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Abstract

In this paper, we investigate the optimization problem of joint source and relay beamforming matrices for a two-way
amplify-and-forward (AF) multi-input multi-output (MIMO) relay system. The system, consisting of two source nodes
and two relay nodes, is considered, and the linear minimummean-square-error (MMSE) is employed at both receivers.
We assume individual relay power constraints and study an important design problem, a so-called determinant
maximization (DM) problem. Since this DM problem is nonconvex, we consider an efficient iterative algorithm by
using an MSE balancing result to obtain at least a locally optimal solution. The proposed algorithm is developed based
on QL, QR, and Choleskey decompositions which differ in complexity and performance. Analytical and simulation
results show that the proposed algorithm can significantly reduce computational complexity compared with their
existing two-way relay systems and have equivalent bit-error-rate (BER) performance to the singular value
decomposition (SVD) based on a regular block diagonal (RBD) scheme.

Keywords: Two-way relay channel, MIMO, QL-QR decomposition, Choleskey decomposition, Determinant
maximization, Amplify-and-forward

1 Introduction
Recently, wireless relay networks have been the focus
of a lot of research because the relaying transmission is
a promising technique which can be applied to extend
the coverage or increase the system capacity. Various
cooperative relaying schemes have been proposed, such
as amplify-and-forward (AF) [1, 2], decode-and-forward
(DF) [3], denoise-and-forward (DNF) [4], and compress-
and-forward (CF) [5] cooperative relaying protocols.
Among these approaches, an AF scheme is most widely
used because it does not need to detect the transmitted
signal. In addition, it requires less processing power at the
relays compared to other schemes.
In a one-way relaying (OWR) approach, to completely

exchange information between two base stations, four
time slots are required in uplink (UL) and downlink (DL)
communications, which leads to a loss of one-half spectral
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resources [6]. In order to solve this problem, a two-way
relaying approach has been considered in [7–9]. In a
typical two-way relaying scheme, the communication is
completed in two steps. First, the transmitters send their
symbols to two relays, simultaneously. Upon receiving
the signals, each relay processes them based on an effi-
cient relaying scheme to produce new signals. After these
processes, the processed signals are broadcasted to both
receiver nodes.
Multi-input multi-output (MIMO) relay systems have

been investigated in [10–13]. It is shown that, by employ-
ing multiple antennas at the transmitter and/or the
receiver, one can significantly improve the transmission
reliability by leveraging spatial diversity. Relay precoder
design methods have been investigated in [14–16]. A
problem in designing optimal beamforming vectors for
multi-casting is challenging due to its nonconvex nature.
In [14], the authors propose a transceiver precoding
scheme at the relay node by using zero-forcing (ZF)
and MMSE criteria with certain antenna configurations.
The information theoretic capacity of the multi-antenna
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multicasting is studied in [15], along with the achievable
rates using lower complexity transmission schemes, as the
number of antennas or users goes to infinity. In [16], the
authors propose an alternative method to characterize the
capacity region of a two-way relay channel (TWRC) by
applying the idea of rate profile.
Joint optimizations of the relay and source nodes for

the MIMO TWRC have been studied in [9, 17]. In [9],
the authors develop a unified framework for optimiz-
ing two-way linear non-regenerative MIMO relay systems
and show that the optimal relay and source matrices
have a general beamforming structure. The joint source
node and relay precoding design for minimizing the mean
squared error in a MIMO two-way relay (TWR) system is
studied in [17].
Since singular value decomposition (SVD) and gener-

alized SVD (GSVD) are widely used to find the orthog-
onal complement to solve an optimization problem
[2, 9, 16, 33], but their computational complexity is
extremely high. In order to reduce the complexity, the
SVD can be replaced with a less complex QR decompo-
sition [18] in this work. However, this approach leads to
degrading the bit-error-rate (BER) performance. In addi-
tion, it is difficult to realize in the TWRC. In this paper,
we investigate the joint source and relay precoding matrix
optimization for a two-way relay amplify-and-forward
relaying system where two source nodes and two relay
nodes are equipped with multiple antennas. Also, in order
to apply the QL-QR decomposition to the TWRC, we
design a three-part relay filter. Compared with existing
works such as [9–14], the contributions of this paper
can be summarized as follows. Firstly, we investigate a
two-way MIMO relay system using the criteria which
minimize an MSE of the signal waveform estimation for
both two source nodes. We prove an optimal sum-MSE
solution can be obtained as the Wiener filter while the
signal-to-noise ratios (SNR) at both source nodes are
equivalent [20], which leads to an MSE balancing result.
Secondly, we propose a new cooperative scenario, i.e.,
the QL-QR compared with the Choleskey decomposition
which significantly reduces the computational complex-
ity of the optimal design. In this proposed design, the
channels of its left side are decomposed by the QL decom-
position while those of its right side factorized by the
QR decomposition. And the equivalent noise covariance
is decomposed by the Choleskey decomposition. We also
design the three-part relay filter, which is comprised of a
left filter, a middle filter, and a right filter, to efficiently
combine two source nodes and the relay nodes. By these
approaches, the received signals at both two source nodes
are able to be redeemed as either lower or upper trian-
gular matrices. Stemming from one of the properties of
triangular matrices such that their determinant is identi-
cal to the multiplication of their eigenvalues, we are able

to straightforwardly solve the optimization problem as a
determinant maximization problem. Also, we can obtain
the BER performance equivalent to that of the singular
value decomposition-regular block diagonal (SVD-RBD)
scheme.
The rest of this paper is organized as follows. Section 2

describes a system model of the TWRC and raises a
sum-MSE problem. In Section 3, we propose an iterative
QL-QR algorithm and a joint optimal beamforming
design. In Section 4, we discuss the computational com-
plexity of an efficient channel model. The simulation
results are presented to show the excellent performance
of our proposed algorithm for the TWRC in Section 5.
Section 6 concludes this paper.

