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Abstract

There is a growing need to develop more robust and energy-efficient network architectures to cope with ever
increasing traffic and energy demands. The aim is also to achieve energy-efficient adaptive cellular system architecture
capable of delivering a high quality of service (QoS) whilst optimising energy consumption. To gain significant energy
savings, new dynamic architectures will allow future systems to achieve energy saving whilst maintaining QoS at
different levels of traffic demand. We consider a heterogeneous cellular system where the elements of it can adapt
and change their architecture depending on the network demand. We demonstrate substantial savings of energy,
especially in low-traffic periods where most mobile systems are over engineered. Energy savings are also achieved in
high-traffic periods by capitalising on traffic variations in the spatial domain. We adopt a fuzzy-logic algorithm for the
multi-objective decisions we face in the system, where it provides stability and the ability to handle imprecise data.

Keywords: Energy efficiency, Adaptive network architecture, Multi-objective decision-making

1 Introduction

Increasing concern regarding the energy consumption of
cellular networks is driving operators to optimise energy
utilisation without detracting from the user experience.
This has motivated researchers to investigate solutions to
reduce energy consumption. Indeed, energy consumption
within the information and communication technology
(ICT) sector has become an important subject for both
economic and environmental consideration. ICT alone
accounts for 2—10 % of global greenhouse gas emissions,
a figure expected to increase annually [1, 2]. The volume
of transmitted data is predicted to increase by a factor
of approximately ten every 5 years, which equates to an
increase in ICT-related energy consumption of approxi-
mately 16—20 % over that same period [3]. Thus, energy
consumption is an ever-increasing problem that becomes
more pressing the longer it remains unaddressed. This
work is motivated by the reality that mobile communi-
cation systems are designed to support the maximum
demanded throughput needed during peak traffic peri-
ods. As the traffic demand varies with time and space, this
results in some areas that are over-optimised, hence, in
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excessive energy consumption. Thus, it is essential that the
system be capable of scaling its energy consumption with
traffic, without sacrificing quality of service (QoS).

In current systems, major energy is consumed in the
radio access portion of the network, making it the ideal
target for optimisation. There is much room for improve-
ment in the energy efficiency of cellular systems, since a
base-station consumes more than 90 % of its peak energy
even if it is experiencing little or no activity [4]. Even
if some of the radio transceivers in a base-station are
switched off, which provides some savings, this is still
not sufficient [4]. To make significant energy savings, a
dynamic deployment approach is required that allow the
system to operate in an energy-efficient mode.

Cellular architecture is generally categorised as macro-,
micro-, pico-, and femto-cells, according to their cell sizes.
To maintain communication coverage, a small cell-based
topology requires many base-stations with a low level of
transmitting power to provide users with high data rates.
On the other hand, a large cell-based topology requires
only a few base-stations, each with a high level of trans-
mitting power. Each type of base-station has its own
characteristics in terms of coverage, data rate, and power
consumption. We aim to adopt a heterogeneous network
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comprising different base-station types so that for differ-
ent periods of the day, the most suitable architecture is
deployed.

Although different papers have evaluated the idea of
dynamically changing the architecture of the network in
the aim of saving energy [5, 6], they lacked in develop-
ing a framework in which the decision can be made. As
switching a base-station affects the network performance
by changing its coverage, throughput and other elements,
it is considered as a dynamic deployment architecture.
The decision in which network elements are switched off
and on is a multiple-objective decision-making (MODM)
problem comprising different criteria and requirements,
such as link quality, quality of service, network availability
and network reliability.

Traffic load varies from time to time and location to
location, and current mobile networks are not designed
to benefit from such variation in traffic. Therefore, a large
amount of energy is wasted on base-stations that are not
active with users in low-traffic periods. This has sparked
the idea of dynamically switching off base-stations,
thereby achieving a dynamic deployment architecture.
When a base-station is switched off, radio coverage and
QoS must still be guaranteed by neighbouring base-
stations or other means [5, 6]. A common approach in
reconfiguring the network is in deriving necessary thresh-
olds to be satisfied that might be in terms of service outage
probability [7], traffic in terms of Erlangs [8], percent of
the peak traffic [4] and minimum signal-to-interference-
plus-noise ratio (SINR) [9], but it fails to provide a full
picture on how the decision can be made.
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As discussed above, there has been a significant amount
of work showing the benefits of dynamic deployment;
however, there is a lack of work tackling the problem
of how a dynamic deployment can be achieved without
human intervention by identifying the specific nodes that
can be switched off or on. This paper proposes an energy-
efficient dynamic-architecture technique based on fuzzy
logic. In particular, we propose a novel scheme, the fuzzy-
logic architecture selection. We show how using multi-
ple network parameters in architecture decision reduces
energy consumption.

