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Abstract

This paper investigates the capacity limit of an uplink WCDMA system considering a continuous-time waveform
signal. Various realistic assumptions are incorporated into the problem, which make the study valuable for
performance assessment of real cellular networks to identify potentials for performance improvements in practical
receiver designs. An equivalent discrete-time channel model is derived based on sufficient statistics for optimal
decoding of the transmitted messages. The capacity regions are then characterized using the equivalent channel
considering both finite constellation and Gaussian distributed input signals. The capacity with sampling at the
receiver is also provided to exemplify the performance loss due to a typical post-processing at the receiver. Moreover,
we analyze the asymptotic capacity when the signal-to-noise ratio goes to infinity. The conditions to simultaneously
achieve the individual capacities are derived, which reveal the impacts of signature waveform space, channel
frequency selectivity and signal constellation on the system performance.

Keywords: Uplink WCDMA, Capacity analysis, Continuous-time, Waveform domain, Time-variant spreading,
Sampling, Finite constellation

1 Introduction
Code division multiple access (CDMA) has become stan-
dard in several wireless communication systems from
IS-95, UMTS wideband CDMA (WCDMA) to HSPA, and
so on [1–3]. Although being introduced more than 50
years ago, CDMA is still largely employed and developed
nowadays due to its various advantages such as enabling
universal frequency reuse, improving handover perfor-
mance by soft-handover, and mitigating the effects of
interference and fading. The performance assessment of
such networks is of significant importance. In addition,
the architecture of WCDMA systems still has room for
improvement, especially at the uplink receiver side (base
station) [4, 5].
In the literature, most studies on fundamental limits

of multiuser CDMA systems have been done under the
assumptions of synchronous, time-invariant (each user
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uses the same spreading sequence for all data symbols),
and/or random spreading sequences [6–11]. In [6–8],
the optimal spreading sequences and capacity limits for
synchronous CDMA have been studied with a discrete-
time signal model. A more theoretical approach on
CDMA capacity analysis has been pursued in [9–11]
by modeling the spreading sequences with random
sequences. However, the assumption of perfect synchro-
nization between users is not realistic, especially for
a cellular CDMA uplink. Moreover, in practice, time-
variant-spreading sequences based on Gold or Kasami
codes [1–3] are often used rather than time-invariant or
random spreading sequences.
The capacity limit for a CDMA system with symbol-

asynchronous transmission (the symbol epochs of the
signal are not aligned at the receiver) has also been studied
in [12–15]. In [12], Verdú studied the capacity region of an
uplink time-invariant CDMA system with inter-symbol
interference (ISI) by exploiting the asymptotic properties
of Toeplitz matrices. In [13, 14], the authors studied user
and sum capacities of a symbol-asynchronous CDMA sys-
tem but with chip-synchronous transmission (the timing
of the chip epochs are aligned) assumption, which made
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the analysis tractable using a discrete-time model. In [15],
the spectral efficiency of an asynchronous CDMA system
has been considered while neglecting the ISI by assuming
a large spreading factor.
There have been several studies trying to deal with

the continuous-time asynchronous CDMA system setup.
However, most of them focus on other performance
metrics than capacity (e.g., error probability considering
different detection algorithms) [16–20]: time-invariant
CDMA [21] or asynchronous CDMA but with an ISI-
free assumption [22]. The capacity analysis for a real
cellular network with continuous-time waveform, time-
variant-spreading, asynchronous CDMA is difficult due
to the following reasons. First, an equivalent discrete-
time signal model is complicated to be expressed due to
the asynchronization between symbols and chips. Next,
for a time-variant spreading CDMA system, the approach
based on the asymptotic properties of a Toeplitz form [23],
which is crucial for the capacity analysis with ISI channel
[12, 24], cannot be employed since the variation of spread-
ing sequence destroys the Toeplitz structure of the equiv-
alent channel matrix.