Notations: A∗, AT, AH, E(A), tr(A), �(A), and det(A)

denote the conjugate, transpose, Hermitian transpose, sta-
tistical expectation, trace, real part, and determinate of
a matrix A, respectively. An N × N identity matrix is
denoted by IN .

2 Systemmodel and sum-MSE
We consider a TWRC consisting of two source nodes, S1
and S2, and two relay nodes, R1 and R2, as shown in Fig. 1.
The source and relay nodes are equipped with M and N
antennas, respectively. We adopt the relay protocol with
two time slots introduced in [14]. In the first time slot, the
information vector xi ∈ C

G×1, where G ≤ M, is linearly
processed by a precoding matrix, Vi ∈ C

M×M , and then
transmitted to the relay nodes. In this paper, we assume
that each transmit antenna satisfies the unity transmission
power constraint, which is tr

{
xixHi

} = IM. The received
signals at Ri, i ∈ {1, 2} can be expressed as

yR1 = H1,1s1 + H1,2s2 + nR1

yR2 = H2,1s1 + H2,2s2 + nR2 , (1)

where yRi ∈ C
N×1, i ∈ {1, 2}, indicates the received signal

vector, Hi,j ∈ C
N×M, i, j ∈ {1, 2}, represents the chan-

nel matrix from source j to relay i, as shown in Fig. 1,
si = Vixi ∈ C

M×1 is the transmitted symbol vector
from Si with a power constraint tr

{
E
(
sisHi

)} ≤ Pi, and
nRi ∼ CN

(
0, σ 2

RiIN
)
represents the additive white Gaus-

sian noise (AWGN) vector with zero mean and variance
σ 2
Ri at relay node i.
In the second time slot, the relay node Ri linearly

amplifies yRi with an N × N matrix Fi and then broad-
casts the amplified signal vector xRi to source nodes 1
and 2. The signal transmitted from relay node i can be
expressed as

xRi = FiyRi . (2)
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Fig. 1 Proposed QL-QR amplify-and-forward MIMO TWR system

Using (1) and (2), the received signal vectors at S1 and
S2 can be, respectively, written as

y1 = HT
1,1F1H1,1s1 + HT

1,1F1H1,2s2 + HT
2,1F2H2,1s1

+ HT
2,1F2H2,2s2 + HT

1,1F1nR1 ,+HT
2,1F2nR2 + n1

y2 = HT
1,2F1H1,1s1 + HT

1,2F1H1,1s2 + HT
2,2F2H2,1s1

+ HT
2,2F2H2,1s2 + HT

1,2F1nR1 + HT
2,2F2nR2 + n2.

(3)

whereHT
i,j, i, j ∈ {1, 2}, indicates theM×N channel matrix

from the relay node i to the source node j and ni, i ∈ {1, 2},
is anM × 1 noise vector at Si.
We assume that the relay nodes perfectly know the

channel state information (CSI) of Hi,j. The relay node Ri
performs the optimizations of Fi and Vi and then trans-
mits the information to the source nodes 1 and 2. Since
source node i knows its own transmitted signal vector
si and full CSI, the self-interference components in (3)
can be efficiently canceled. The effective received signal
vectors are given by

ỹ1 = HT
1,1F1H1,2s2 + HT

2,1F2H2,2s2 + HT
1,1F1nR1

+ HT
2,1F2nR2 + n1

= H̃1s2 + ñ1, (4)

ỹ2 = HT
1,2F1H1,1s1 + HT

2,2F2H2,1s1 + HT
1,2F1nR1

+ HT
2,2F2nR2 + n2

= H̃2s1 + ñ2, (5)

where H̃1 = HT
1,1F1H1,2 + HT

2,1F2H2,2 and H̃2 = HT
1,2

F1H1,1 + HT
2,2F2H2,1 are the equivalent MIMO channels

seen at source nodes S1 and S2, respectively. The vectors
ñ1 = HT

1,1F1nR1 + HT
2,1F2nR2 + n1 and ñ2 = HT

1,2F1nR1 +
HT

2,2F2nR2 + n2 are the equivalent noises at source nodes
S1 and S2, respectively.

Due to the lower computational complexity, linear
receivers are applied at source node i to retrieve the trans-
mitted signals sent from the other nodes. The estimated
signal waveform vector is given as ŝi = WH

i ỹi, where Wi
is anM × M weight matrix, with i = 2 for i = 1 and i = 1
for i = 2. From (4), theMSEmatrix of the signal waveform
estimation is denoted by MSEi = E

[
(̂si − si) (̂si − si)H

]
,

which can be further written as

MSEi = (
WH

i H̃i − IM
) (
WH

i H̃i − IM
)H

+WH
i CniWi (6)

where Cni = HT
i,iFiFHi H∗

i,i +HT
i,iFiF

H
i H

∗
i,i + IM is the equiv-

alent noise covariance. The sum-MSE of the two source
nodes in the proposed system model can be written as

MSEsum = MSE1 + MSE2. (7)

Note that the sum-MSE minimization criterion mea-
sures the overall transmission performance of both the DL
and the UL. Since the two data streams are transmitted at
different directions during the two time slots, MSEsum is
considered in the TWR network.

3 Joint source and relay beamforming design
In this section, we develop an iterative QL-QR algorithm
by using the MSE balancing result. The QL-QR algo-
rithm involves two steps, i.e., the linear receiver matrix
optimization and the joint source and relay beamformer
design.

