, 12], this problem was studied and solved by
a cross-layer design, NC-TWRC with buffering. The opti-
mal policy by Markovian process formulation was shown
to minimize the transmission power and packet delay
simultaneously and in the long run. In [13], the buffer-
assistedNC-TWRCwas extended to include the dynamics
of wireless channels (Fig. 2). In this system, a transmission
policy that solves power-delay tradeoff may not be the best
decision rule because it does not consider the possible loss
in throughput due to the downlink transmission errors.
For this reason, the scheduler is required to make an
optimal decision that simultaneously minimizes the trans-
mission power, packet delay, downlink BER in the long run
by considering current queue and channel states and their
expectations in the future. In [13], this problem was for-
mulated by a discounted infinite horizonMarkov decision
process (MDP) [14] with channels modeled by finite-state
Markov chains (FSMCs) [15]. The optimal transmission
policy was shown to be superior to [11, 12] in terms of
enhancing the QoS (quality of service, evaluated by packet
delay and overflow in the data link layer, and power con-
sumption and error rate in the physical layer) in a practical
wireless environment, e.g., Rayleigh fading channels.
The optimal policy of a discounted infinite horizon

MDP can be found by dynamic programming (DP) [16],
value or policy iterations. However, the DP algorithm
is burdened with high complexity. In Fig. 2, the sys-
tem state is a 4-tuple (two channels and two queues),
and the decision/action is a 2-tuple (each associated with
the departure control of one queue). In such a high

dimensional MDP, the curse of dimensionality1 becomes
more evident [17]; the computation load grows quickly if
the cardinality of any tuple in the state variable is large.
To relieve the curse, one solution is to qualitatively under-
stand the model and prove the existence of a monotonic
optimal policy [18]. Then, a low complexity algorithm or a
model-free learning method can be proposed, e.g., simul-
taneous perturbation stochastic approximation (SPSA)
[19, 20]. But, monotonic optimal policy does not exist in
general. Most often, optimal policy exists, but it varies
with the state variable irregularly. In order to prove the
existence of certain feature in the optimal policy, we need
to extensively analyze the MDP model and the recur-
sive functions in DP algorithm. The basic approach in
the existing literature is to show by induction that the
submodularity is preserved in each iterative optimization
process (maximization/minimization) in DP, e.g., [19, 21].
We adopt the same method in this paper but consider a
submodularity in high dimensional cases. Moreover, we
use L�-convexity and multimodularity, two concepts that
were originally defined in discrete convex analysis [22, 23],
to describe the joint submodularity and integral convexity
in a high dimensional space.
The aim of our work is to prove the existence of a

monotonic optimal transmission policy in the NC-TWRC
system in Fig. 2. By observing the L�-convexity and sub-
modularity of DP function, we derive the sufficient condi-
tions for the optimal policy to be nondecreasing in queue
and/or channel states. These structured results are used to
derive two low complexity algorithms: monotonic policy
iteration (MPI) and discrete simultaneous perturbation
stochastic approximation (DSPSA). We compare the time
complexity ofMPI to that of DP and show the convergence
performance of DSPSA algorithm. Themain results in this
paper are:

• We prove that each tuple in the optimal policy is
nondecreasing in the queue state that is controlled by
that tuple if the chosen values of unit costs in
immediate cost function give rise to an L�-convex or
multimodular DP. Moreover, we show that the same
results found in [19, 21] can also be explained by

Fig. 2 NC-TWRC with random packet arrivals and fading channels [13]. The incoming packets are buffered by two finite length first-in-first-out (FIFO)
queues. The outflows are controlled by a scheduler
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L�-convexity or multimodularity by a unimodular
coordinate transform.

• By thinking of each iteration in DP as a one-stage
pure coordination supermodular game, we show that
equiprobable traffic rates and certain conditions on
unit costs guarantee that each tuple in the optimal
policy is monotonic in not only the queue state that is
controlled by that tuple but also the queue state that
is associated with the information flow of the
opposite direction, i.e., the one that is not under the
control of that tuple.

• By observing the submodularity of DP, we show the
sufficient conditions for an optimal policy to be
nondecreasing in both queue and channel states in
terms of unit costs, channel statistics, and FSMC
models.

• Based on the submodularity, multimodularity, and
L�-convexity of DP, we show that the optimal
transmission control problem in Fig. 2 can be solved
by two low-complexity algorithms. One is MPI, a
modified DP algorithm with the action searching
space progressively shrinking with the increasing
indices of queue and/or channel states. It is shown
that the time complexity of MPI is much less than
that of DP when the cardinality of system state is
large. The other algorithm is a stochastic
optimization method. We formulate the optimal
policy searching problem by a minimization problem
over a set of queue thresholds and use the DSPSA
algorithm to approximate the minimizer. We show
that DSPSA is able to adaptively track the optimal
values of queue thresholds when the statistics of
packet arrival processes change with time. We run
simulations in NC-TWRC with Rayleigh fading
channels to show that the average cost incurred by
the policy approximated by DSPSA is similar to that
incurred by the optimal policy searched by DP.

The rest of this paper is organized as follows. In
Section 2, we state the optimization problem in NC-
TWRC with random packet arrivals and FSMC modeled
channels and clarify the assumptions. In Section 3, we
describe the MDP formulation, state the objective, and
present the DP algorithm. In Section 4, we investigate the
structure in the optimal transmission policy found by DP
algorithm in queue and channel states. Section 5 presents
MPI and DPSA algorithms.

2 System
Consider the NC-TWRC shown in Fig. 2. User 1 and 2
randomly send packets to each other via the relay. The
relay is equipped with two finite-length FIFO queues,
queue 1 and 2, to buffer the incoming packets from
user 1 and 2, respectively. The outflows of queues are

controlled by a scheduler. The scheduler keeps making
decisions as to whether or not to transmit packets from
queues. If the decision results in a pair of packets in oppo-
site directions transmitted at the same time, they will be
XORed (coded) and broadcast. Otherwise, the packet will
be simply forwarded to the end user. The objective is
to minimize packet delay, queue overflow, transmission
power (saved by utilizing the coding opportunities), and
downlink transmission errors simultaneously and their
expectations in the future. Obviously, the optimization
concerns are contradictory to each other: (1) If there does
not exist a pair of packets for XORing, waiting for coding
opportunity by holding packets results in a high packet
delay on average, while transmitting a packet without cod-
ing results in one more packet to be transmitted in the
future, i.e., more transmission power on average; (2) If the
SNR of one channel is low, waiting for high SNR tran-
sition by holding packets results in higher packet delay
but lower transmission error rate. Therefore, the sched-
uler must seek an optimal decision rule that solves this
power-delay-error tradeoff.
It should be pointed out that the problem under consid-

eration is a cross-layer multi-objective optimization one;
we want to optimize both the power consumption and
transmission error rate in the physical layer and the packet
delay in the data link layer. As discussed above, since
there are tradeoffs among these optimization metrics, it is
not possible to get all of them optimized simultaneously.
Therefore, in this paper, we are actually seeking the Pareto
optimality of these optimization metrics.2

2.1 Assumptions
We consider a discrete-time decision-making process,
where the time is divided into small intervals, called deci-
sion epochs and denoted by t ∈ {0, 1, . . . ,T}. Let i ∈ {1, 2}
and assume the following:

A1 (i.i.d. incoming traffic) Denote random variable
f (t)
i ∈ Fi as the number of incoming packets to queue
i at decision epoch t. Let the maximum number of
packets arrived per decision epoch be no greater than
1, i.e., Fi = {0, 1}. Assume that

{
f (t)
1

}
and

{
f (t)
2

}
are

two independent i.i.d. random processes with
Pr

(
f (t)
i = 1

)
= pi and Pr

(
f (t)
i = 0

)
= 1−pi for all t.

A2 (modulation scheme) Packets are of equal length.
The packets arrived at the relay are decoded and
stored in the queues. The relay transmits packets by
BPSK modulation. Denote LP the packet length in
bits. Since the maximum information flow is one
packet per decision epoch, each decision epoch lasts
for LP symbol durations. The relay can set a certain
field in the header of a packet so as to notify the
receivers whether the packet is XORed or not.
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A3 (finite-length queues) Queue i can store maximum
Li packets. At each t, the scheduler makes a decision
and incurs an immediate cost before the event
f(t) =

(
f (t)
1 , f (t)

2

)
. Denote b(t)

i ∈ Bi as the occupancy
of queue i at the beginning of decision epoch t, then
Bi =

{
0, 1, . . . , Li + max

{
f (t−1)
i

}}
=

{0, 1, . . . , Li + 1}. If the relay’s decision results in
queue occupation Li + 1, the newly arrived packet
will be dropped. We call it packet lost due to the
queue overflow.