1.1 Contributions of this work
Motivated by the fact that most existing research on mul-
tiuser CDMA capacity have focused on theoretical anal-
ysis with simplified system assumptions, in this work, we
present a framework for capacity analysis of a WCDMA
system with more realistic assumptions, which make the
framework and results more valuable for the performance
assessment of real cellular networks. Our main contribu-
tions are summarized as follows:

− We provide a precise channel model reflecting prac-
tical operations of the uplink WCDMA physical (PHY)
layer based on the 3GPP release 11 specification [1]. Var-
ious realistic assumptions are included into the system
such as: continuous-time waveform-transmitted signal
and time-variant spreading and an asynchronous multi-
code CDMA system with ISI over frequency-selective
channels. It is worth noting that although the signal model
is constructed based on a WCDMA system, the approach
and framework can be extended or transferred to other
wireless standards.
− We derive sufficient statistics for decoding the trans-

mitted symbols based on the continuous-time-received
signal, which provides us an equivalent discrete-time sig-
nal model. A matrix representation of channel model
is provided for which the equivalent additional noise is
shown to be a Gaussian distributed random vector.
− Since sufficient statistics preserve the mutual infor-

mation ([25], Chap. 2), the capacity is then derived using
the equivalent discrete-time signal model. In particular,
we characterize the capacity region when the input signal

is fixed to finite constellations, e.g., PSK, QAM, and so
on, with a uniform input distribution, which are widely
used in current real cellular networks. Additionally, we
provide the capacity region when the input signal follows
a Gaussian distribution, which is the optimal input distri-
bution for additive Gaussian noise channels. Accordingly,
the Gaussian capacity offers a capacity outer bound for the
real WCDMA cellular networks using finite constellation
input.
− Due to the data-processing inequality ([25], Chap. 2),

the mutual information between input and output can-
not increase through any post-processing at the receiver.
Given the capacity bounds measured directly at the
receive antenna of a real system, we can now assess the
capacity loss due to a specific post-processing at the
receiver. Therewith, we investigate the capacity loss due to
sampling, which is a traditional discretization approach in
practical systems. Note that in the real cellular networks,
since the sampling window is finite, perfect reconstruc-
tion of a band-limited signal is not guaranteed even if
the sampling rate is equal to Nyquist rate ([26], Chap. 8).
The assessment of such impact on the capacity is also
considered in this work.
− We analyze the asymptotic sum-capacity when the

signal-to-noise ratio (SNR) goes to infinity, for which we
derive the conditions on the signature waveform space
so that on every link to the base station, the individual
capacities are achieved simultaneously. To this end, we
first derive the sufficient condition, which holds for all
kinds of input signals including signals based on finite
and infinite constellations. Next, once again, we moti-
vate our study from a practical perspective by focusing
on the finite constellation input signal. Accordingly, a
necessary condition to simultaneously achieve the indi-
vidual capacities with a finite constellation input sig-
nal, which takes the signal constellation structure into
account, is derived. Those results are particularly useful
for spreading sequence design in a real WCDMA cellular
network.

The rest of the paper is organized as follows: Section 2
presents the signal model where sufficient statistics and an
equivalent matrix representation are derived. In Section 3,
the capacity analysis is provided considering finite con-
stellations and Gaussian-distributed input signals. The
capacity employing sampling is also investigated in this
section. The asymptotic capacity when the SNR goes to
infinity is analyzed and discussed in Section 4. Finally,
Section 5 concludes the paper.

2 Signal model
Since the physical layer defines the fundamental capac-
ity limit of the uplink WCDMA channel [2], we focus
on a signal model reflecting the operations of the uplink
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WCDMA PHY layer based on the 3GPP release 11 speci-
fication [1].

2.1 Waveform signal model
Let us consider a K-user multi-code WCDMA system
with M codes for each I/Q branch and spreading fac-
tor Nsf . Then, the transmitted signal for user k can be
expressed as

xk(t) = √Ek
N∑
i=1

M∑
m=1

dmki s
m
ki(t), k = 1, . . . ,K , (1)

where Ek denotes the transmitted power of user k, N
denotes the number of symbols, smki(t) = 1√

Nsf

∑Nsf −1
n=0

cmki[ n] p(t − (i − 1)Ts − nTc) is the signature waveform
for the i-th symbol of the m-th stream of user k, p(t) is
the chip waveform with unit power and finite bandwidth
W 1, Tc is the chip duration and Ts = Nsf Tc is the sym-
bol duration, and cmki[ n] denotes the spreading sequence
which satisfies