The remainder of this paper is organised as follows:
Section 2 describes the dynamic network management
framework, Section 3 explains the fuzzy-logic algorithm
proposed and Section 4 presents the simulation and
results. Finally, Section 5 concludes the work.

2 Dynamic network-management framework

A flexible framework that covers different aspects of the
network and has the ability to make a multiple-objective
decision for energy utilisation is required. The designed
framework should have the ability to cope with high
traffic demand and provide an energy-efficient operation
and flexibility. Figure 1 presents the dynamic network-
management concept, which has the following three main
phases:

1. Network information-gathering: In this phase, all
the information that is needed to identify the
requirement of architecture-switching is gathered,
with the ability to initiate an architecture switch.

Network Information
Gathering

Network Information Gathering Decision Making

Architecture Execution

Link Quality

Quality of Service

g LinkQualiy
Contextual Information

Fig. 1 Dynamic network management concept
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2. Architecture multiple-objective decision-making:
Here, it is determined whether a network
architecture change can or needs to be adopted by
selecting the most suitable deployment architecture,
based on a given criteria, such as link quality and
network reliability. Also, it gives instructions to the
execution phase.

3. Architecture execution: This phase manages the
change of network architecture based on the users
affected during the network architecture change.

2.1 Architecture handover mechanism

Based on the average daily data traffic profile in Europe,
we decided to switch off on an hourly basis. The deci-
sion is driven by the fact that the traffic is almost constant
within a single hour. On this basis, at the beginning of each
time slot, the system parameters would be gathered and
provided to the MODM unit, and if the switch-off deci-
sion was taken, then this would signal the base-stations
in the area to initiate for activation. At this point, one of
three choices is implemented [10], which are explained as
follows.

e Soft switch-off: In this scenario, when the switch-off
decision is taken, the network waits until no user is
accessing the cell, then switched-off only when idle.
This can be considered as the least invasive approach
for users.

e Semi-hard switch-off: Here, as soon as the switch-off
decision is taken, no new service requests are
accepted by the cell, which can be switched-off as
soon as all services in progress at the time of the
switch-off decision terminate. This implies that some
service requests will be blocked.

® Hard switch-off: With this option, immediately after
the switch-off decision is taken, users are forced to
implement a handover from the macro-cell that is
going to be switched off to micro-cells in the area.
This is the most invasive approach for users, but
forced handover is foreseen by long-term evolution
(LTE) standards, and thus, the algorithm is well
within the possibilities of present LTE equipment.

We assume that the base-station can switch off com-
pletely as there are active micro-cells that can serve the
traffic (and vice versa). This would result in large sav-
ings as a base-station consumes power even if the RF
part is switched off. At the next time slot, the pro-
cess is repeated as each micro- and macro-cell mea-
sures the traffic demand that is served. The same
process occurs when the traffic exceeds a certain level;
the macro-cell is initiated and micro-cells are switched
off.
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The computational cost of using Fuzzy logic is minimal
as a new entity can be installed that computes the deci-
sions and executes them. Each base-station (i.e. macro-
station) is responsible for forming a decision on which
of the micro-nodes are active, and if its services to users
are required or not. On the other hand, micro-nodes are
responsible for serving the users in their small coverage
area if they are activated. Therefore, from the perspec-
tive of micro-nodes, it is considered to be a centralised
approach. However, from the perspective of the network
as a whole, it is a decentralised approach as the decision is
carried out on a cell level. The centralised approach ben-
efits from an overall picture of the cell status, and thus,
the macro-station can manage the performance level with
the knowledge of the impact activating each node would
have. On the other hand, the decentralisation benefits
the network in terms of the simplicity it provides and its
suitability for cellular deployments in a wide scenario.

2.2 Decision-making

In this section, we evaluate some of the popular decision-
making approaches and discuss their suitability to be
adopted for dynamic network architecture decision-
making.