3.1 Proposed optimal detector and optimization problem
We would like to find the jointly optimal beamforming
vectorsWi, Vi, and Fi such that the following sum-MSE is
minimized:

min
Wi,Fi,Vi

MSEsum. (8)
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According to (2), we consider the following individual
transmission power constraint at relay node:

tr
(
FiDiFHi

) ≤ PRi , (9)

where Di = Hi,iViVH
i HH

i,i + Hi,iViVH
i H

H
i,i + IN and the

PRi denotes the individual power constraint at the relay
node Ri. The transmission power constraint at two source
nodes can be written as

tr
(
ViVH

i
) ≤ Pi, i = 1, 2 (10)

where Pi is the available power at the ith source node.
According to (8), (9), and (10), the joint optimization
problem of the sum-MSE can be formulated as follows:

min
Wi,Fi,Vi

MSEsum

s.t. tr
(
FiDiFHi

) ≤ PRi , tr
(
ViVH

i
) ≤ Pi. (11)

It is shown in [20] that at the optimum, SNR1 = SNR2
holds true, thus leading to an SNR balancing result. Oth-
erwise, if SNR1 > SNR2, then P2 can be reduced to retain
SNR1 = SNR2, and this reduction of P2 will not violate
the power constraint, i.e.,

P1 · SNR1 = P2 · SNR2. (12)

In Fig. 2, we show two examples of the SNR regions with
α1 = 0.5 and α2 = 0.3, where ωi ∈[0, 1] is a Lagrange mul-
tiplier weight value and αi ∈[0, 1] is an SNR weight value.
We have assumed that the sum of SNR is a constant value.
It is clear that the SNR region of α1 is larger than that of
α2. For further details, see [20]. As discussed in [21], the
optimization problems have the performance matrix that

Fig. 2 Examples of the SNR regions achieved in a TWRC with two
relays

are functions of SNR , namely the MSE at the output of a
linear-MMSE (LMMSE) filter of each user:

MSE = 1
1 + SNR

. (13)

By these two approaches, the max-min optimization
problem in (11) can be efficiently written as

min
W1,Fi,V2

MSE1 (14)

s.t. tr
(
FiDiFHi

) ≤ PRi , MSE1 = MSE2,∀i = 1, 2.
(15)

Since the optimization problem (14)–(15) is nonconvex,
it is difficult to obtain the globally optimal solution. In this
paper, we present a locally optimal solution of the joint
optimization problem overWi, Vi, and Fi, where i = 1, 2,
which can be solved by three stages, i.e., (1) the linear
receiver weighted matrices are optimized with the fixed
source precoding matrix Vi and relay amplifying matri-
ces Fi (Wi is not in constraint (15)). (2) With given Wi
and fixed Fi, update Vi. (3) With given Wi and Vi, obtain
suboptimal Fi to solve (14).

Lemma 1. For any fixed Vi and Fi, the minimization
problems in (14) are convex quadratic problems and the
optimalWi can be obtained as the Wiener filter [22] which
is used to decode si shown as follows:

Wo
i = (

H̃iH̃H
i + Cni

)−1 H̃i, (16)

Proof. For source node i, the MSE can be further
expressed as

MSEi = WH
i H̃iH̃H

i Wi − WH
i H̃i − H̃H

i Wi

+ IM + WH
i CniWi (17)

Based on (17), the derivation of an optimal MSE detec-
tion matrix Wopt

i is equivalent to solving the following
equation [23]:

∂MSEi

∂WH
i

= 2H̃iH̃H
i Wi − 2H̃i + 2CniWi = 0. (18)

Then, we may obtain the closed-form solution of Wi,
which is

Wo
i = (

H̃iH̃H
i + Cni

)−1 H̃i. (19)

This completes the proof.
With the optimal Wo

1 fixed, the outer minimization
problem in (14) can be rewritten as

min
F1,F2,V1,V2

MSEo
1

s.t. tr
(
FiDiFHi

) ≤ PRi , MSEo
1 = MSEo

2, (20)



Duan et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:246 Page 5 of 13

whereMSEo
i is the MSE matrix usingWo

i . By substituting
(16) into (6), we have

MSEo
1 = [

IM + H̃H
1 C−1

n1 H̃1
]−1 , i = 1, 2. (21)

Note that the matrix inversion lemma is used to obtain
(21).

3.2 Joint optimal source and relay beamformingmatrices
design and iterative algorithm

In this section, we focus on the source and relay beam-
forming matrices design and develop an iterative algo-
rithm which is suboptimal for the general case but has a
much lower computational complexity. For the fixed Fi,
the source precodingmatrixVi is optimized by solving the
following problem:

min
Vi

tr
[
IM + VH

i �iVi

]−1

s.t. tr
{
VH
i �iVi

} ≤ PRi , tr
{
VH
i Vi

} ≤ Pi, (22)

where �i = H̃H
i Ĉ−1

ni H̃i, Ĉ−1
ni = (̃ni)H ñi, �i = HH

i,iFHi
FiHi,i + HH

i,iF
H
i FiHi,i.

The Lagrangian function associated with the problem
(22) is given by

LV = tr
[
IM + VH

i �iVi

]−1 + μ1
(
tr
{
VH
i Vi

}− Pi
)

+ μ2
(
tr
{
VH
i Vi

}
− Pi

)
+ μ3

{
tr
{
VH
i �iVi

}− PRi
}

+ μ4
{
tr
{
VH
i �iVi

}
− PRi

}
,

(23)

where μi ≥ 0 is the Lagrange multiplier.