A4 (Markovian channel modeling) Let the full variation
range of γ (t)

i , the instantaneous SNR of channel i, be
partitioned into Ki non-overlapping regions
{[�1,�2), [�2,�3), . . . , [�Ki ,∞)}, called channel
states. Here, the SNR boundaries satisfy
�1 < �2 < . . . < �Ki . Denote Gi = {1, 2, . . . ,Ki} as
the state set of channel i and g(t)

i as the state of
channel i at decision epoch t. We say that g(t)

i = ki if
γ

(t)
i ∈ [�ki ,�ki+1). Each channel is modeled by a

finite-state Markov chain (FSMC) [15], where the
state evolution of channel i is governed by the
transition probability Pg(t)

i g(t+1)
i

= Pr
(
g(t+1)
i |g(t)

i

)
.

A5 (downlink channel state information) Let
{
g(t)
1

}
and{

g(t)
2

}
be two independent and i.i.d. random

processes. The relay has the channel state
information (the value of channel state and its
transition probabilities) of both channels before the
decision making at t.

3 Markov decision process formulation
Based on A1, A4, and A5, we know that the statistics of
the incoming traffic flow and channel dynamics associ-
ated with user 1 or 2 are time-invariant. It follows that
the transmission control problem in Fig. 2 can be formu-
lated as a stationary Markov decision process (MDP). In
the following context, we drop the decision epoch nota-
tion t in A1-A5 and use the notation y and y′ for the
system variable y at the current and next decision epochs,
respectively.

3.1 System state
Denote the system state x = (b, g) ∈ X , where b =
(b1, b2) ∈ B1 × B2 and g = (g1, g2) ∈ G1 × G2, i.e.,
X = B1 ×B2 ×G1 ×G2. × denotes the Cartesian product.
We also use the 4-tuple notation x = (b1, b2, g1, g2) in the
following context.

3.2 Action
Denote action a = (a1, a2) ∈ A, where ai ∈ Ai = {0, 1}
denotes the number of packets departed from queue i and
A = A1 × A2 = {0, 1}2. The terminology of actions are
shown in Table 1.

Table 1 Action set

a Action itemize

(0, 0) No transmission

(1, 0) Forward one packet in queue 1

(0, 1) Forward one packet in queue 2

(1, 1) XOR two packets one in each queue, then broadcast.

3.3 State transition probabilities
The transition probability Paxx′ = Pr(x′|x, a) denotes the
probability of being in state x′ at next decision epoch if
action a is taken in state x at current decision epoch. Due
to the assumptions of independent random processes in
A1 and A5, the state transition probability is given by

Paxx′ = Pabb′Pgg′ =
2∏

i=1
Paibib′

i
Pgig′

i
, (1)

where Pgig′
i
is determined by channel statistics and FSMC

modeling method in A4 and Paibib′
i
is the queue state transi-

tion probability. At current decision epoch, the occupancy
of queue i after decision ai is min{[bi − ai]+ , Li}, where
[y]+ = max{y, 0}. The occupancy at the beginning of the
next decision epoch is given by

b′
i = min

{
[bi − ai]+ , Li

} + fi. (2)

Therefore, the state transition probability of queue i is

Paibib′
i
= Pr

(
fi = b′

i − min
{
[bi − ai]+ , Li

})
= Pr

(
fi = b′

i − [bi − ai]+ + I{[bi−ai]+>Li}
)

=
{
Pr

(
fi = b′

i − [bi − ai]+
)
[bi − ai]+ ≤ Li

Pr
(
fi = b′

i − Li
)

[bi − ai]+ > Li
,

(3)

where I{·} is the indicator function that returns 1 if the
expression in {·} is true and 0 otherwise.

3.4 Immediate cost
C : X × A → R+ is the cost incurred immediately after
action a is taken in state x at current decision epoch. It
reflects three optimization concerns: the packet delay and
queue overflow, the transmission power, and the downlink
transmission error rate.

3.4.1 Holding and overflow cost
We define hi, the holding and queue overflow cost associ-
ated with queue i, as

hi(yi) = λmin{[ yi]+ , Li} + ξoI{[yi]+=Li+1}
= λ[ yi]+ +(ξo − λ)I{[yi]+=Li+1}. (4)

λ > 0 is the unit holding cost and ξo > λ is the unit
queue overflow cost, which makes hi(yi) a nondecreas-
ing convex function. In the case when yi = bi − ai,
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min{[ yi]+ , Li} and I{[yi]+=Li+1} count the number of pack-
ets held in queue i and the number of packets lost due
the overflow of queue i, respectively. We say that the term
λmin{[ yi]+ , Li} accounts for the packet delay because by
Little’s Law, the average packet delay is proportional to the
average number of packets held in the queue in the long
run for a given packet arrival rate [24]. We sum up hi for
i ∈ {1, 2} and obtain the total holding and overflow cost as

Ch(b, a) =
2∑

i=1
hi(bi − ai). (5)

3.4.2 Transmission cost
Since forwarding and broadcasting one packet, either
coded or non-coded, consume the same amount of energy,
we have the immediate transmission cost as

tr(a) = τI{a1=1 or a2=1} =
{
0 a = (0, 0)
τ otherwise , (6)

where τ > λ is the unit transmission cost and
I{a1=1 or a2=1} counts the number of transmissions result-
ing from action a.
Note that (5) and (6) form a power-delay tradeoff. A

policy that always transmits whenever there is an incom-
ing packet without considering coding opportunities in
the long run is penalized by (6), and a policy that always
holds packet to wait for coding opportunities without
considering the average packet delay is penalized by (5).

3.4.3 Packet error cost
Since packet errors in downlink transmissions happen
only when we decide to transmit, we define the immediate
packet error cost due to the action ai as

err(g−i, ai) = ηaiPe(g−i), (7)

where η is the unit packet error cost and −i ∈ {1, 2} \ {i},
i.e., −i = 2 if i = 1, and −i = 1 if i = 2. The reason we
have err(g−i, ai) is because the packet departing queue i is
transmitted through channel −i, e.g., the relay sends one
packet in queue 1 through fading channel 2 when a1 = 1.
Pe(gi) is estimation of the average BER when transmitting
a packet, either coded or non-coded, through channel i
when the state is gi. Since BPSK modulation is used at the
relay, we define Pe as

Pe(gi) = 1
2
erfc(

√
�gi). (8)

Here, Pe(gi) ≤ 0.5 because �1 ≥ 0 in A4.
Note, the aforementioned power-delay tradeoff formed

by (5) and (6) just poses the problem of whether or not to
transmit if an instantaneous packet inflow is not able to
form an XORing pair. However, if the scheduler consid-
ers downlink transmission error rate in addition, a policy
that always broadcasts XORed packets whenever there is

a coding opportunity without considering downlink chan-
nel states is penalized by (7). Therefore, (5), (6), and (7)
form a power-delay-error tradeoff.
In summary, we define the immediate cost as

C(x, a) = C(b, g, a) = Ch(b, a) + Ct(g, a), (9)

where

Ct(g, a) =
2∑

i=1
err(g−i, ai) + tr(a). (10)

Here, C(x, a) is in fact a linear combination of loss func-
tions (each quantifies an optimization concern). The unit
cost λ, ξo, τ , and η can be considered as the weight fac-
tors that are either given or adjustable depending on the
real applications. In Section 4, we will derive the sufficient
conditions of the existence of a structured optimal policy
mainly in terms of the chosen values of these unit costs.

3.5 Objective and dynamic programming
Let x(t) and a(t) denote the state and action at decision
epoch t, respectively, and consider an infinite-horizon
MDP modeling where the discrete decision making pro-
cess is assumed to be infinitely long. We can describe the
long-run objective as

minE
[ ∞∑
t=0

βtC
(
x(t), a(t)

)
|x(0)

]
,∀x(0) ∈ X , (11)

where x(t+1) ∼ Pr(·|x(t), a(t)) and β ∈ [ 0, 1) is the dis-
counted factor that ensures the convergence of the series.
It is proved in [14] that if the state space X is countable,
the action setA is finite, and the MDP is stationary, there
exists a deterministic stationary policy θ∗ : X → A that
optimizes (11), and θ∗ can be searched by DP

V (n)(x) = min
a∈A Q(n)(x, a),∀x ∈ X , (12)

where

Q(n)(x, a) = C(x, a) + β
∑
x′∈X

Paxx′V (n−1)(x′). (13)

Here, n denotes the iteration index and V (0)(x) =
0 for all x. Usually, a very small convergence thresh-
old ε > 0 is applied so that DP terminates when∣∣V (N−1)(x) − V (N)(x)

∣∣ ≤ ε for all x and N <

∞.3 The optimal policy is obtained as θ∗(x) =
argmina∈A Q(N)(x, a).
As discussed in Section 2, the problem under consider-

ation is a cross-layer multi-objective one. When defining
the immediate cost function (9), we use scalarization
technique, i.e., C(x, a) is a weighted sum of the holding
and packet overflow costs incurred in the data link layer
and the transmission power consumption and error rate
incurred in the physical layer. Therefore, the optimal pol-
icy θ∗ is in fact a Pareto optimal solution.4 It should be
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clear that a Pareto optimal solution is not optimal if we
just consider an individual optimization metric, e.g., θ∗ is
not the optimal solution if we just want to minimize the
power consumption in the physical layer.