∑Nsf −1
n=0 |cmki[ n] |2 = Nsf . In a time-variant

CDMA system, a different spreading sequence
{
cmki[ n]

}
n

is used for each transmitted symbol dmki . This corresponds
to a real cellular CDMA network with long scrambling
codes, in which the effective spreading sequence will vary
between symbols.
In this study, we assume a tapped-delay line channel

model2 with Lmulti-paths ([27] Chap. 2), i.e.,

hk(t) =
L∑

l=1
gklδ(t − τkl), k = 1, . . . ,K ,

where gkl and τkl denote the channel coefficient and the
propagation delay for the l-th path of the channel for user
k, respectively. Then the received signal is given by

r(t) =
K∑

k=1
hk(t) ∗ xk(t − λk) + n(t) (2)

=
K∑

k=1

N∑
i=1

M∑
m=1

√
Ekdmki

L∑
l=1

gklsmki(t−λk−τkl)+n(t),

where λk denotes the time delay of the transmitted signal
from user k, the symbol ∗ denotes the convolution opera-
tion, and n(t) represents the additive white Gaussian noise
with a two-sided power spectral density (PSD)N0/2 = σ 2.

2.2 Sufficient statistic and equivalent channel
Since a sufficient statistic for decoding the transmitted
messages preserves the capacity of the system, the capac-
ity of a continuous-time channel can be computed using
a sufficient statistic ([25], Chap. 2), ([28], Chap. 8). To
this end, let us define the transmitted symbol vectors
dki := [

d1ki, . . . , d
M
ki
]T ∈ C

M×1 (for each stream), dk :=[
dk1T , . . . ,dkNT

]T ∈ C
NM×1 (for each user), and d :=

[
d1T , . . . ,dKT

]T ∈ C
KNM×1 (for all users), where (·)T

denotes the transpose operation. Further, let us define
μ(t;d) as the received signal without noise, i.e.,

μ(t;d) :=
K∑

k=1

N∑
i=1

M∑
m=1

√
Ekdmki

L∑
l=1

gklsmki (t − λk − τkl) .

The problem of optimal decoding d is similar to the
detection problem in ([27], Proposition 3.2) (see [18] for a
similar approach based on the Cameron-Martin formula
[29], Chap. VI). Accordingly, the optimal decision3 can be
made using the following decision variables

�(d)= 2�
{∫ ∞

−∞
μ(t;d)∗r(t)dt

}
−
∫ ∞

−∞
[μ(t;d)]2 dt, (3)

where �{·} denotes the real part of a complex value and
(·)∗ denotes the complex conjugate operation. Since the
second term of (3) does not depend on the received signal
r(t), we can drop it. Therewith, the sufficient statistic is
based on the first term of (3), which can be rewritten as

2�
{ K∑
k=1

N∑
i=1

M∑
m=1

√
Ekdmki

∗
L∑

l=1
gkl∗
∫ ∞

−∞
r(t)smki(t−λk−τkl)

∗dt
}
.

Let us denote yml
ki := ∫∞

−∞ r(t)smki(t − λk − τkl)
∗dt and

zmki := ∑L
l=1 gkl∗yml

ki , then
{
zmki
}
k,i,m is a sufficient statis-

tic for decoding d based on r(t). It is shown that the
received signal passing through a bank of matched filters,
where the received signal is matched to the delayed ver-
sions of the signature waveforms, results in a sufficient
statistic for decoding d based on r(t). Figure 1 illus-
trates an implementation to obtain the sufficient statis-
tic from the continuous-time received signal. This has
a RAKE receiver structure ([30], Chap. 14), including
RAKE-matched fingers followed by maximal ratio com-
bining (MRC).
Moreover, let ρ

(k′i′m′l′)
(kiml) be the cross-correlation function

between the signature waveforms defined as

ρ
(k′i′m′l′)
(kiml) =

∫ ∞

−∞
smki (t − λk − τkl)

∗sm′
k′i′ (t − λk′ − τk′l′ ) dt

= 1
Nsf

Nsf −1∑
n=0

Nsf −1∑
n′=0

cmki [ n]
∗cm′

k′i′ [ n
′]

× Rp

(
n − n′

Nsf
Ts + (i − i′)Ts + (τkl − τk′l′) + (λk − λk′)