Case 1: When μi = 0, making the derivative of LV with
respect to Vi be zero, we obtain

∂LV
∂Vi

= −
[
IM + VH

i �iVi

]−2
VH
i �i = 0. (24)

Since Vi and �i are nonsingular matrices, (24) can be
represented as

IM + VH
i �iVi = 0. (25)

Simplifying (25), IM > 0 and VH
i �iVi ≥ 0. Conse-

quently, in Case 1, the optimal solution is not existent.

Case 2: When μi > 0, we rewrite the Lagrangian
function as

LV =
[
IM + VH

i �iVi

]−1 − μ1Pi − μ2Pi − μ3PRi − μ4PRi
+ VH

i ϒiϒ
H
i Vi + μ3VH

i �iVi + μ1VH
i Vi,

(26)

where ϒiϒ
H
i = μ2IM + μ4�i. We obtain the derivative of

LV as

∂LV
∂Vi

= −
[
IM + VH

i �iVi

]−2
VH
i �i + VH

i ϒiϒ
H
i = 0.

(27)

Since VH
i and �i are nonsingular matrices, multiply

both sides by
(
VH
i

)−1
and �−1

i ; we have

(
VH
i

)−1 [
IM + VH

i �iVi

]−2
VH
i = ϒiϒ

H
i �−1

i . (28)

Since �i is Hermitian and positive definite, we apply the
Choleskey decomposition of �i = 	H

i 	i, where 	i is a
lower triangular matrix. Consequently, we represent (28)
as (

	H
i
)−1 (VH

i

)−1 [
IM + VH

i 	H
i 	iVi

]−2
VH
i 	H

i

= (
	H

i
)−1

ϒiϒ
H
i
(
	H

i 	i
)−1

	H
i . (29)

By the definition of the matrix identity as[
IM + XXH]−1 X = X

[
IN + XHX

]−1 , (30)

for anyM × N matrix X, we can rewrite (29) as[
IM + 	iViV

H
i 	H

i

]−2 = (
	H

i
)−1

ϒiϒ
H
i 	−1

i . (31)

Solving (31) for Vi, we have

Vi =
(
∇i∇H

i − �−1
i

) 1
2 , (32)

where ∇i =
(
ϒH
i 	i

)− 1
2 .

Figure 3 shows our proposed relay filter design, which
forwards the received signal (input) from S1 amplified by
a left filter (LF) matrix FL,i and the signal from S2 ampli-
fied by a right filter (RF) matrix FR,i to a center filter (CF)
FD,i. FD,i amplifies the outputs from the LFmatrix FL,i and
the RF matrix FR,i (i ∈ {1, 2} denotes relay node i) and
forwards them to S1 and S2 (output).1

Fig. 3 The relay filter design of the proposed QL-QR technique
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Lemma 2. The optimal relay filter constructive of FL, FR,
and FD matrices, i.e., for R1 and R2, can be designed as

FL,1 = Q∗
L,1, FL,2 = Q∗

L,2,
FR,1 = QH

R,1, FR,2 = QH
R,2,

FD,1 and FD,2 are diagonal matrices,

where QL,i and QR,i for i = 1, 2 are the unitary matri-
ces which relate to QL and QR decompositions for the
dependent channel coefficients.

Proof. For FL,i and FR,i, the proof is similar to Theorem
3.1 in [24]. For FD,i, using Theorem 2 in [9], the structure
of FD,i is optimal for the two cases of

(a) : R(H1V1)⊥R(H2V2); (H∗
1)⊥R(H∗

2)

and R(H3V1)⊥R(H4V2); (H∗
3)⊥R(H∗

4)

(b) : R(H1V1)‖R(H2V2); (H∗
1)⊥R(H∗

2)

and R(H1V1)‖R(H2V2); (H∗
1)⊥R(H∗

2). (33)

Case a: If N = 2, the optimal FD,i is a diagonal matrix
given as

FD,i �
[
fd,i,1 0
0 fd,i,2

]
. (34)

If N = 2a, a = 2, 3, . . ., the optimal FD,i is a 2 × 2 block
diagonal matrix given as

FD,i �
[
FD,i,1 0
0 FD,i,2

]
, (35)

where FD,i,1 and FD,i,2 are N
2 × N

2 matrices.

Case b: The optimal FD,i is defined as

F

D,i �

[
fd,i,1
fd,i,2

]
. (36)

Discussion 1: In Case b, since F

D,i is optimal, but the

computational complexity will be considerably increased
compared with Case a, so we exclude it.

For Case a, Before we develop a numerical method to
solve vector FD,i, let us have some insights into the struc-
ture of this suboptimal relay beamforming matrix. To
simplify relay beamforming matrix FD,i, we introduce the
following properties:
Property 1: The statistical behavior of a unitary matrix

U remains unchanged when multiplied by any unitary
matrix T independent of U. In other words, TU has the
same distribution as U, i.e., in (33),

|F1| = |FL,1FD,1FR,1| = |FD,1|
|F2| = |FL,2FD,2FR,2| = |FD,2|. (37)

Now, let us introduce the followingQL decomposition:[
H1,1V1,H2,1V1

] = [
QL,1L1,QL,2L2

]
, (38)

whereQL,i for i = 1, 2 is a unitarymatrix with a dimension
C
N×N and {L1,L2} ∈ C

N×M are lower triangular matrices.
Similarly, let us introduce another decomposition,

namelyQR decomposition, as[
H1,2V2,H2,2V2

] = [
QR,1R1,QR,2R2

]
, (39)

where QR,i ∈ C
N×M for i = 1, 2 is a unitary matrix and

{R1,R2} ∈ C
M×M are upper triangular matrices. Substi-

tuting (38) and (39) back into (4), we can get equivalent
received signals shown as