4 Structured optimal policies
The time complexity in iteration n in DP is O(|X |2|A|).
There are |X | minimization operations, each of which
requires |A| calculations of Q(n), and each Q(n) value
requires |X | multiplications over state x′. Since |X | =
|B1||B2||G1||G2|, the complexity grows quadratically if the
cardinality of any tuple in the state variable increases.
If the node-to-node transmission in NC-TWRC is via
multiple channels (e.g., single-user MIMO channels), the
complexity grows exponentially with the number of user-
to-relay channels, which may severely overload the CPU.
In this section, we investigate the submodularity, L�-
convexity and multimodularity of functions Q(n)(x, a) and
V (n)(x) in DP to establish the sufficient conditions for
the existence of a monotonic optimal policy. These results
serve as the prerequisites for the low complexity algo-
rithms proposed in Section 5. We first clarify some con-
cepts as follows.

Definition 4.1 (Monotonic policy). Let θ : Zn → Z
m,

θ(x) is monotonic nondecreasing if θ(x+) � θ(x−), for
all x+, x− ∈ Z

n such that x+ � x−, where � denotes
componentwise greater than or equal to.

Definition 4.2 (Submodularity [23, 25]). Let ei ∈ Z
n be

an n-tuple with all zero entries except the ith entry being
one. f : Zn → R+ is submodular if f (x + ei) + f (x + ej) ≥
f (x) + f (x + ei + ej) for all x ∈ Z

n and 1 ≤ i, j ≤ n. f is
strictly submodular if the inequality is strict.

In DP, a submodular function Q(n)(x, a) has
Q(n)(x, a−) − Q(n)(x, a+) nondecreasing in x for all
a+ � a−, i.e., the preference of choosing action a+ over
a− is always nondecreasing in x. Therefore, an increase in
the state variable x implies an increase in the decision rule
θ(n)(x) = minaQ(n)(x, a). This property is summarized in
a general form in the following lemma.

Lemma 4.3. If g : Zn → R+ is submodular in (x, y) ∈
Z
n, then f (x) = miny g(x, y) is submodular in x, and the

minimizer y∗(x) = argminy g(x, y) is nondecreasing in x
[26].

Definition 4.4 (L�-convexity [23]). f : Zn → R+ is L�-
convex ifψ(x, ζ ) = f (x−ζ1) is submodular in (x, ζ ), where
1 = (1, 1, . . . , 1) ∈ Z

n and ζ ∈ Z.

Definition 4.5 (multimodularity [23]). f : Zn → R+ is
multimodular ifψ(x, ζ ) = f (x1−ζ , x2−x1, . . . , xn−xn−1)
is submodular in (x, ζ ), where ζ ∈ Z.

L�-convexity and multimodularity are two concepts
defined in discrete convex analysis [27]. L�-convexity
implies submodularity while multimodularity implies
supermoduarity5 [28]. They both contribute to a mono-
tonic structure in the optimal policy.

Lemma 4.6. If g : Zn → R+ is L�-convex/multimodular
in (x, y) ∈ Z

n, then f (x) = miny g(x, y) is L�-
convex/multimodular in x, and the minimizer y∗(x) =
argminy g(x, y) is nondecreasing/nonincreasing in x
[28, 29].

The unimodular coordinate transform below des-
cribes the relationship between L�-convexity and
multimodularity.

Lemma 4.7 (unimodular coordinate transform [23, 28]).

Let matrix Mn,i =
[ −Ui 0

0 Ln−i

]
, where Ui and Li are the

i × i upper and lower triangular matrix with all nonzero
entries being one, respectively, then

(a) a function f : Zn → R+ is multimodular if and only
if it can be represented by f (x) = g(±Mn,ix) for
some L�-convex function g.

(b) a function g : Zn → R+ is L�-convex if and only if it
can be represented by g(x) = f

(
±M−1

n,i x
)
for some

multimodular function f.

Definition 4.8 (First order stochastic dominance [18]).
Let ρ̃(x) be a random selection on space X according
to a probability measure μ(x) where x conditions the
random selection, then ρ̃(x) is first order stochastically
nondecreasing in x if E[u(ρ̃(x+))]≥ E[u(ρ̃(x−))] for all
nondecreasing functions u and x+ ≥ x−.

4.1 Structured properties of dynamic programming
To propose the prototypical procedure of proving the exis-
tence of a monotonic optimal policy, we first define a P�

property as follows:

Definition 4.9 (P� property). f : Zn → R+ has P�

property in (x, y) ∈ Z
n if f ∗(x) = miny f (x, y) has P�

property in x and y∗(x) = argminx f (x, y) is monotonic
(nondecreasing/nonincreasing) in x.

Theorem 4.10. Submodularity, L�-convexity andmulti-
modularity have P�property.

Proof. It can be directly proved by Lemma 4.3 and
Lemma 4.6.

We therefore propose an approach, similar to Proposi-
tion 5 in [18], as follows:
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Proposition 4.11. Let DP converge at Nth iteration. The
optimal value function V ∗(x) = V (N)(x) has P�property,
and the optimal policy θ∗ is monotonic in x, if:

(a) C(x, a) has P�property,
(b) Q(n)(x, a) = C(x, a) + β

∑
x′∈X Paxx′V (n−1)(x′) has P�

property for all P�property functions V (n−1) and n.

Proof. Since DP starts from V (0)(x) = 0 for all x ∈
X , Q(1) = C(x, a) has P� property. So V (1)(x) =
mina∈A Q(1)(x, a) has P� property. By induction, assume
V (n−1)(x, a) has P� property. Then Q(n) and V (n)(x) =
mina∈A Q(n)(x, a) have P� property. Therefore, Q(N)(x, a)
and V ∗(x) = V (N)(x) must also possess P�property, and
θ∗(x) = argmina∈A Q(N)(x, a) is monotonic in x.

4.2 Monotonic policies in queues states
4.2.1 Nondecreasing a∗

i in bi
Let the optimal action be a∗ = θ∗(x) = (θ∗

1 (x), θ∗
2 (x)).

a∗
i = θ∗

i (x) is the optimal action to queue i determined by
θ∗. The following theorem shows that the optimal action
a∗
i is monotonic in bi, the state of queue being controlled

by ai if the unit costs satisfy a certain condition.

Theorem 4.12. If ξo ≥ 2λ + η + τ ,6 then for all i ∈
{1, 2}C(x, a) andQ(n)(x, a) are nondecreasing in bi and L�-
convex in (bi, ai), V ∗(x) is nondecreasing and L�-convex in
bi, and the optimal action a∗

i is nondecreasing in bi.

Proof. We define two functions

C̃(y, g, a) = C̃h(y) + Ct(g, a), (14)

where C̃h(y) = ∑2
i=1 hi(yi) and

Q̃(n)(y, g, a) = C̃(y, g, a) + βEg′
[
V (n−1)
f (y, g′)

∣∣∣g]. (15)

Here,

V (n−1)
f (y, g′)=Ef

[
V (n−1)(min{[ y1]+, L1} + f1,min{[ y2]+ , L2} + f2, g′)

]
,

(16)

y = ( y1, y2) and f = ( f1, f2). It is easy to see that
C(b, g, a) = C̃(b − a, g, a) and Q(n)(b, g, a) = Q̃(n)(b −
a, g, a). Since[

bi − ai
ai

]
=

[
1 −1
0 1

] [
bi
ai

]
= −M−1

2,2

[
bi
ai

]
, (17)

according to Lemma 4.7(b), it follows that proving the
L�-convexity of C(b, g, a) and Q(n)(b, g, a) in (bi, ai) is
equivalent to showing the multimodularity of C̃(y, g, a)
and Q̃(n)(y, g, a) in (yi, ai). It is also clear that the mono-
tonicity of C(b, g, a) and Q(n)(b, g, a) in bi is equivalent to
the monotonicity of C̃(y, g, a) and Q̃(n)(y, g, a) in yi. See
Appendix C for the proof of the monotonicity and multi-
modularity of C̃(y, g, a) and Q̃(n)(y, g, a) in yi and (yi, ai),
respectively.

According to Proposition 4.7.3 in [14], V ∗(x) is non-
decreasing in bi. By Theorem 4.10 and Proposition 4.11,
V ∗(x) is L�-convex in bi, and a∗

i is nondecreasing in bi.