)
,

where Rp(τ ) = ∫∞
−∞ p(t)∗p(t + τ)dt is the autocorrela-

tion function of the chip waveform. Then the sufficient
statistics can be expressed as

zmki =
L∑

l=1

K∑
k′=1

N∑
i′=1

M∑
m′=1

L∑
l′=1

√
Ek′dm

′
k′i′gkl

∗gk′l′ρ
(k′i′m′l′)
(kiml) + nmki , (4)
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Fig. 1 Diagram of the implementation to obtain the sufficient statistic from the continuous-time received signal of a K-user uplink WCDMA system
withM codes for each I/Q branch over an L-tap frequency-selective channel

where nmki :=
∑L

l=1 gkl∗
∫∞
−∞ n(t)smki(t − λk − τkl)

∗dt is the
equivalent noise term associated with zmki after matched
filtering.
A matrix canonical form is useful to characterize the

capacity from a sufficient statistic. Hence, we express the
sufficient statistics

{
zmki
}
k,i,m derived in (4) as an equiva-

lent matrix equation. By following the similar steps as in
[31], the matrix representation of the equivalent channel
can be obtained from (4) as

z =
K∑

k=1

√
EkHkdk + n, (5)

where z := [
z111, · · · , zMKN

]T ∈ C
KNM×1, dk :=[

d1k1, · · · , dMkN
]T ∈ C

NM×1, and n := [
n111, · · · , nMKN

]T ∈
C
KNM×1. The equivalent channel channelHk is given by

Hk =
⎡⎢⎣ G†

1R
1
kGk
...

G†
KR

K
k Gk

⎤⎥⎦ ∈ C
KNM×NM,

where the channel gain matrix Gk is block diagonal and
given by

Gk = blkdiag

⎛⎝gk , · · · , gk︸ ︷︷ ︸
MN vectors

⎞⎠ ∈ C
LNM×NM

with gk = [ gk1, · · · , gkL]T ∈ C
L×1, and the correlation

matrix is defined as

Rk′
k =

⎡⎢⎢⎢⎢⎢⎣
ρ

(k′111)
(k111) · · · ρ

(k′11L)

(k111) · · · ρ
(k′NML)

(k111)
ρ

(k′111)
(k112) · · · ρ

(k′i′1L)

(ki12) · · · ρ
(k′NML)

(k112)
...

...
...

...
...

ρ
(k′111)
(kNML)

· · ·ρ(k′11L)

(kNML)
· · · ρ

(k′NML)

(kNML)

⎤⎥⎥⎥⎥⎥⎦∈C
NML×NML.

(6)

Moreover, it is shown in Appendix 1 that the equiva-
lent noise vector n is a complex Gaussian random vector
with zero mean and covariance matrix σ 2H with H =
[H1, . . . ,HK ]∈ C

KNM×KNM.

Remark 1. In this work, the signal model is constructed
based on the practical operation of an uplink WCDMA
PHY layer. However, the approach and framework can
be extended or transferred to other wireless standards.
Indeed, the signal model in (1) can be used to describe the
continuous-time-transmitted signal of a general system,
in which smki(t) are the waveforms used for the modula-
tion at the transmitter. For example, in a OFDM system,
smki(t) can be replaced by the corresponding orthogonal
waveforms. Moreover, the resulting equivalent channel
in (5) corresponds to a traditional discrete-time MIMO
multiple-access channel (MAC), which are used in various
research literature.

3 Capacity analysis
In this section, we analyze the capacity of the continuous-
time uplink WCDMA channel. Recalling that z is a suffi-
cient statistic for optimal (i.e., capacity preserving) decod-
ing d based on r(t). Any coding scheme which achieves
the capacity of the channel with input d and output r(t)
can also be employed to the channel with input d and
decoding based on output z instead of r(t). Therefore, the
channel capacity is preserved when the continuous-time
output r(t) is replaced by the sufficient statistic z. Thus,
we can focus on the capacity of the equivalent discrete-
time channel in (5), which is given by the capacity region
of a discrete memoryless MAC [32].
Let us define R1,R2, . . . ,RK as the maximum number

of bits that can be reliably transmitted from user 1, user
2, . . ., user K per block of N symbols. The capacity region
of the uplink WCDMA channel is then characterized by
the closure of the convex hull of the union of all achievable
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rate vectors (R1,R2, . . . ,RK ) satisfying [32], ([25],
Chapter 15)

∑
k∈J

Rk ≤ I(dJ ; z|dJ c), (7)

for all index subsets J ⊆ {1, . . . ,K} and some joint pmf
p(d) =∏K

k=1 p(dk), where J c denotes the complement of
J and dJ = {dk : k ∈ J }.
We now characterize the uplink WCDMA capacity

region considering two specific input signals: finite con-
stellation with uniformly distributed input and Gaussian-
distributed input.