ŷi =
(
LTi FD,iRi + LTi FD,iRi

)
xi

+LTi FD,inRi + LTi FD,inRi + ni
= Ĥi,ixi + n̂i, (40)

where Ĥi = LTi FD,iRi + LTi FD,iRi and n̂i = LTi FD,inRi +
LTi FD,inRi +ni are efficient channel and noise coefficients;
obtained from the covariance of Ĉi, we have

Ĉi = n̂in̂Hi
= LTi FD,iFHD,iL∗

i + LTi FD,iF
H
D,iL

∗
i + IN . (41)

For fixed Vi, using (40) and Property 1, the optimal
problem (20) becomes

max
FD,1,FD,2

tr
(
IN + ĤH

i Ĉ
−1
i Ĥi

)
(42)

s.t. tr
(
FHD,iDiFD,i

) ≤ PRi ,MSE1 = MSE2, (43)

where we have employed the principle min(a) = max
(a−1), for a �= 0. By using the lemma tr(A + B) = tr(A) +
tr(B), (42) can be represented as

tr
(
ĤH

i Ĉ
−1
i Ĥi

)
+ n. (44)

Since the matrix Ĉi is Hermitian and positive defi-
nite, we can decompose this matrix using the Cholesky
factorization as

Ĉi = �H
i �i (45)

where �i denotes a lower triangular matrix. By substitut-
ing (45) back into (44), we can simply rewrite the optimal
problem as

max (MSEi)
−1

= max tr
(
ĤH

i
(
�H

i �i
)−1 Ĥi

)
+ n

a= max tr
((

ĤH
i �−1

i

) (
ĤH

i �−1
i

)H)
= max tr

(
BiBH

i
)
, (46)
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where a= denotes n has nothing to do with the maximum
solution and Bi = ĤH

i �−1
i . Therefore, the optimal prob-

lem can be represented as the determinant maximization
of B2

i [29].
In Case a, since FD,i is the block diagonal matrix, its

determinant can be written as

detFD,i = detFD,i,1 · detFD,i,2. (47)

Let A, B, C, and D be an N
4 × N

4 matrix. We can define
detFD,i,i, for i ∈ 1, 2, as

detFD,i,i =
∣∣∣∣A D
B C

∣∣∣∣
=
∣∣∣∣A 0
B I

∣∣∣∣
∣∣∣∣ I A−1D
0 C − BA−1D

∣∣∣∣
= |A| ∣∣C − BA−1D

∣∣ , (48)

where I stands for an N
4 × N

4 identity matrix. In (48), to
obtain maximum detFD,i,i, we should minimize BA−1D.
Let us introduce the SVD of B, A, and D as

B = UB�B

H
B , A = UA�A
H

A , D = UD�D
H
D , (49)

whereUi,
i, i ∈ {A,B,D}, are the unitary matrices and�i
is an N

4 × N
4 diagonal matrix. Substituting (49) back into

BA−1D, we have

min tr
(
UB�B
H

B
(
UA�A
H

A
)−1UD�D
H

D

)
� min tr

(
�B (�A)−1 �D

)
� min

bi,di

n/4∑
i

bidi
ai

, (50)

where bi, di, and ai are the diagonal elements of �B,
�D, and �A, respectively. To simplify our discussion, we
assume that FD,i,i is a semi-positive matrix; thus, we have
the minimum solution as bidi = 0. Interestingly, if both
bi and di are 0, FD,i,i is a diagonal matrix. Otherwise, it is
a lower/upper triangular matrix. In addition, for S1, the
equivalent channel Ĥ1, since the terms LT1 , L

T
2 , R1, and R2

are upper triangular matrices, the optimal FD,i should be
an upper triangular matrix. Since the equivalent channel
Ĥ2, L1, L2, RT

1 , and RT
2 are lower triangular matrices for

S2, the optimal FD,i is a lower triangular matrix. There-
fore, if and only if FD,i is a diagonal matrix, the sum-MSE
is optimal in our proposed method.
This completes the proof for Lemma 2.

Property 2: For any M × N rectangular matrices G and
J, matrices A and B are lower/upper triangular matrices
based onQR orQL decomposition ofG and J. If ai,i+bi,i �=
0, where ai,i and bi,i are diagonal elements of matrices A
and B, respectively, we can easily obtain

det (A + B) =
m∏
i=1

(ai,i + bi,i) ≥ detA + detB. (51)

Consequently, we have

detĤH
i =

M∏
m=1

(
li,m,mfD,i,mri,m,m + li,m,mfD,i,mri,m,m

)

=
M∏

m=1
(ςi + ςi), (52)

where ς1 = li,m,mfD,i,mri,m,m, ςi = li,m,mfD,i,mri,m,m, li,m,m,
fD,i,m, ri,m,m, li,m,m, fD,i,m, and ri,m,m are diagonal elements
of Li, FD,i, Ri, Li, FD,i, and Ri, respectively. Since �i and
�−1

i are also lower triangular matrices, we have

detBi = detĤH
i det�

−1
i

=
M∏

m=1
(ςi + ςi)ξm, (53)

where ξm is the diagonal element of �−1
i .

After introducing slack the variable τi, the objective
problem can be equivalently converted into the opti-
mization one with respect to an individual relay power
constraint, shown as follows:

max
FD,i

τi (54)

s.t.

⎛
⎜⎝ τi det

(
�−1

i ĤH
i

)
det

(
Ĥi
(
�−1

i

)H)
1

⎞
⎟⎠ 
 0 (55)

tr
(
FD,iDiFHD,i

) ≤ PRi , detB2
i ≥ τi, τi ≥ 0,∀i = 1, 2.