Note, Theorem 4.12 aligns with the existing results
in the literature, e.g., the adaptive MIMO transmission
control [21] and theMarkov gamemodeled adaptivemod-
ulation of cognitive radio [19]. In fact, both of them can be
explained by L�-convexity. In [21], the monotonicity of a∗

i
in bi was shown by the multimodularity in (bi,−ai). But,[

bi
−ai

]
=

[
1 0
0 −1

] [
bi
ai

]
= −M−1

2,1

[
bi
ai

]
(18)

By Lemma 4.7(b), we know that if the a function is mul-
timodular in (bi,−ai), then it must be L�-convex in (bi, ai).
Consequently, V (n)(x) is integer convex in bi because L�-
convexity in one dimension is exactly integer convexity7.
In [19], the monotonicity of a∗

i was shown by the sub-
modularity of Q(n) in (bi, ai). But, Q(n) is a function of
bi − ai. According to Definition 4.4, the L�-convexity of
g(x1, x2) = f (x1 − x2) in (x1, x2) is equivalent to the sub-
modularity of g(x1, x2) in (x1, x2). SoQ(n) is also L�-convex
in (bi, ai).

4.2.2 Nondecreasing a∗
i in (b1, b2)

We formulate the optimization problem in the nth itera-
tion of DP by a 2-player 2-strategy game, which is called
one-stage game in Fig. 3. Assume that action a1 is taken by
player 1, and a2 is taken by player 2. Obviously, it is a pure
coordination game where the utility −Q(n)(x, (a1, a2)) is
the same to player 1 and 2.
We prove, in Appendix D, that Fig. 3 is a supermod-

ular game with utility function −Q(n)(x, (a1, a2)) strictly
supermodular in a = (a1, a2) for all x and V (n−1)(x′) that
is L�-convex in b′ = (b′

1, b′
2). It is proved in [30] that there

exists at least one equilibrium (a∗
1, a∗

2) in the form of pure
strategy in a supermodular game. Then, we have the fol-
lowing theorem for themonotonicity of the optimal action
a∗
i in b = (b1, b2).

Theorem 4.13. If

(a) ξo ≥ 2λ + η + τ ,

Fig. 3 Utility matrix of one-stage pure coordination game in the nth
iteration in DP. −Q(n) : A1 × A2 → R− is considered the utility
function for a fixed x
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(b) one-stage game (in Fig. 3) has two pure strategy
equilibria (0, 0) and (1, 1) for all x = (b1, b2, g1, g2)
such that bi < Li + 1 for all i ∈ {1, 2},

then C(x, a) and Q(n)(x, a) are L�-convex in (b, a) =
(b1, b2, a1, a2), the optimal value function V ∗(x) is L�-
convex in b = (b1, b2) and the optimal action a∗ = (a∗

1, a∗
2)

is nondecreasing in b = (b1, b2).

Proof. The proof is in Appendix E.

Here is a corollary of Theorem 4.13.

Corollary 4.14. If

(a) ξo ≥ 2λ + η + τ ,
(b) p1 = p2 = 0.5,
(c) β ≤ 2(τ−λ)

τ+η
,

then Theorem 4.13 holds.

Proof. The proof is in Appendix F.

We show examples of Theorems 4.12 and 4.13 in Figs. 4,
5, 6 and 7. The results are collected by value iteration,
a DP algorithm, applied on an NC-TWRC system with
Bernoulli packet arrivals, 5 queue states, and 8 channel
states, i.e., f (t)

i ∼ Bernoulli(pi), Li = 3 and Ki = 8 for
all t and i ∈ {1, 2}. In Fig. 4, we choose the values of unit
costs to make Theorem 4.12 hold. As shown in the figure,
the optimal action a∗

1 and a∗
2 are monotonic in b1 and b2,

respectively, i.e., a∗
i is nondecreasing in the queue state

that is being controlled by ai. In Fig. 5, we change the value
of unit cost ξo to breach the condition in Theorem 4.12 so
that the monotonicity of a∗

i in bi is not guaranteed. In this
case, a∗

1 that is not monotonic in b1.
In Fig. 6, we choose the equiprobable packet arrival rates

p1 = p2 = 0.5 and the unit costs according to Corol-
lary 4.14 to make Theorem 4.13 hold. As shown in the

figure, the optimal action a∗
1 and a∗

2 are both nondecreas-
ing in (b1, b2). As compared to Fig. 4, in this case, a∗

i is
also monotonic in b−i, the queue state that is affected by
the message flow and transmission control in the oppo-
site direction, i.e., the queue state that is not controlled
by ai. In Fig. 7, we switch unit cost η from 1 to 2 so
that Theorem 4.13 no longer holds. In this case, neither
a∗
1 nor a∗

2 is monotonic in (b1, b2). But, the condition in
Theorem 4.12 is satisfied. Therefore, a∗

1 and a∗
2 are still

nondecreasing in b1 and b2, respectively.

4.3 Monotonic policies in channel states
The related research work in the existing literature con-
siders the structure of the optimal policy in queue state
only, e.g., [19, 21, 24]. This section breaks this limitation
in that we extend the investigation of the monotonicity to
the channel states. The main results are summarized as
follows.

Theorem 4.15. If

(a) ξo ≥ 2λ + η + τ ,
(b) Pe( gi) ≥ Pe( gi + 1),
(c) Pgig′

i
is first order stochastic nondecreasing in gi,

(d) β ≤ Pe(gi)−Pe(gi+1)∑
g′i Pgig′i (Pe(g

′
i)−Pe(g′

i+1)) .

then C(x, a) and Q(n)(x, a) is submodular in (bi, g−i, ai),
V ∗(x) is submodular in (bi, g−i), and the optimal action a∗

i
is nondecreasing in (bi, g−i).

Proof. The proof is in Appendix G.

In Theorem 4.15, condition (b) is straightforwardly sat-
isfied because of the definition of Pe in (8) and assumption
A4. Conditions (c) and (d) depend on the fading statistics
and the FSMC modeling method. In fact, condition (c) is
not hard to satisfy.

Fig. 4 The optimal action a∗
1 (left) and a∗

2 (right) vs. queue states b1 and b2 when g1 = 1 and g2 = 2. p1 = 0.1, p2 = 0.2, λ = 0.05, τ = 1, η = 2,
ξo = 4, and β = 0.97. In this case, ξo ≥ 2λ + η + τ . The condition in Theorem 4.12 is satisfied. Therefore, a∗

1 and a∗
2 are nondecreasing in b1 and b2,

respectively
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Fig. 5 The optimal action a∗
1 (left) and a∗

2 (right) vs. queue states b1 and b2 when g1 = 1 and g2 = 2. p1 = 0.1, p2 = 0.2, λ = 0.05, τ = 1, η = 2,
ξo = 1, and β = 0.97. In this case, ξo < 2λ + η + τ . Theorem 4.12 no longer holds. As can be seen, a∗

1 is not monotonic in b1

Corollary 4.16. If the FSMC of channel i adopts
equiprobable partitioning (of the full range of SNR), and
channel i experiences slow and flat Rayleigh fading, then
condition (c) in Theorem 4.15 are satisfied.

Proof. The proof is in Appendix H.

We show examples of Theorem 4.15 in Figs. 8 and
9. In Fig. 8, we use the same system parameters as in
Fig. 4 except that the discount factor β is switched from
0.97 to 0.95 in order to satisfy the inequality in condi-
tion (d) of Theorem 4.15. The results are obtained from
an NC-TWRC system where the channels experience
slow and flat Rayleigh fading with average SNR γ 1 =
γ 2 = 0dB. Both FSMCs are 8-state and adopt equiprob-
able partition method. In this case, all the conditions in
Theorem 4.15 are satisfied according to Corollary 4.16.
Therefore, a∗

1 is nondecreasing in (b1, g2), and a∗
2 is non-

decreasing in (b2, g1). In Fig. 9, we switch γ 2 from 0dB
to 3dB to breach condition (d) in Theorem 4.15. In this
case, a∗

1 is not monotonic in g2. But, since Theorem 4.12
still holds, a∗

1 and a∗
2 are monotonic in b1 and b2,

respectively.

Note, that the related previous studies usually placed
constraints on the environments or the DP functions in
order to prove the structure in the optimal policy. For
example, in [19] the submodularity of the state transi-
tion probability was proved by assuming uniformly dis-
tributed traffic rates, and in [31], the strict submodularity
of Q(n) in DP iterations was assumed to be preserved by
a weight factor in the immediate cost function (however,
the exact value of this factor was not given). In contrast,
the basic result in this paper, Theorem 4.12, is essen-
tially given in terms of unit costs and discount factor, the
parameters in the MDP model. The practical meaning
of Theorem 4.12 can be interpreted in two ways. If the
unit costs and discount factor are adjustable, we can tune
them to get a structured optimal policy. If they are given,
we can check the sufficient conditions for the existence
of a monotonic optimal policy after the MDP modeling.
In addition, we also derive the results, Theorems 4.13
and 4.15 by considering the uniform traffic rates, stochas-
tic dominance of channel transition probabilities and
channel modeling, and modulation scheme in this paper.
They are also applicable if the associated conditions are
satisfied.