3.1 Finite constellation input
When the input signal vector dk at each user is inde-
pendently taken from a finite constellation set MNM,
|M| = Mc, with equal probability, i.e., p(dk) = 1

MNM
c

,
∀k ∈ {1, . . . ,K}, then the rate constraints in (7) can be
rewritten as∑

k∈J
Rk ≤ I(dJ ; z|dJ c) (8)

= h(z|dJ c) − h(z|dJ dJ c) = h(zJ ) − h(n)

= −E
{
log2

(
fzJ (z̄)

)}− log2
(
det
(
πeσ 2H

))
for all J ⊆ {1, . . . ,K} with zJ := ∑

k∈J
√
EkHkdk + n.

zJ is a Gaussian mixture random vector with probability
density function (pdf)

fzJ (z̄) =
∑

d̄∈M|J |NM
p(dJ = d̄) · fzJ |dJ (z̄|d̄), (9)

where p(dJ = d̄) = 1
M|J |NM

c
and fzJ |dJ (z̄|d̄) is the con-

ditional pdf of zJ given dJ . Let us denote EJHJ dJ :=∑
k∈J

√
EkHkdk , where EJ is the power scaled matrix

EJ := blkdiag({√EkINM}k∈J ) and HJ is the sub-matrix
of H after removing Hk′ , ∀k′ ∈ J c. Then, fzJ |dJ (z̄|d̄) is
the pdf of a complex Gaussian random vector with mean
EJHJ d̄ and covariance matrix σ 2H, i.e.,

fzJ |dJ(z̄|d̄)=
exp
(
−
(̄
z−EJHJ d̄

)†(
σ 2H

)−1
(
z̄−EJHJ d̄

))
πKNM · det (σ 2H

) .

Typically, the capacity region of a channel with finite
constellation input is numerically characterized viaMonte
Carlo simulation because a closed-form expression does
not exist. It is worth noting that in order to calculate
the first term of (8), one has to average overall possible
M|J |NM

c input symbols (up toMKNM
c for sum-rate) accord-

ing to (9). However, when Mc and/or N are too large, this
task becomes intractable due to prohibitive computational
complexity. In MIMO channels with finite constellation
input, a similar problem occurs when the input alphabet
set or the number of antennas is too large, e.g., 64-QAMor

8×8 MIMO [33]. In order to tackle this problem, we have
proposed an effective approximation algorithm based on
sphere-decoding approach to find the approximate capac-
ity for large MIMO system with finite constellation input
in [34]. The algorithm to compute the entropy is out of the
scope of this work. However, we use it in the numerical
results section (Section 3.4) to compute approximations
on the capacity curves for large N. The specific details
about the algorithm can be found in [34].

3.2 Gaussian input
If the input signal vector dk of each user follows a
zero mean complex Gaussian distribution with unit input
power constraint, i.e., dk ∼ CN (0, INM), ∀k = 1, . . . ,K ,
then the capacity region is characterized by the rate vec-
tors (R1,R2, . . . ,RK ) satisfying

∑
k∈J

Rk ≤ log det

⎛⎝INM +
∑
k∈J

Ek
σ 2H

†
kH

−1Hk

⎞⎠ (10)

for all J ⊆ {1, . . . ,K}. Since the Gaussian-distributed
input is the optimal input for a given mean power con-
straint, (10) serves as an outer bound for the capacity
region with a practically motivated input, i.e., finite con-
stellation input as discussed in Section 3.1.