2.2.1 Function-based decision approach
The function-based decision approach combines different
metrics in a cost-function manner. Therefore, it is the sum
of several weighted functions. The general form of a cost
function F,, for the network 7 is [11, 12]

F, = Z Z Ws,i lzp (1)
s i

where [; represents the cost in the i-th architecture to
carry out the s-th service on network #, and w;; is the
weight (importance) assigned to the i-th architecture to
perform services, where ) ", ws; = 1.

The use of cost function has been widely adopted in dif-
ferent handover mechanisms [13]. Although it has been
successful for the use of handover decisions, this approach
may not be suitable for network architecture decision.
As from the perspective of the network, different crite-
ria changes at different periods of the day that may cause
the decision to fluctuate between two outcomes, causing
instability in the overall network. Therefore, function-
based decision-making may be more suitable for user-
centric decision-making problems.

2.2.2 Multiple-attribute decision strategies

The dynamic deployment architecture deals with the
problem of choosing architectures to adopt from a set of
possible architectures. This is considered to be a multiple-
attribute decision-making (MADM) problem, which deals
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with choosing a decision from a set of alternatives that
are specified by their attributes [12]. There are a number
of different MADM methods adopted throughout the lit-
erature, such as simple additive weighting—the weighted
sum of all the attribute values determines a given net-
work score level—and analytic hierarchy process—in this
approach, the problem (main objective) is decomposed
into its constituent parts (criteria, sub-criteria, alterna-
tives etc.) [14].

2.2.3 Context-aware strategies

A context-aware approach relies on the knowledge of
the context information from the network as well as the
mobile terminals to form a decision. In this premise, this
approach evaluates the context information and tracks
changes of the network and can then provide a context-
aware decision on whether a network architecture change
is required. The context-aware decision approach can be
applied with an analytic hierarchy process method such as
the work given in [15, 16].

2.2.4 Fuzzylogic (FL)

The conventional MADM methods lack the ability to
make an efficient decision when imprecision or ambiguity
is introduced to the data. Therefore, the use of fuzzy logic
provides the ability to deal with imprecise data, and also
to evaluate multiple criteria simultaneously to provide
a robust mathematical framework for decision-making
[12, 17-19]. Fuzzy logic has been used in a variety of
fields, for example, handover-decision protocols [17, 19].
It has also been used in wireless sensor networks for
cluster formation and energy efficiency of cluster forma-
tion [20]. Others have used fuzzy logic for cluster-head
selection in wireless sensor networks [21, 22]. Moreover,
fuzzy logic provides the ability for human experts’ qualita-
tive thinking to be a part of the algorithm, which provides
a higher level of efficiency [23]. This makes the fuzzy-logic
approach the most suitable to adopt for dynamic network
architecture decision-making.
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3 Applying fuzzy logic in decision-making

In this paper, we consider a heterogeneous network com-
prising different base-station types. To optimise energy
consumption, some of the network base-stations are
switched off and others are switched on. The decision
of which network elements are active and which are
not is an MODM problem, comprising different net-
work criteria and requirements. We adopt a fuzzy-logic
approach for decision-making due to its inherent strength
in solving problems where imprecision and statistical
uncertainty is introduced. Conventional decision-making
algorithms lack the ability to efficiently solve a decision
problem where imprecise data are imposed; thereby the
use of fuzzy logic provides the ability to handle impre-
cise data and to combine and evaluate multiple criteria
simultaneously.

The algorithm has three different stages as shown in
Fig. 2. In the first stage, the system parameters are fed
into a fuzzifier, in which they are transformed from a
crisp set of parameters into fuzzy sets. A fuzzy set com-
prises of elements with varying degrees of membership in
sets ranging from zero to one depending on the member-
ship function [19] as seen in Fig. 3. On the other hand,
in a crisp set, a value is considered a member of a class
only if it has full membership in the class. Therefore, in
a fuzzy set, an element can be a member of more than
one class. The membership values are generated from the
mapping of a value (crisp value) onto a membership func-
tion. Three trapezoidal membership functions are used
for representing all the subsets of the inputs and out-
comes. A trapezoidal membership function is specified by
four parameters {A1, Ay, A3, Aa} [24]:

0 x <A
x—A1
A—A Al <x <Ay
1 Ay <x<A;g
A4—x
As—A3 Az <x < Ay
0 x> A,

trapezoid(x : A1, Ay, A3, Ay) =

(2)