Fig. 6 The optimal action a∗
1 (left) and a∗

2 (right) vs. queue states b1 and b2 when g1 = 1 and g2 = 5. p1 = p2 = 0.5, λ = 0.05, τ = 1, η = 1, ξo = 4,

and β = 0.97. In this case, ξo ≥ 2λ + η + τ and β ≤ 2(τ−λ)
τ+η

. According to Corollary 4.14, Theorem 4.13 holds. Therefore, both a∗
1 and a∗

2 are
nondecreasing in (b1, b2)
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Fig. 7 The optimal action a∗
1 (left) and a∗

2 (right) vs. queue states b1 and b2 when g1 = 1 and g2 = 5. p1 = p2 = 0.5, λ = 0.05, τ = 1, η = 2, ξo = 4,

and β = 0.97. In this case, ξo ≥ 2λ + η + τ but β >
2(τ−λ)
τ+η

. Theorem 4.12 holds, while Theorem 4.13 does not. As can be seen, a∗
1 and a∗

2 are
monotonic in b1 and b2, respectively, but a∗

1 is not monotonic in b2

5 Low complexity algorithms
This section considers the question of how to exploit the
results in Section 4 to simplify the optimization process
of problem (11). For this purpose, we present MPI and
DSPSA algorithms for the MDP model in Section 3.

5.1 Monotonic policy iteration
The idea of MPI is to modify (12) as

V (n)(x) = min
a∈A(x)

Q(n)(x, a),∀x (19)

where A(x) ⊆ A is a selection of actions in A =
{(0, 1)}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Let θ(n)(x) =
argmina∈A(x) Q(n)(x, a). Note, θ(n)(x) can be obtained at
the same time when V (n)(x) is calculated. We express
θ(n)(x) as

θ(n)(x) = θ(n)(b1, b2, g1, g2)

=
(
θ

(n)
1 (b1, b2, g1, g2), θ(n)

2 (b1, b2, g1, g2)
)
. (20)

Assume that Theorem 4.13 holds. We can define the
action selection set A(x) as follows. Due to the L�-
convexity of Q(n) in (bi, ai), θ

(n)
i is always nondecreasing

in bi. Therefore, we can defineA(x) as

A(x)=
{
a1∈ {0, 1} : a1≥θ

(n)
1 ([ b1 − 1]+, [b2 − 1]+ , g1, g2)

}
×

{
a2∈{0, 1} : a2≥θ

(n)
2 ([ b1 − 1]+, [ b2 − 1]+, g1, g2)

}
when b1 
= 0 and b2 
= 0 and A(x) = A when b1 = b2 =
0. For example, consider the case when g1 = 1 and g2 = 1
at some iteration n. We need to determine the value of
θ(n)(x) for all x = (b1, b2, g1, g2) such that g1 = 1 and g2 =
1. We start with the lowest values of b1 and b2. For state
x = (0, 0, 1, 1), we have A(x) = A = {0, 1}2. In this case,
the minimization problem mina∈A(x) Q(n)(x, a) is equiv-
alent to mina∈A Q(n)(x, a), i.e., we need to obtain four
values of Q(n)(x, a) at a = (0, 0), (0, 1), (1, 0), and (1, 1)
to determine the minimum. If we get θ(n)(x) = (0, 1) for
x = (0, 0, 1, 1), then A(x) = {0, 1} × {1} = {(0, 1), (1, 1)}
for x = (0, 1, 1, 1), (1, 0, 1, 1) and (1, 1, 1, 1). It means that

Fig. 8 The optimal action a∗
1 vs. queue state b1 and channel state g2 when b2 = 3 and g1 = 3 (left), and a∗

2 vs. b2 and g1 when b1 = 2 and g2 = 1
(right). p1 = 0.1, p2 = 0.2, λ = 0.05, τ = 1, η = 2, ξo = 4 and β = 0.95. Two channels are both Rayleigh fading with γ 1 = γ 2 = 0dB and are both
modeled by 8-state equiprobable FSMCs. In this case, β ≤ Pe(gi)−Pe(gi+1)∑

g′i Pgig′i (Pe(g
′
i )−Pe(g′

i+1)) , and according to Corollary 4.16, Theorem 4.15 holds. Therefore,

a∗
1 and a∗

2 are nondecreasing in (b1, g2) and (b2, g1), respectively
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Fig. 9 The optimal action a∗
1 vs. queue state b1 and channel state g2 when b2 = 3 and g1 = 3 (left), and a∗

2 vs. b2 and g1 when b1 = 2 and g2 = 1
(right). p1 = 0.1, p2 = 0.2, λ = 0.05, τ = 1, η = 2, ξo = 4 and β = 0.95. Two channels are both Rayleigh fading and are both modeled by 8-state
equiprobable FSMCs. But, γ 1 = 0dB and γ 2 = 3dB. In this case, β ≤ Pe(gi)−Pe(gi+1)∑

g′i Pgig′i (Pe(g
′
i )−Pe(g′

i+1)) does not hold for all gi . We can see that a∗
1 is not

monotonic in g2

only two calculations of Q(n)(x, a) are required when we
want to determine the value of mina∈A(x) Q(n)(x, a) for
these three states. In addition, if we find that θ(n)(x) =
(1, 1) for x = (1, 1, 1, 1), then, for all x such that b1 > 1,
b2 > 1, g1 = 1 and g2 = 1, A(x) = {(1, 1)} and we can
directly assign θ(n)(x) = (1, 1) without doing the min-
imization mina∈A(x) Q(n)(x, a). We can find the optimal
policy by repeating this process for all values of g1 and g2
in each iteration. From this example, it can be seen that
(19) should be conducted in the increasing order of b1
and b2 so that the cardinality of set A(x) is progressively
reducing.

5.2 Discrete simultaneous perturbation stochastic
approximation

Assume Theorem 4.12 holds.8 Due to the monotonicity of
the optimal policy in queue states, the optimization prob-
lem (11) can be converted to a minimization problem over
a set of queue thresholds.
For i ∈ {1, 2}, we define φi(b−i, g1, g2) ∈ Bi as

φi(b−i, g1, g2) = min{bi : θi(x) = 1},∀b−i, g1, g2. (21)

Here, φi(b−i, g1, g2) is the threshold to queue i when
the other user’s queue state is b−i and channel states are
g1 and g2. Let φi be constructed by stacking φi for all
(b−i, g1, g2) ∈ B−i × G1 × G2. The queue threshold vector
is defined as φ = (φ1,φ2). In Fig. 10, we show the optimal
queue threshold vector φ∗ = (φ∗

1,φ∗
2) where

φ∗
i (b−i, g1, g2) = min{bi : θ∗

i (x) = 1},∀b−i, g1, g2 (22)

and θ∗ is the optimal policy obtained in Fig. 4. Each queue
threshold vector φ = (φ1,φ2) determines a deterministic
policy θφ(x) = (θ1φ1(x), θ2φ2(x)) by

θiφi(x) = I{bi≥φi(b−i,g1,g2)} =
{
1 bi ≥ φi(b−i, g1, g2)
0 bi < φi(b−i, g1, g2)

.

(23)

Since θ∗
i is nondecreasing in bi for all i ∈ {1, 2} if

Theorem 4.12 holds and θ∗ determines φ∗ via (22), finding
the optimal policy θ∗ is equivalent to finding the optimal
queue threshold vector φ∗. We can convert problem (11)
to

min
φ

J(φ), (24)

where

J(φ) =
∑

x(0)∈X
E

[ ∞∑
t=0

βtC(x(t), θφ(x(t)))|x(0)
]
. (25)

The advantage of formulating problem (24) is that the
solutions can be approximated by the DSPSA algorithm
[32] presented in Algorithm 1. The parameters/functions
in this algorithm are explained as follows

• Ĵ(φ) is an estimation of J at φ that is obtained by
simulation. The method is to simulate the state
sequence {x(t)} governed by the transition probability
Pr

(
x(t+1)|x(t)) = Pθφ(x(t))

x(t)x(t+1) for all x(0) ∈ X . Ĵ(φ) is
obtained as

Ĵ(φ) =
∑

x(0)∈X

T∑
t=0

βtC
(
x(t), θφ(x(t))

)
. (26)

Each simulation stops if the increments over several
successive decision epochs blow a small threshold
(10−5), i.e., the simulation length is finite.