3.3 Sampling
Since the matched filtering at the receiver yields a suf-
ficient statistic, the uplink WCDMA capacity achieved
by any other receiver structures is upper bounded by
the capacity achieved by the sufficient statistic using
matched filtering. Regarding the capacity upper bounds
in Sections 3.1–3.2 as benchmarks for the performance
assessment, we now analyze the capacity achieved by sam-
pling to evaluate the capacity performance loss due to
specific post-processing at the receiver.
For sampling at the receiver, we assume that out-of-band

noise is first suppressed by an ideal low-pass filter (LPF)
with bandwidth W, which has the same bandwidth as
the transmitted signal. Then, the received signals are uni-
formly sampled at every time instance tn, n = 1, . . . ,Nsp,
whereNsp is finite. As a result, the sampled received signal
at time tn is given by

rn := rlp(tn) =
K∑

k=1

M∑
m=1

N∑
i=1

dmki
L∑

l=1
gklsmlp,ki(tn − λk − τkl)

+ nlp(tn), n = 1, . . . ,Nsp,

where rlp(t), smlp,ki(t), and nlp(t) denotes the outputs of r(t),
smki(t), and n(t) passing through the LPF, respectively. We
have smlp,ki(t) = smki(t) since the ideal LPF is assumed to
have the same bandwidth as the transmitted signal, i.e.,
bandwidth of smki(t). Let us denote the effective signature
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waveform by s̄mki(t) := ∑L
l=1 gklsmki(t − λk − τkl), then the

sampled received signal can be expressed as

rn =
K∑

k=1

M∑
m=1

N∑
i=1

√
Eks̄mki(tn)d

m
ki +nlp(tn), n = 1, . . . ,Nsp.

Next, let us denote the sampling signature waveform
matrix corresponding to user k by

S̄k =

⎡⎢⎢⎢⎣
s̄1k1(t1) s̄2k1(t1) · · · s̄MkN (t1)
s̄1k1(t2) s̄2k1(t2) · · · s̄MkN (t2)

...
...

...
...

s1k1(tNsp) s2k1(tNsp) · · · sMkN (tNsp)

⎤⎥⎥⎥⎦∈ C
Nsp×NM,

and the sampled received signal and sampled noise vectors
by

rsp = [ r1, r2, · · · , rNsp ]T ∈ C
Nsp×1,

nsp = [ nlp(t1), nlp(t2), . . . , nlp(tNsp)]T ∈ C
Nsp×1.

Then the sampled received signal can be written in an
equivalent matrix form as

rsp =
K∑

k=1

√
Ek S̄kdk + nsp. (11)

Since n(t) is a complex Gaussian random process with
zero mean and PSD N0/2 = σ 2 over the whole fre-
quency band, after passing through the ideal LPF with
bandwidthW, the noise process nlp(t) becomes a station-
ary zero mean Gaussian process ([35], Chap. 3) with the
auto-correlation function

Rlp(τ ) = N0W sinc(2Wτ),

where sinc(·) is the normalized sinc function. Therefore,
the sampled additive noise vector nsp is a zero mean
complex Gaussian random vector with covariance matrix
Rsp = [ rij]{i,j}, i, j = 1, 2, . . . ,Nsp,

rij = Rlp(ti − tj), i, j = 1, 2, . . . ,Nsp. (12)

The capacities with sampling are then similarly obtained
as in (8) and (10) with some small modifications; the
equivalent matrix Hk needs to be replaced by S̄k , the
noise covariance matrix σ 2H needs to be replaced by Rsp.
Accordingly, let us define Rsp

1 ,Rsp
2 , . . . ,Rsp

K as the maxi-
mum number of bits that can be reliably transmitted from
user 1, user 2,. . ., user K per block of N symbols assum-
ing sampling is employed at the receiver. The sampling
capacity is then characterized by4

∑
k∈J

Rsp
k ≤ log det

⎛⎝INsp +
∑
k∈J

Ek S̄†kR
−1
sp S̄k

⎞⎠ (13)

for a Gaussian input signal and∑
k∈J

Rsp
k ≤−E

{
log2

(
frspJ (r̄)

)}
− log2

(
det
(
πeRsp

))
(14)

for a finite constellation input signal, where rspJ �∑
k∈J

√
Ek S̄kdk + nsp is a Gaussian mixture random

vector.