(56)

From (54) to (56), it is easy to see that τi is only depen-
dent on the beamformer FD,t and with respect to (55) and
(56). Thus, by using (53), we have

τi ≤
M∏

m=1
� (li,m,m fD,i,mri,m,m + li,m,m fD,i,mri,m,m

)2 × � (ξm)2 .

(57)

From (57), it is easy to follow that with fixed FD,i/FD,i,
τi is convex with regard to FD,i/FD,i. In summary, we out-
line the iterative beamforming design algorithm as follows
(QL − QR Algorithm):
Clearly, Algorithm 1 will converge to a sub-optimal

solution as τ
(n)
max − τ

(n−1)
max ≤ ε. Therefore, ε is initialized

to be a small value and Nmax is set to limit the number of
iterations.

Discussion 2: Figure 4 displays two extended system
models. One is the multi-pair scenario with two relay
nodes and K pairs of source nodes. The other is a Z relay
node scenario with two source nodes. In Fig. 4a, each pair
of sources and two relay nodes can be seen as a group.
Since each pair of source nodes are independent of one
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Fig. 4 The extended system model. a The K pairs of the source node
scenario. b The T relay node scenario

another, we can design each relay node comprised of K
RFs, LFs, and one CF. Therefore, the extended system
model (a) can be classified as another version of our pro-
posed system model with K parallel nodes. The objective
problem can be expressed as

max
Wt ,Ft ,Vt

MSE(a)
sum

s.t. tr
(
FtDtFHt

) ≤ PRt , tr
(
ViVH

i
) ≤ Pi, (58)

where MSE(a)
sum = ∑K

i=1 det (Bi)
2 + ∑2K

j=K+1 det
(
Bj
)2 is

the sum-MSE of the multi-pair scenario. It is clear that
(58) is a bi-convex problem which is similar to (54)–(56)
with different effective channel coefficients and can be
solved by our proposed algorithm.

Algorithm 1QL-QR Algorithm

1. Initialize: F(n)
i , W(n)

i , V(n)
i , ε = 10−3, Nmax fori, j =

1, 2, set n = 0;
2. Repeat:
1: for n = 0 to Nmax do
2: for fixed F(n−1)

i , V(n−1)
i updateW(n)

i via solving (19);
3: for given W(n)

i and F(n−1)
i update V(n)

i via solving
(32);

4: for givenW(n)
i and V(n)

i do
5: fix F(n−1)

i and update F(n)

i and τ
(n)

i via solving
(54)–(56);

6: end for
7: for givenW(n)

i , V(n)
i and F(n)

i do
8: update F(n)

i and τ
(n)
i via solving (54)–(56);

9: if τ
(n)
i − τ

(n)

i ≤ 0, then τ
(n)
max ←− τ

(n)

i ;
Otherwise τ

(n)
max ←− τ

(n)
i ;

break;

10: end if
11: end for
12: if τ

(n)
max − τ

(n−1)
max ≤ ε, then

break;

13: end if
14: end for

In Fig. 1b, a TWRC consisting of two source nodes and
L relay nodes is considered. Obviously, by employing the
MSE balancing result, the objective of the extended sys-
tem model (b) is to minimize the sum-MSE, which is
subject to the individual relay transmit power constraint,
shown as

min
Wt ,Fi ,Vt

MSE(b)
t

s.t. tr
(
FiDiFHi

) ≤ PRi , tr
(
VtVH

t
) ≤ Pt , MSE(b)

1 = MSE(b)
2 .
(59)

where MSEt = (
WH

i H̃t − IM
) (
WH

i H̃t − IM
)H + WH

i Cnt
Wi, for t = 1, 2, H̃t = ∑L

i=1HT
t,iFiHt,i, and Cnt =∑L

i=1HT
t,iFiFHi H∗

t,i+IM, is the equivalent noise covariance,
for i = 1, . . . , L. Due to the semi-infinite constraints at the
relay node, the objective problem (59) is non-convex. In
this scenario, we consider a two-stage solution where in
the first step, the semi-infinite constraints are converted
to linear matrix inequalities (LMI) and in the second step,
we use our proposed iterative algorithm to solve it. By
using the S-Lemma [28], the relay power constraint can be
converted into the LMI version, we have

⎡
⎢⎢⎢⎣
∑l

i=1 PRi −∑l
i=1 φi −vec (F1)H · · · −vec (FL)H

−vec (F1) φ1IN2 · · · 0
...

...
. . .

...
−vec (FL) 0 · · · φLIN2

⎤
⎥⎥⎥⎦ � 0,

(60)

where vec(·) denotes to stack the columns of a matrix into
a single vector. Now, the objective problem (59) becomes

min
Wt ,Fi,Vt

MSE(b)
t

s.t. (60), tr
(
VtVH

t
) ≤ Pt , φi ≥ 0. (61)

In step 2, we use an iterative algorithm based on alter-
nating convex search (ACS) to solve the resulting convex
problem. The algorithm is almost the same as our pro-
posed one which only converts [Algorithm 1, Steps 4–11]
into “for fixedW(n)

i , V(n)
i update F(n)

i via solving (61)”.