• The step size parameters A, B, and α are crucial for
the convergence performance of DSA algorithms. In
this paper, we set as A = 0.3, B = 100, and
α = 0.602. These values are found by adopting the
method suggested in [33] for practical problems
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Fig. 10 The optimal threshold φ∗
1 vs. b2 and g2 when g1 = 2 (left), and φ∗

2 vs. b1 and g1 when g2 = 1 (right). The system parameters are the same as
in Fig. 4 so that Theorem 4.12 holds

where the computation budget N, the total number
of iterations, is fixed: B = 0.095N , α = 0.602 and A
is chosen so that A/(B + 1)α‖d

(
φ̃

(0)) ‖ = 0.1.

TheDSPSA algorithm is a in fact a line search algorithm.
It starts with any initial guess φ(0), say φ(0) = 0, and itera-
tively updates the guess by the estimated descent direction
−a(n)d(φ(n)). The gradient d(φ(n)) in each iteration is
obtained based on two values of Ĵ , Ĵ

(�φ(n)� + 1+�
2

)
and

Ĵ
(�φ(n)� + 1−�

2
)
.9 According to a study in [34], the esti-

mation sequence {φ(n)} slowly converges to the optimal
queue threshold vector φ∗.

Algorithm 1: DSPSA [32]
input : initial guess φ(0), total number of iterations N, step

size parameters A, B and α

output: [φ(N)], the closest integer point to φ(N) by
Euclidean distance.

begin
for n = 0 to N do

a(n) = A
(B+n+1)α ;

Generate � = (�1, . . . ,�D) with each tuple
�d ∈ {−1, 1} being independent Bernoulli random
variable with probability 0.5. Obtain d(φ(n)) with
the ith entry being

di(φ(n)) =
(
Ĵ
(

�φ(n)� + 1 + �

2

)

−Ĵ
(

�φ(n)� + 1 − �

2

))
�−1

i ,
(27)

where �x� is the largest integer less than x;
φ(n+1) = φ(n) − a(n)d(φ(n));

endfor
end

5.3 Complexity
MPI is in fact a modified DP algorithm that exploits L�-
convexity or submodularity of Q(n). It converges at the
same rate as DP. But, since A(x) ⊆ A and |A(x)|, the car-
dinality of A(x), is progressively decreasing in b1 and b2,
the complexity in each iteration in MPI is lower than that
in DP. Let ρ be the average size of A(x) over all states x.
The complexity in one iteration ofMPI isO(|X |2ρ), where
ρ ≤ |A|. The exact value of ρ varies with different sys-
tems. To show the examples of the actual complexity of
MPI, we do the following experiment. We use the same
system settings as in Fig. 6 and set the number of chan-
nel states of both channels to K, i.e., K1 = K2 = K . We
vary K from 2 to 10. For each value of K, we run both
DP and MPI and obtain the complexity as the number of
calculations of Q(n) averaged over iterations. The results
are shown in Fig. 11. It can be seen that the complexity of
MPI is always less than that of DP, and MPI alleviates the

Fig. 11 The mean time complexity per iteration of DP and MPI, where
K1 = K2 = K and the value of K varies from 2 to 10. The other system
parameters are the same as in Fig. 6. The complexity is obtained as
the number of calculations of Q(n) averaged over iterations
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drastically growing complexity in DP when the size of the
channel state space grows large.
Consider the complexity of the DSPSA algorithm. Let ζ

be the complexity of obtaining the value of Ĵ by simulation.
Since we only need two values of Ĵ to calculate the gradi-
ent d, the complexity in each iteration of DSPSA is O(ζ ).
But, the convergence rate depends on the parameters of
the DSPSA algorithm [35], e.g., the step size parameters,
and may vary with different MDP systems, i.e., DSPSA
may converge slower than DP or MPI. However, we have
two advantages of implementing DSPSA algorithm over
DP or MPI. One is that DSPSA is a simulation-based algo-
rithm, the runs of which do not require the full knowledge
of the MDP model. Based on (26), to obtain Ĵ , we only
require the knowledge of the state space X and a sim-
ulation model that can generate a state sequence {x(t)}
based on a given queue threshold vector φ and the statis-
tics of packet arrival and channel variation processes. If
the packet arrival probabilities and/or channel statistics
change suddenly, the optimal policy will change accord-
ingly, and DSPSA algorithm can adapt slowly to the new
optimal policy.
The results in Fig. 12 are based on an experiment of

DSPSA in an environment where the system parame-
ters change with time. The relay is assumed to serve the
first pair of users with packet arrival probabilities being
p1 = 0.1 and p2 = 0.2 in the first 500 iterations and
serve another pair of users with p1 = 0.8 and p2 = 0.2
in the second 500 iterations. It can be seen that DSPSA
is able to adaptively track the optimum and optimizer of
problem (24). In contrast, to run DP or MPI, we require
the full knowledge of the MDP model. If the statistics
of packet arrival and channel variation processes change,
we need to determine the new MDP model by calculat-
ing all values of the state transition probability Paxx′ before

running DP or MPI. Alternatively speaking, MPI and DP
are model-based algorithms while DSPSA is a model-free
algorithm [36].
The other advantage of DSPSA is that it allows the

scheduler to learn the optimal policy online. For exam-
ple, assume that we start with any arbitrary threshold
vector φ(0). We first let the scheduler adopt the pol-
icy that is determined by the queue threshold vector
�φ(0)� + 1+�

2 (via (21)) for a while and obtain the value
of Ĵ

(�φ(0)� + 1+�
2

)
based on the actual immediate costs

incurred. Then, we let the scheduler adopt the policy that
is determined by �φ(0)� + 1−�

2 for a while and obtain the
value of Ĵ

(�φ(0)� + 1−�
2

)
. By doing so, the gradient d can

be calculated, and we update φ(0) and get a new queue
vector φ(1). By repeating this process, the scheduler can
slowly update the estimation φ(n) towards φ∗ and hence
find the the optimal policy θ∗.
It should be noted that low complexity algorithms for

searching or approximating the optimal policy θ∗ are
not restricted to MPI and DSPSA. With the results on
monotonicity derived in Section 4, one can propose other
algorithms, e.g., the random search method [37], the sim-
ulated annealing method [38], the complexity of which
could be even lower than MPI and DSPSA. For example,
the random search method [37] can be applied to find the
solution of the multivariate minimization problem (24).
In this method, the descent direction is found by random
sampling in each iteration. The complexity incurred by
random sampling could be lower than that incurred by
simulation (as in DSPSA). But, we still need to compare
the convergence rates of the random search and DSPSA
algorithms. In summary, the MPI and DSPSA are two
examples of low complexity algorithms that are based on
the monotonicity of the optimal policy. To propose more
low complexity algorithms and compare the convergence

Fig. 12 Convergence performance of DSPSA: J(φ(n)), the value of the objective function at the nth iteration of DSPSA (left); φ(n)
1 (1, 6, 4), the

estimations of the optimal threshold to queue 1 when b2 = 1, g1 = 6 and g2 = 4 (right). The channels are both Rayleigh fading with
γ 1 = γ 2 = 0dB and modeled by 8-state FSMCs. The system parameters are set as p1 = 0.1, p2 = 0.2, λ = 0.05, τ = 1, η = 2, ξo = 4 and β = 0.97
in the first 500 iterations. Then p1 and p2 are changed to 0.8 and 0.9, respectively, in the second 500 iterations. The optimal value of queue threshold
vector φ∗ is determined via (22) by using the optimal policy θ∗ found by DP
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performance are out of the scope of this paper and could
be one of the future directions of research.

5.4 Simulation results
We run simulations in an NC-TWRC with Rayleigh fad-
ing channels. Let DP-MDP-QC be the optimal policy
searched by DP based on the MDP model in Section 3.
We compare the performance of DP-MDP-QC to the
following four policies:

• DSPSA-MDP-QC: This policy is searched by DSPSA
based on the MDP model in Section 3 with the total
number of iterations being N = 1000. As explained
in Section 5.2, the estimation sequence produced by
the DSPSA algorithm should be slowly converging to
the optimal policy. Therefore, DSPSA-MDP-QC
should be close to DP-MDP-QC (in Euclidian
distance) and the performance of DSPSA-MDP-QC
should be similar to that of DP-MDP-QC.

• MYO-QC: This policy is obtained by
θMYO-QC(x) = argmina C(x, a), where C(x, a) is the
immediate cost function as defined in (9). Recall that
policy DP-MDP-QC searched by DP is θ∗(x) =
θN (x) = argmina C(x, a) + β

∑
x′ Paxx′V (N−1)(x),

where N is the iteration index when DP converges.
MYO-QC is the policy that neglects the aftermath
β

∑
x′ Paxx′V (N−1)(x) that is incurred by the action

taken at the current decision epoch. Alternatively
speaking, MYO-QC is myopic while DP-MDP-QC is
far-sighted.10 In a stochastic environment, myopic
policies usually incur a higher expected long-term
cost than far-sighed ones.