= | Fuzzifier | :
System ' '

Fig. 2 Block diagram of a fuzzy-logic system
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In the second stage, the fuzzy sets are fed into an infer- % Xipia ()
ence engine where a set of fuzzy rules is applied. These c 5™ A
fuzzy rules can be defined as a set of possible outcome A= N ’ @
scenarios involving if-then rules [25]: D ia(x)
i=1
N
Ry :ifxg is r/} and xy is 77% and ... and x, is n} > xipa(x)
then y1 = g1 (x1,%2, .. .,%y) Cy = = (5)
Ry : if x1 is n? and x5 is n2 and and x,, is n2 N ,
' ! 2 ) nen > 1alx)
» A i=1

then y, = go(x1,%2,. ..

3)

R :ifxy is 1711\] and xy is ,712\1 and ... x,is nﬁ,‘[
then yn = gn(x1,%2, . . ., %),

where R; is the i-th fuzzy rule, x are the variables of the
premise that appear also in the part of the consequence,
x = [X1,%2, .0y X, nﬁ, are the antecedent fuzzy sets or the
premise variables for the inputs, y; is the output of the i-th
fuzzy rule and g, is the function that implies the value of
¥y, when x; — x,, satisfies the premise.

The third stage involves converting the fuzzy output to
a crisp value in which the decision can be made (defuzzi-
fication). It is the transformation of a fuzzy quantity into
a crisp (precise) quantity. We adopt the centroid method
for converting the fuzzy outcome to a crisp value in which
the decision would be made.

The defuzzifier combines the output sets corresponding
to all the fired rules in some way to obtain a single output
set and then finds a crisp number that is representative
of this combined output set, e.g. the centroid defuzzifier
finds the union of all the output sets and uses the centroid
of the union as the crisp output. For example, the cen-
troid of set A, whose domain is discretized into points N,
is given as

where the membership grade of x € X in A is p4 (x), which
is a fuzzy set in [0, 1]. We consider optimising the energy
consumption of the network using a fuzzy-logic-based
approach while satisfying two criteria in the decision-
making, the probability of handover and the blocking
probability for simplification, although this algorithm can
handle many different aspects of the network with the
same premise. The probability of handover would reflect
the impact of the increasing traffic and the ability to ser-
vice the incoming traffic. On the other hand, blocking
probability would reflect the ability of the system to serve
the incoming traffic.

In the algorithm, at each time step, the base-station
would measure the incoming traffic and evaluate the
handover and blocking probability (other criteria can be
added) for each possible architecture (micro or macro).
Hence, the decision is based on the current requirement of
the base-station and its ability to save power consumption.
The handover and blocking-probability results are divided
into three levels: high, moderate and low to represent the
minimal required values. A total of nine fuzzy rules are
formulated to cover all possible combinations (three sub-
sets for each input). Table 1 summarises the rules within
the inference engine.

At this point, each architecture would have an output
score value (a crisp value) and the architecture with the
highest value would be adopted.
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Table 1 Inference engine fuzzy rules Table 2 Parameters and assumptions

Achievable blocking Expected handover Architecture Explanation Value

probability probability score Basestation ICD R=1km

High High Low Macro base-station Py 1300 W

High Moderate Low Macro base-station A, 4.7

High Low High Macro base-station Ppay 200 W

Moderate High Low Macro base-station N7y 6.0

Moderate Moderate Moderate Micro base-station Py 56.0 W

Moderate Low High Micro base-station A, 26

Low High Low Micro base-station Ppax 63 W

Low Moderate High Micro base-station Nygx 3

Low Low High Channel bandwidths 10 MHz
Maximum users that can be admitted U 20

3.1 Base-station types and power models Maximum data connections per user D 10

The power consumption of a base-station depends on
the cell size (covered area), as well as the degree of cov-
erage required. Conventional macro-cells are designed
to provide large area coverage, thereby featuring large
power consumption figures. On the other hand, micro-
cells cover a much smaller area and feature much lower
power consumption figures. The relation between the
average power consumption (P;;) and the average radiated
power per site is given in [26—-28]:

Piy; = Nrrx(Po + ApPout), 0 < Pous < Ppugx, (6)

where Py is the power consumption at the minimum non-
zero output power, P, is the RF output power, P, is
the maximum RF output power at maximum load, Ap is
the slope of the load-dependent power consumption and
Nrgyx is the number of transceiver chains. The parameters
of the linear power model for the considered base-station
types are listed in Table 2. Summing up the power con-
sumption, figures of all elements in a network would then
yield the total power consumption of the network:

P=>"Pi,, (7)
iel
where the individual power figures Pj, for i-th base-
station correspond to the power consumption of each
individual base-station type. The total power consump-
tion is then scaled by the network area.