4 Computational complexity analysis
In this section, we measure the performance of the pro-
posed QL-QR scheme in terms of the computational com-
plexity compared with existing algorithms by using the
total number of floating point operations (FLOPs). A flop
is defined as a real floating operation, i.e., a real addition,
multiplication, and division. In [30], the authors show the
computational complexity of the real Choleskey decom-
position. For complex numbers, a multiplication followed
by an addition needs eight FLOPs, which leads to four
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Table 1 Computational complexity of the proposed QL-QR algorithm

Step Operations FLOPS Case: (2, 2, 2) × 6

1 V1,V2 2 × K
(
40N3

i − 24N2
i + 17Ni

)
1560

2 QL,1L1,QL,2L2 2 × 16K
(
N2
TNi − NTN2

i + 1
3N

3
i

)
4864

3 QR,1R1,QR,2R2 2 × 16K
(
N2
TNi − NTN2

i + 1
3N

3
i

)
4864

4 HT
1,1F1H1,2 8N2

TNi + 4NTN2
i + 2NTNi 696

5 HT
2,1F2H2,2 8N2

TNi + 4NTN2
i + 2NTNi 696

6 Ĉ1 2K
(
32N2

TNi + 8NTNi + 2N2
T − 4Ni + 3NT

)
14,856

7
(
�H

i �i
)−1

K
( 14
3 N

3
T − 2N2

T + NT
)

2826

8 detB2
1 4K

(
N3
T + N2

T + 2NT
)

3168

Total 33,530

times its real computation. According to [31], the required
number of FLOPs of each matrix is described as follows:

1. Multiplication ofm × n and n × p complex matrices:
8mnp − 2mp;

2. Multiplication ofm × n and n × m complex
matrices: 4nm × (m + 1);

3. SVD of anm× n(m ≤ n) complex matrix where only
� is obtained: 32(mn2 − n3/3);

4. SVD of anm× n(m ≤ n) complex matrix where only
� and 
 are obtained: 32(nm2 + 2m3);

5. SVD of anm × n(m ≤ n) complex matrix where U,
�, and 
 are obtained: 8(4n2m + 8nm2 + 9m3);

6. Inversion of anm × m real matrix using
Gauss-Jordan elimination: 2m3 − 2m2 + m;

7. Cholesky factorization of anm × m complex matrix:
8m3/3;

8. QR or QL decomposition of anm× n conplex matrix
16
(
n2m − nm2 + 1

3m
3).

For the RBD method [32], the authors consider a lin-
ear MU-MIMO precoding scheme for DL MIMO sys-
tems. For the non-regenerative MIMO relay systems [33],
the authors investigate a precoding design for a three-
node MIMO relay network. In [2], a relay-aided sys-
tem based on a quasi-EVD channel is proposed. We

compare the required number of FOLPs of our proposed
method with conventional precoding algorithms, such as
the RBD, the non-regenerative MIMO relay system, and
the CD-BD algorithm as shown in Tables 1, 2, 3, and 4,
respectively, under the assumption that NT = NR and
Ni = NT − Ni.
For instance, the (2, 2, 2) × 6 case denotes a system

with three users (K = 3), where each user is equipped
with two antennas (Ni = 2) and the total number of
transmit antennas is six (NT = 2 × 3 = 6). The
required number of FLOPs of the QL-QR algorithm,
the RBD, the non-regenerative MIMO relay system, and
the CD-BD algorithm are counted as 33,530, 40,824,
45,306, and 34,638, respectively. From these results, we
can see that the reduction in the number of FLOPs
of our proposed precoding method is 17.87, 25.99, and
3.20% on an individual basis compared to the RBD, the
non-regenerative MIMO relay systems, and the CD-BD
algorithm. Thus, our proposed QL-QR algorithm exhibits
lower complexity than conventional algorithms. In addi-
tion, the complexity reduces as Ni and NT increase with
fixed K.
We summarize our calculation results of the required

number of FLOPs of the alternative methods in Tables 1,
2, 3, and 4 and show them in Figs. 5 and 6. Figure 5 shows

Table 2 Computational complexity of the non-regenerative MIMO relay system [33]

Step Operations FLOPS Case: (2, 2, 2) × 6

1 Ua
i �

a
i 


aH
i 8K

(
4N2

TNi + 8NTN2
i + 9N3

i

)
13,248

2 Ua
j �

a
j 


aH
i 8K

(
4N2

TNi + 8NTN2
i + 9N3

i

)
13,248

3 HH
i Hi 4KNiNT (Ni + 1) 432

4 HH
j Hj 4KNiNT (Ni + 1) 432

5 HH
i

[
σ 2
1 σ 2

2 (HjF)HHjF + I
]−1

Hi 2K
(
N3
i + 8NiN2

T + 4N2
i NT + 2NiNT − N2

i + Ni
)

4212

6 VA
AVH
A 8K

(
4N2

TNi + 8NTN2
i + 9N3

i + 1
2Ni
)

13,272

7 diag(G̃) K
[
4NiNT (Ni + 1) + 2N3

i − 2N2
i + Ni

]
462

Total 45,306
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Table 3 Computational complexity of the conventional RBD [32]

Step Operations FLOPS Case: (2, 2, 2) × 6

1 Ua
i �

a
i 


aH
i 32K(NTN

2
i + 2N

3
i ) 21,504

2
((

�a
i

)T
�a

i + ρ2I
)−1/2

K
(
18NTN2

i − 2N2
i

)
336

3 Va
i D

a
i 8KN3

T 5184

4 HiPai K
(
8NTN2

i − 2N2
i

)
552

5 Ub
i �

b
i V

bH
i 64K

( 9
8N

3
i + NTN2

i + 1
2N

2
TNi
)

13,248

Total 40,824

the computational complexity where Ni = 2 and a value
of K varies. And Fig. 6 shows the computational com-
plexity where K = 4 and a value of Ni varies. For the
RBD method, the orthogonal complementary vector Vk,0
requires K times SVD operations. If only Vk,0 is obtained,
it is not computationally efficient. In step 5, the efficient
channel Heff = HiPa