• AT: This policy is denoted as
θAT(x) = (θAT1(x), θAT2(x)) where θATi(x) = 1 if
bi 
= 0, i.e., always transmit whenever queue i is not
empty. This policy minimizes the costs incurred by
the packet delay and queue overflow. But, the
performance of this policy should not be as good as
DP-MDP-QC if the purpose is to minimize the
long-term cost incurred by not only the packet delay
and queue overflow but also the transmission power
consumption and downlink transmission error
rate.

• DP-MDP-Q: This policy is determined by DP based
on an MDP model that is the same as the one in
Section 3 except that the immediate cost function is
defined as C(x, a) = Ch(b, a) + tr(a). This policy was
proposed in [12], where the authors assume that the
channels are lossless so that the packet error cost∑2

i=1 err(g−i, ai) = 0 always. However, the wireless
channels are usually not ideal in practice. If we adopt
policy DP-MDP-Q, it should incur a higher downlink
transmission error rate than DP-MDP-QC.

We fix p2 = 0.5 and vary p1 from 0.2 to 0.6. The other
system parameters are the same as in Fig. 4. A simulation
lasting for 105 decision epochs is run for each value of p1.
Each packet contains 100 bits, i.e., the packet length LP =
100. We obtain the number of holding and overflowing
packets and the number of transmissions averaged over
decision epochs. The former indicates the mean packet
delay and queue overflow costs, and the latter indicates
the average transmission power consumption. The trans-
mission error rate is calculated as the ratio of the number
of erroneous bits received to the total number of bits
sent. We also obtain the immediate cost averaged over
decision epochs, which indicates the long-term cost (the
minimand in (11)). The results are presented in Fig. 13. It
can be seen that the average immediate cost of DSPSA-
MDP-QC almost overlaps with that of DP-MDP-QC. It
means that if we allow the total number of iterations in
the DSPSA algorithm large enough, e.g., 1000 iterations,
it is able to converge to a policy that is very close to
DP-MDP-QC.
For policy MYO-QC, we can see that it always incurs

a greater number of transmissions and holding and over-
flow packets and a higher transmission error rate than
DP-MDP-QC. The average immediate cost of this policy
is at least 0.23 higher than those of DP-MDP-QC, which is
the worst among all policies. Therefore, a far-sighted pol-
icy outperforms a myopic one when we want to minimize
the long-term cost in a stochastic system.
The number of holding and overflow packets incurred

by policy AT is always zero. However, it results in the high-
est number of transmissions and transmission error rate.
The average immediate cost incurred by AT is at least
0.09 higher than DP-MDP-QC, which justifies our expec-
tation; ATminimizes the packet delay and queue overflow
costs but incurs higher transmission power consumption
and downlink transmission error rate. Therefore, the long-
term cost incurred by AT is not as low as that incurred
by DP-MDP-QC. For policy DP-MDP-Q, the number of
transmissions is almost the same as DP-MDP-QC, and
the number of holding and overflow packets is even lower
than DP-MDP-QC. However, since this policy assumes
that the wireless channels are ideal (but they are in fact
not), the transmission error rate is about 1.3 times higher
than DP-MDP-QC (almost as high as AT). Therefore, the
average immediate cost is still higher than DP-MDP-QC.
In summary, in a stochastic environment where the long-
term loss can be incurred by multiple causes, the policy
that considers all such causes simultaneously outperforms
those that only consider some and neglects others.

6 Conclusion
This paper studied an MDP-modeled transmission con-
trol problem inNC-TWRCwith random traffic and fading
channels. The purpose was to prove the existence of a
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Fig. 13 Simulation results: the mean immediate cost C(x, a) (top left); the mean number of transmissionsI{a1=1 or a2=1} (top right); the mean number
of holding packets min{[ yi]+ , Li} (bottom left); the mean number of lost packets due to queue overflow I{[yi ]+ = Li+1} , and the mean transmission
error rate (bottom right). These are the values averaged over 105 decision epochs. The channels are both Rayleigh fading with γ 1 = γ 2 = 0dB and
modeled by 8-state FSMCs. The system parameters are set as p2 = 0.5, λ = 0.05, τ = 1, η = 2, ξo = 4 and β = 0.97. p1 is varying from 0.2 to 0.6

monotonic optimal transmission policy that minimized
packet delay, queue overflow, transmission power, and
the downlink transmission error rate in the long run.
We proved that the optimal policy is nondecreasing in
queue and/or channel states by investigating how certain
properties (submodularity, L�-convexity and multimodu-
larity) varied with the system parameters. Based on these
properties of DP, we presented two low-complexity algo-
rithms, MPI and DSPSA.
As a part of the conclusion, we point out two direc-

tions for the research work in the future. The structured
results derived in Section 4 can be used to design model-
free learning algorithms, e.g., monotonic Q-learning.
Since queue-assisted transmission control is also used in
cross-layer variable-rate adaptive modulation problems,
it would be of interest if we can use submodularity, L�-
convexity, and multimodularity to establish the sufficient
conditions for the existence of monotonic optimal trans-
mission policies in these systems.

Endnotes
1The complexity of the algorithm grows drastically

with the cardinality of the system variables [16].
2The definition of Pareto optimality is given in

Appendix A. In Section 3.5, we will explain the Pareto
optimality of the optimal policy of MDP.

3In this paper, we use ε = 10−5.
4See the definition of Pareto optimality and description

of scalarization technique in Appendix A. The Pareto
optimality of θ∗ has also been discussed in [31].

5f : Zn → R− is (strictly) supermodular if −f is
(strictly) submodular.

6The interpretation of ξo ≥ 2λ + η + τ is that the cost
of overflowing a packet is greater than or equal to the
sum of the cost of holding two packets, the cost when
transmission error rate is increased by η and the cost of
missing a coding opportunity.

7In [21], integer convexity was used to denote the one
dimensional discrete convexity as explained in
Lemma B.1(b).

8According to the conditions in Theorems 4.12, 4.13
and 4.15, Theorem 4.12 is straightforwardly satisfied if
either Theorem 4.13 or Theorem 4.15 holds. Therefore, if
DSPSA can be applied when Theorem 4.12 holds, it can
be also applied when Theorem 4.13 and 4.15 hold.

9The gradient d in (27) is defined based on the discrete
mid-point convexity [32].

10More comparisons of far-sighted and myopic policies
in NC-TWRC are presented in [13].

11The one dimensional discrete convex function h :
Z → R satisfies h(x + 1) + h(x − 1) − 2h(x) ≥ 0 for
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all x ∈ Z. Moreover, by Definition 4.4 and 4.5, h is both
L�-convex and multimodular.

12A function f : Z2 → R+ is multimodular if and only if
it is (1) supermodualr: �i�jf (x) ≥ 0 and (2) superconvex:
�if (x + ei) ≥ �if (x + ej) for all i, j ∈ {1, 2}, where
�if (x) = f (x) − f (x − ei) and ei ∈ Z

2 is a 2-tuple with
all zero entries except the ith entry being one.

Appendix A
In multi-objective optimization [39], there are N opti-
mization metrics. Each of then can be quantified by a loss
function fn : RM → R. The problem can be expressed as

min
x∈RM

( f1(x), f2(x), . . . , fN (x)), (28)

where x is the decision vector. We say x Pareto dominates
x′ if fn(x) ≤ fn(x′) for all n ∈ {1, . . . ,N}. We call x∗ a
Pareto optimal decision vector if no x ∈ R

M Pareto dom-
inates x∗. In a multi-objective optimization problem, we
always want to seek a Pareto optimal solution. One way to
solve this problem is called scalarization technique. The
idea is to convert (28) to a single-objective problem

min
x∈RM

w1 f1(x) + w2 f2(x) + . . . + wN fN (x)), (29)

wherewn > 0 is the weight. It is shown that the solution of
problem (29) is a Pareto optimal solution of problem (28)
in [39]. Note, based on the definition of Pareto optimality,
a Pareto optimal solution is not an optimal solution if we
purely consider only one optimization metric.

Appendix B
Lemma B.1. submodularity, L�-convexity and multi-

modularity has the following properties:

(a) If fi : Zn → R+ is
submodular/L�-convex/multimodular in x ∈ Z

n and
αi ≥ 0 for all i, then

∑m
i=1 αifi(x) is

submodular/L�-convex/multimodular in x.
(b) If h : Z → R+ is convex11, then f (x) = h(x1 − x2) is

L�-convex in x = (x1, x2) and g(x) = h(x1 + x2) is
multimodular in x = (x1, x2).

(c) Let d be a random variable. If g(x, d) is
L�-convex/multimodular in x ∈ Z

n for all d, then
Ed[ g(x, d)] is L�-convex/multimodular in x.

(d) If f : Zn → R+ is L�-convex, then
ψ(x, ζ ) = f (x − ζ1) is L�-convex in (x, ζ ).