3.2 Probability of handover

In this section, we aim to find the probability of a mobile
terminal handing off to a new base-station. In Fig. 4, we
consider the scenario of a mobile terminal located at point
X handing off from an old base-station to a future base-
station. We assume that cells are in a hexagonal shape,
where the borders of the base-stations are defined by the
threshold value of the received signal strength (RSS) that

5 connection/sec
0.1017 sec
2 Mbits

User data connections arriving rate A4
User service time mean value Tp,

Information transferred mean value R

would initiate the handover process. Initially, the mobile
terminal would be served by the old base-station and is
moving with a velocity of v, which is uniformly distributed
in [ Viin; Vinax]. We assume that a mobile terminal can
move in any direction with equal probability; hence, the
PDF of the mobile terminal direction of motion 6 is [29]:

]‘(;:g, —T <6 <. (8)

We also assume that the speed and direction of motion
of a mobile terminal from point X until it goes out of cov-
erage remains constant. Since the distance from point X to
the cell boundary is not great, this assumption is valid [29].
At this point, the mobile terminal would handover when
the direction of motion is between 6 € (—1,®), from
Fig. 4:

a
¥ = arctan () , 9)
2p

where p is the distance between point X and the cell
boundary and a is the hexagon side length. From [29, 30],
the probability of a mobile terminal handing off in a time
less than 7 is:

a4 2
1 T > 4V Ld
— 2
Pho = ~ L arccos (Z) <1< g2 (10
9 vt v v
0 T< ’5

3.3 Blocking probability

In order to provide a realistic analysis for energy effi-
ciency, it is important to apply a realistic traffic model
as the basis of testing. Thus, we adopt the traffic model
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Fig. 4 The assumed handover scenario of a mobile terminal [29]

iven in [27] which defines the average daily data traf- D U
& .[.] & v ¢ D Tau hut D ADu Uhg
fic profile in Europe. We assume that user arrival pro- =0 4=0
cess is a continuous-time Markov process with rate A, Py = u D (12)
and each user can generate multiple data connections, > > Tau Wha + M)

u=0d=0

arriving according to the Poisson process with rate A,.
Therefore, for u users, the data connection arrival rate is
shrg4. This traffic model is applied using a MMPP/M/1/D-
PS queue (a single-server processor-sharing queue, with
MMPP (Markov-modulated Poisson process) arrival pro-
cess and Markovian service time) [31]. The user service
rate is exponentially distributed with a mean value of
uy = 1/ T, where I is the mean value of the service time.
The amount of information transferred in each data con-
nection is exponentially distributed with a mean value R.
Therefore, the data connection service time is exponen-
tially distributed with a mean value u; = T}, /R, where T},
is the throughput. The steady-state probability is defined
as w(u, d), where u and d are the number of users and data
connections, respectively, with a maximum of U users
that can be admitted and a maximum of D data connec-
tions. The blocking probability is the probability of having
a new user or a data connection unable to be admitted for
service.

The steady-state probability is defined as the station-
ary vector m = (7o, m1,7,...,Tp+1), Where my; =
(73,0, Td,1, T2, - - - » Tauy and g, = w(u,d) satisfies the
following:

7Q=0, me=1, (11)

where Q is the infinitesimal generator matrix. From the
steady-state probability we can calculate the blocking
probability as follows [31]:

4 Results and discussion

Models and assumptions are basically aligned with 3rd
Generation Partnership Project (3GPP) simulation case
1 [32]. An orthogonal frequency-division multiple access
(OFDMA) system employing a frequency reuse of one:
that is, the same time and frequency resources are allo-
cated for transmission in each cell is considered. The
traffic model given in [27] is adopt, which defines the
average daily data traffic profile in Europe. As the opti-
mization considered in this paper is a long-term optimiza-
tion, and shadowing and fast fading are averaged over
space and time, respectively, their effects will be neglected
here, thereby focusing on the distant-dependent path loss
effect, and the link gain between the base-station and a
mobile will be defined by the path loss effect, with the
assumption that the given in Table 2 is in line with [33].
In this section, we compare the performance of a con-
ventional network architecture with the proposed energy-
efficient adaptive architecture. We first concentrate on
the area power consumption of a pure macro-cell sce-
nario and extend the investigation to the hybrid case with
a certain number of micro-cells per sector. We consider
a hexagonal grid of macro-sites where each base-station
would cover an area with R = 1 km. On the other hand,
micro-devices feature a single omnidirectional antenna
and cover a much smaller area; there are five micro-cells
in each cell to ensure coverage when the macro-cell is
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Fig. 5 Macro base-station probability of handover with a coverage radius of R = 1000 m

switched off. We assume that the energy-efficient algo-
rithm operates on an hourly basis. This decision is driven
by the fact that traffic load is almost constant within the
duration of an hour. We assume that a base-station sector
is either transmitting at full power or fully switched off.
As in the scenario given in Fig. 4, a comparison between
a macro with coverage of R = 1 km and a micro with cov-
erage of R = 300 m for different 7 is shown in Figs. 5 and 6,
respectively. As can be seen at t 10 sec, the per-
centage of the cell area with a probability not equal to
zero is 11 % for the macro-station and 36.7 % for the

micro-station, which is expected due to the difference in
coverage requirement.

Moreover, if we assume that traffic is uniformly dis-
tributed in the cell area, then we can calculate the per-
centage of traffic load in the area where the probability
of handover at a given time duration t is not equal to
zero from Figs. 5 and 6. As seen from Fig. 7, the algo-
rithm would not allow the handover probability to exceed

a certain value. When micro-cells are active (a total of five

micro-cells were used to ensure coverage), they consume

a maximum total of 0.2471 kW/km? and a minimum of
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Fig. 6 Micro base-station probability of handover with a coverage radius of R =300 m
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Fig. 7 Handover probability comparison between the conventional and the energy-efficient adaptive system

0.2155 kW/km? varying with traffic load and the number
of micro-cells used, and for four micro-cells, the power
consumption ranges between 0.1977 and 0.1724 kW /km?.
On the other hand, macros consume a maximum total of
0.3364 kW/km? and a minimum of 0.3002 kW /km?.

In Figs. 7 and 8, we can see the comparison between
the conventional cellular system and the proposed energy-
efficient hybrid cellular system. As can be observed, as the
traffic decreases, the algorithm tends to switch off more
macro-cells and activate the micro-cells in the targeted

area. This results in the desired scaling of power con-
sumption, providing large savings in low-traffic periods.
The system as designed is able to minimise energy con-
sumption throughout different periods of the day, as it
automatically adjusts to different traffic demand levels.
The algorithm demonstrates the ability to consume less
energy during periods of high traffic demand by capi-
talising on traffic diversity in the spatial domain. In the
proposed algorithm, the micro-cells are activated dynam-
ically during different periods while avoiding interference
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Fig. 8 Blocking probability comparison between the conventional and the energy-efficient adaptive system




Alsedairy et al. EURASIP Journal on Wireless Communications and Networking (2015) 2015:247

with the macro base-station and providing coverage and
service to the weaker areas of the network.

5 Conclusions

In this paper, we have proposed an energy-efficient frame-
work for cellular systems that operates whilst conserv-
ing energy. We have shown that deploying a fuzzy-logic
architecture selection algorithm that is able to respond
to different traffic demands, whilst maintaining system-
wide QoS can minimise energy consumption without
human intervention. The aim was not to have a sys-
tem that conserves energy by compromising operational
parameters, but a system that consumes less energy whilst
maintaining coverage, handover probability and QoS. The
system as designed is able to minimise energy consump-
tion throughout different periods of the day, as it adjusts
to different traffic demand levels. The fuzzy-logic algo-
rithm prevents the system from lowering system per-
formance, but chooses the best outcome while avoiding
continuous switching from on state to off state or vice
versa, which can affect the system performance sub-
stantially. The proposed algorithm has the advantage
of being scalable to accept other variables as decision
criteria, thereby providing more accurate decision-
making. Furthermore, the algorithm can be tuned to
be more relaxed in terms of the criteria to provide
either more flexibility in allowing more energy saving
or more strict in terms of the minimal accepted system
performance.
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