i is decomposed by the SVD with a
dimension Reff × NT , where Reff is the rank of Heff. In
the non-regenerative MIMO relay method and the CD-
BD algorithm, two SVD operations are performed for the
channels from the source to the relay and from the relay to
the destination, and then the efficient channel covariance
matrix is measured. In the non-regenerative MIMO relay
method, the authors compute A using the EVD, and then
they diagonalize G. In the CD-BD algorithm, the authors
calculate Va

i by the SVD of H†
mse, and then they structure

Vb
i by using the Choleskey decomposition.
In our proposed QL-QR algorithm, we take advantage

of QL and QR decompositions instead of the SVD oper-
ation, and then we compute an efficient channel as well
as decompose a noise covariance matrix by the Choleskey
decomposition. Finally, we calculate the determinant of
B2
i to solve an optimization problem. Obviously, our pro-

posed QL-QR algorithm outperforms conventional algo-
rithms in the light of the computational complexity.

5 Simulation results
In this section, we study the performance of the proposed
QL-QR algorithm for two-way MIMO relay networks.
All the simulations are performed on the assumption

that all the channel estimates are the Rayleigh fading
channels, and they are independent and identically dis-
tributed (i.i.d.) complex Gaussian random variables. The
noise variances σ 2

i are equally given as σ 2. All the simula-
tion results are averaged over 1000 channel trials.
In Fig. 7, we compare the summutual information (SMI)

of various MU-MIMO schemes where full CSI is known
at each node. We set P1 = P2 = 10 dB andM = 1 with an
equal power budget for the two relays. The negative SMI
is adopted in [16] which can be defined as

MIsum = log2 |MSE1| + log2 |MSE2| . (62)

In our proposed method, the SMI shown in the simula-
tion results is calculated as −2 log2|B2

i | by using (45), (52),
and (53). It can be observed that the proposed QL-QR
algorithm has the same SMI performance as an optimal
solution in [16].
Figure 8 shows the performance of our proposed SMI

performance versus the number of the relays, T, which is
even. We consider a practical scenario with different relay
power constraints and set PR = 30 dB. It is clear that, for
different values of P1 and P2, a solution of our proposed
QL-QR algorithm shows better performance than a max-
power solution.
Figure 9a, b exhibits the BER performance of the BD

water filling, the RBD, the SVD-RBD, and our proposed
QL-QR method, where the quadrature phase shift keying
(QPSK) and 16 quadrature amplitude modulation (16-
QAM) are made use of. As pointed out in [35], the

Table 4 Computational complexity of the CD-BD algorithm [2]

Step Operations FLOPS Case: (2, 2, 2) × 6

1 UH
i,1�i,1
i,1 8K(4N2

TNi + 8NTN2
i + 9N3

i ) 13,248

2 
H
i,2�i,2Ui,2 8K

(
4N2

TNi + 8NTN2
i + 9N3

i

)
13,248

3 Hi,2WHi,1 K
[
8NiN2

T − 2NiNT + 4NiNT × (Ni + 1)
]

2088

4 LHi Li 2K
(
Ni + 2NTNi × (Ni + 1) + 4N3

i /3
)

508

5 H†
mse 4N3

R/3 + 12N2
RNT − 2N2

R − 2NTNR 2736

6 Hi,iVa
i V

b
i 8K

[
4NTN2

i − 4N3
i /3 + N2

i (Ni + 1)
]

2336

7
(
QiQH

i + σ 2
i �i

)−1
K
[
4NRNi × (Ni + 1) + 3Ni + 2N3

i − 2N2
i

]
474

Total 34,638
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Fig. 5 The complexity comparisons for required FLOPs versus the
number of the users K

BER performance for a MIMO precoding system is actu-
ally determined by the energy of the transmitted signal.
To simplify our discussion, we assume a = 0. In the
RBD, det

(
HHH) = ∏m

i=1 λ2i , where H ∈ C
N×M, for

M < N , is an equivalent channel matrix with its eigen-
values λi. In our proposed QL-QR method, for source
node S1, we have det

(
Ĥ1ĤH

1
) = ∏m

i=1 ς2
1 . Under the stip-

ulation that detFD,i = 1, we are able to easily obtain
λi = ςi. Therefore, our proposed QL-QR method has
the same BER performance as that of the SVD-RBD
method.

Fig. 6 The complexity comparisons for required FLOPs versus the
number of the receive antennas Ni for each user

Fig. 7 The achieved SMI for N = 4, 2

6 Conclusions
This paper studies a joint optimization problem of an AF
based on the MIMO TWRC, where two source nodes
exchange their messages with two relay nodes. A relay
filter is designed, which is able to efficiently join the
source and the relay nodes. Our main contribution is
that the optimal beamforming vectors can efficiently be
computed using determinant maximization techniques
through an iterative QL-QR algorithm based on a MSE
balancing method. Our proposed QL-QR algorithm can
significantly reduce the computational complexity and has
an equivalent BER performance to that of the SVD-BD
algorithm.

Fig. 8 The SMI versus the number of the relays T
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Fig. 9 a BER performance on the Rayleigh fading channel with QPSK.
b BER performance on the Rayleigh fading channel with 16-QAM

Endnote
1For example: For S1, the equivalent channel can be

written as H̃1 = HT
1,1F1H1,2 + HT

2,1F2H2,2 =
HT

1,1FL,1FD,1FR,1H1,2 + HT
2,1FL,2FD,2FR,2H2,2. For S2, the

equivalent channel can be written as
H̃2 = HT

1,2F1H1,1 + HT
2,2F2H2,1 =

HT
1,2FR,1FD,1FL,1H1,1 + HT

2,1FR,2FD,2FL,2H2,2.
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