Proof. The proofs of (a), (b), and (d) can be found in
[26, 28, 29]. We show proof of (c). Consider function f
first. Since ψ(x, ζ ) = f (x − ζ1) = h(x1 − x2), according
to Definition 4.4, it suffices to show the submodularity of
h in (x1, x2). But, because of the convexity of h,

h(x1 + 1 − x2) + h(x1 − (x2 + 1))− h(x1 − x2)h(x1+ 1 −(x2 + 1))

=h(x1 − x2 + 1) + h(x1 − x2 − 1)− 2h(x1 − x2) ≥ 0.

(30)

By Definition 4.2, h is submodular in (x1, x2). There-
fore, f (x) = h(x1 − x2) is L�-convex in (x1, x2). Since,
g(x) = f (−M2,1x), according to Lemma 4.7(a), g(x) is
multimodular in (x1, x2).

Appendix C
C̃ is nondecreasing in y1 because h1 is nondecreasing in
y1. By assuming that V (n−1) is nondecreasing in b′

1, we
have Q̃(n) nondecreasing in y1 since min{[ yi]+ , Li} + fi
is nondecreasing in yi. Next, consider the multimodular-
ity by using Proposition 112 in [40]. The supermodulariry
and superconvexity of C̃ in (y1, a1) can be proved by the
convexity of h1. So, C̃ is multimodular in (y1, a1). Assume
the monotonicity and L�-convexity of V (n−1) in b′

1. Q̃ is
supermodular and superconvex in (y1, a1) because

Q̃(n)(y, g, a) + Q̃(n)(y + e1, g, a + e1)

− Q̃(n)(y + e1, g, a) − Q̃(n)(y, g, a + e1) = 0,

Q̃(n)(y + e1, g, a) − Q̃(n)(y, g, a) − Q̃(n)(y, g, a + e1)+Q̃(n)(y − e1, g, a + e1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ + βEg′
[
V (n−1)
f (y + e1, g′) − V (n−1)

f (y, g′)
∣∣∣g] ≥ 0 y1 = 0

ξo − λ + βEg′
[
−V (n−1)

f (y, g′)+
V (n−1)
f (y − e1, g′)

∣∣∣g] ≥ 0 y1 = L1
βEg′

[
V (n−1)
f (y + e1, g′)−

2V (n−1)
f (y, g′) + V (n−1)

f (y − e1, g′)
∣∣∣g] ≥ 0 otherwise

.

(31)

The second inequality in (31) (when y1 = L1) is
explained as follows. Recall that we have V (n−1)(x′) =
Q(n−1) (

x′, a∗(x′)
)
, where Q(n−1) is L�-convex in (b′

1, a′
1)

and a∗(x′) = argmina′ Q(n−1)(x′, a′) is nondecreasing in
b′
1. It can be shown that

− V (n−1)(b′
1, b′

2, g′) + V (n−1)(b′
1 − 1, b′

2, g′)
= −Q(n−1)(b′

1, b′
2, g′, a∗(b′

1, b′
2, g′))

+ Q(n−1)(b′
1 − 1, b′

2, g′, a∗(b′
1 − 1, b′

2, g′))
≥ −Q(n−1)(b′

1, b′
2, g′, (1, 1)) + Q(n−1)(b′

1 − 1, b′
2, g′, (0, 0))

≥ −C(b′
1, b′

2, g′, (1, 1)) + C(b′
1 − 1, b′

2, g′, (0, 0))
≥ −λ − η − τ .

(32)

Since ξo ≥ 2λ + η + τ , we have the inequality when
y1 = L1 in (31). Therefore, Q̃ is multimodular in (y1, a1).
The monotonicity and multimodularity of C̃ and Q̃(n) in
(y2, a2) can be proved in the same way.
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Appendix D
By knowing the L�-convexity of V (n−1) in b′, we have
Q(n)(x,(1,0)) +Q(n)(x,(0,1)) −Q(n)(x,(0, 0)) −Q(n)(x,(1,1))

= τ + βEg′
[
V (n−1)
f (b − e1, g′) + V (n−1)

f
(
b − e2, g′

−V (n−1)
f (b, g′) − V (n−1)

f (b − e1 − e2, g′)
∣∣∣g]

≥ τ > 0, (33)

i.e., −Q(n) is strictly supermodular in a for all x. By
definition in [30], the game is supermodular.

Appendix E
Ch is L�-convex in (b, a) because of the convexity of hi,
and Ct is L�-convex in (b, a) because of the submodular-
ity of tr in a. By Lemma B.1(a), C is L�-convex in (b, a).
Consider the L�-convexity of Q in (b, a). Let BRi(a−i) =
argminai Q(n)(x, (ai, a−i)). Equilibria (0, 0)(1, 1) implies
BRi(a−i) = a−i, i.e., a1 = a2. But, Q(n)(x, (a1, a1)) is L�-
convex in (b, a1) since: When bi − a1 < Li + 1 for all
i ∈ {1, 2}, Q(n) is L�-convex in (b, a1) because of the L�-
convexity of V (n−1) in b′ and Lemma B.1(c) and (d); When
bi − a1 = Li + 1 for either i = 1 or i = 2, the L�-convexity
of Q(n) can be shown in the same way as in Appendix C
under condition ξo ≥ 2λ + τ + η. By Theorem 4.10 and
Proposition 4.11, V ∗(x) is L�-convex in b and the optimal
action a∗ is nondecreasing in b.

Appendix F
We just need to show that condition (b) in Theorem 4.13
is satisfied. Let bi − a1 < Li + 1 for all i ∈ {1, 2}. It suffices
to show BRi(a−i) = a−i for all i ∈ {1, 2} in order to prove
equilibria (0, 0)(1, 1) in Theorem 4.13. Because the game
has strictly supermodular utility, BRi(a−i+1) > BRi(a−i).
So BRi(1) = 1, if we can prove BRi(0) = 0. By knowing
that p1 = 0.5, we can show that

Q(n)(b, g, (1, 0)) − Q(n)(b, g, (0, 0))

=

⎧⎪⎨
⎪⎩

−λ + τ + ηPe(g1)+
0.5β

(
V (b1−1, b̂2), g′)−V (b1, b̂2), g′)

)
≥0 0<b1<L1+1

−λ + τ + ηPe(g1) ≥ 0 otherwise
,

(34)

where b̂2 = min{[b2]+ , L2}+ f2 and the inequality in the
case when 0 < b1 < L1 + 1 is because that, by a similar
approach as in (32), V (n−1)(b′

1 − 1, b′
2, g′) − V (n−1)(b′

1 +
1, b′

2, g′) ≥ −τ − η and β ≤ 2(τ−λ)
τ+η

.
Similarly, we can show Q(n)(b, g, (0, 1)) − Q(n)(b, g,

(0, 0)) ≥ 0 in the case when p2 = 0.5. So, BRi(a−i) = a−i.

Appendix G
Let i = 2. C(x, a) is submodular in (b2, g1, a2) because of
the convexity of hi and the condition Pe(g1) ≥ Pe(g1 + 1).
By knowing the submodularity of V (n−1) in (b′

2, g′
1) and

the L�-convexity of Q(n) in (b2, a2) under condition ξo ≥
2λ + η + τ , we can show the submodularity of Q(n) in
(b2, a2) and (b2, g1). Consider the submodularity of Q(n)

in (g1, a2). We can show that

Q(n)(b, g, a + e2) + Q(n)(b, g + e1, a) − Q(n)(b, g, a)

− Q(n)(b, g + e1, a + e2)

≥η
(
Pe(g1)−Pe(g1+1)+βEg′

1
[Pe(g′

1+1)

−Pe(g′
1)|g1]

)
≥ 0.

(35)

The second last inequality in (35) is obtained by using
a similar approach as in (32), and the last one is due to
the condition β ≤ Pe(gi)−Pe(gi+1)∑

g′i Pgig′i (Pe(g
′
i)−Pe(g′

i+1)) . Therefore, Q
(n)

is submodular in (b2, g1, a2). Similarly, we can show that
Theorem 4.15 holds for i = 1.

Appendix H
In an equiprobable partitioned slow and flat Rayleigh fad-
ing channel, the channel transitions can be worked out by
level crossing rate (LCR) [15] and only happens between
adjacent states, i.e., g′

i ∈ {gi − 1, gi, gi + 1}. Further, Pgg′ =
Pg′g , and Pgg′ � Pgg for all g′ 
= g. According to Defini-
tion 4.8, for nondecreasing u, Pgig′

i
is first order stochastic

nondecreasing in gi because∑
(gi+1)′

P(gi+1)(gi+1)′u
(
(gi + 1)′

) −
∑
g′
i

Pgig′
i
u(g′

i)

≥ (1 − 2Pgigi+1)
(
u(gi + 1) − u(gi)

) ≥ 0,
(36)

where 1 − 2Pgigi+1 ≥ 0 is because Pgg′ � Pgg and∑
g′ Pgg′ = 1.
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