3.4 Numerical characterization
In this subsection, we numerically characterize the capac-
ity for a two-user uplink WCDMA example. For numer-
ical experiments, we set the parameters which are close
to those in a real uplink UMTS system as specified in [1]:
time-variant CDMA with orthogonal variable spreading
factor (OVSF) codes and Gold sequences, spreading fac-
tor Nsf = 4, SRRC chip waveform p(t) with roll-off factor
0.22, and uniform power allocation E1/σ 2 = E2/σ 2 =
SNR. In the simulations, we employ a time-invariant mul-
tipath channel with L = 3 taps, a relative path-amplitude
vector a =[ 0,−1.5,−3] dB, a relative path-phase vector
θ = [

0, π
3 ,

2π
3
]
, and path-delay vector τ =

[
0, Tc

2 ,Tc
]
.

Thus, the l-th element of the path-coefficient vector g1 is
given by al · ejθl/‖a‖ where al is the l-th element of a, θl is
the l-th element of vector θ , and g2 = √

2g1. In addition,
we use fixed user delays which are randomly drawn within
a symbol time once at the beginning of simulations, i.e.,
λk ∼ U(0,Ts).
Figure 2 illustrates the capacity of a two-user uplink

UMTS system with N = 2 and M = 1 for Gaussian-
distributed input (from Section 3.1) and 4-QAM (QPSK)
input (from Section 3.2) signals. The left-hand side sub-
figure presents the sum- and individual capacities for
Gaussian and 4-QAM input signals. The individual capac-
ities R2 are larger than R1 since we set g2 = √

2g1. The
right-hand side sub-figure shows the capacity regions with
4-QAM input for several values of SNR. As expected, the
capacity region enlarges with increasing SNR. Moreover,
as the SNR tends to infinity, the capacity region converges
to the corresponding source entropy outer bound (i.e., 2
bits/symbol individual rates and 4 bits/symbol sum-rate
for the two-user channel with 4-QAM input). It is interest-
ing that the maximal individual rates (2 bits/symbol) can
be achieved simultaneously, i.e., the sum-rate constraint is
asymptotically inactive in the high-SNR regime. A deeper
analysis on this asymptotic behavior will be given in the
next section.
Figure 3 shows the achievable sum-rates for larger block

length (N = 32) and two codes (M = 2) in each
I/Q branch. In this figure, both the achievable sum-rates
achieved by sufficient statistic (from Sections 3.1–3.2) and
by sampling (from Section 3.3) are included. For achiev-
able sum-rates using sampling, the experiments with
lower than Nyquist rate (Tsp = Tc > Tny) and Nyquist
rate (Tsp = Tny) are considered. As expected, the sum-
capacity achieved by the sufficient statistic is an upper
bound for the sum-rates achieved by systems employing
sampling. Moreover, even when the samples are taken
with Nyquist rate, there are still gaps between the sum-
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Fig. 2 Capacity curves and capacity regions for a two-user set-up with N = 2 andM = 1. On the left-hand side, the solid lines represent the
capacities with Gaussian input and the dotted lines represent the capacities with 4-QAM input. All the capacities are normalized by 1/N

rates achieved by sampling (RGauss
sp (Tsp = Tny) and

RQAM
sp (Tsp = Tny)) and the sum-capacities achieved with

matched filtering/sufficient statistic (RGauss
ss and RQAM

ss ).
These losses are due to the finite time limit of our sam-
pling window as the Nyquist sampling theorem states
that a infinite sample sequence is required to be able to
perfectly recover a finite energy and band-limited signal
([26], Theorem 8.4.3). Fortunately, by extending the sam-
pling window by only two symbol durations on each side(
for RGauss

sp+ and RQAM
sp+

)
, these losses can be significantly

reduced.

4 Asymptotic analysis
Recalling (7) with J = {1, . . . ,K}, we have

∑K
k=1 Rk ≤

I(d; z) ≤ ∑K
k=1H(dk), i.e., the sum-capacity is upper

bounded by the sum of the sources entropies. However,
the results in Fig. 2 show that when SNR → ∞, the indi-
vidual capacities can be simultaneously achieved, i.e., the
sum-capacity approaches the sum of the individual source
entropies. In this section, we provide a deeper analysis on
this observation by characterizing the asymptotic behav-
ior of the sum-capacity. For convenience, we begin with a
simple MAC model then extend the result to the uplink
WCDMA system in the following.

4.1 Simple K-user MACmodel
Firstly, we start from the asymptotic sum-capacity of a
simple K-user MAC, where each user transmits only
one data stream. This setup corresponds to our uplink
WCDMA system with M = 1 and N = 1 in a frequency-
non-selective channel. The results are mainly based on the
following lemma.

Lemma 1. Consider the received signal model of a K-
user MAC

y(t) =
K∑

k=1
dksk(t) + n(t), (15)

where d1, . . . , dK are the unit power transmitted sym-
bols, which are independent and transmitted using K-
normalized signature waveforms s1(t), . . . , sK (t) and n(t)
denotes the Gaussian noise process with PSD 1

SNR . When
SNR → ∞, the asymptotic sum-capacity of channel
(15), Cas

sum = ∑K
k=1H(dk), is achieved if the vector

space SK = span{s1(t), . . . , sK (t)} has the dimension
K.

The proof of Lemma 1 is given in Appendix 2. The
idea for the proof is that we first show that the received
signal passing through a bank of matched filters, which
are matched to the signature waveforms, yields a suffi-
cient statistic for decoding d = [ d1, · · · , dK ] based on
y(t). Then, we show that d can be uniquely decoded,
i.e., the decoder is able to decode the messages cor-
rectly from this sufficient statistic when SNR → ∞ if
dim(SK ) = K . Based on the uniquely decodable prop-
erty, we then prove that the asymptotic sum-capacityCas

sum
approaches the sum of source entropies if the signature
waveforms are linearly independent of each other, i.e.,
dim(SK ) = K .

4.2 Uplink WCDMA system
Next, we extend the results from the above simple K-
user MAC to the asymptotic sum-capacity of the uplink
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Fig. 3 Achievable sum-rates for different inputs and receiver structures with N = 32 andM = 2. RGaussss and RQAMss denote the sum-rates achieved by
the sufficient statistic with Gaussian input and 4-QAM input, respectively. RGausssp and RQAMsp denote the sum-rates achieved by sampling with the

sampling window equal to the block length tn ∈ [ 0 NTs]. RGausssp+ and RQAMsp+ denote the sum-rates achieved by sampling with the sampling window
extended by two symbol durations on each side, i.e., tn ∈ [−2Ts (N + 2)Ts]. All the sum-rates are normalized by 1/N

WCDMA system. Let us recall the transmitted signal from
user k of the uplink WCDMA system in (1), and take into
account all K users. The transmitted signal can be consid-
ered as one of equivalent KNM-user MACs in (15) using
KNM signature waveforms smki(t − λk), k = 1, . . . ,K , i =
1, . . . ,N , and m = 1, . . . ,M. The following proposi-
tions, which can be derived from Lemma 1, specify the
asymptotic sum-capacity of the uplink WCDMA system
in different channel environments considering frequency-
non-selective (L = 1) and frequency-selective (L ≥ 2)
channels.

Proposition 1. The asymptotic sum-capacity of the
frequency-non-selective uplink WCDMA channel as
described in (2) with L = 1 is Cas

sum,nsec = ∑K
k=1H(dk)

if the dimension of the signature waveforms space
ST = span

{
s111(t − λ1), . . . , sMKN (t − λK )

}
is KNM.

The proof for Proposition 1 is given in Appendix 3.
The intuition behind Proposition 1 can be expressed as:
K users transmit KNM symbols and the receiver per-
forms matched filtering with KNM fingers. Although the
uplink WCDMA multiuser channel implies K-user SISO
MACs, the matching process virtually converts this to an

equivalent KNM×KNMMIMO channel. Thus, by appro-
priately choosing the signature waveforms and matched
fingers, which yield a full-rank equivalent channel matrix
H, the transmitted symbols, d1, . . . ,dK , can be perfectly
(i.e., error-free) recovered from z as SNR goes to infin-
ity. In other words, a K-user uplink WCDMA channel
can asymptotically achieve the capacity of KNM parallel
channels as long as dim(ST ) = KNM.

Proposition 2. The asymptotic sum-capacity of the
frequency-selective uplink WCDMA channel as described
in (2) is Cas

sum,sec =∑K
k=1H(dk) if dim(S) = KNM, where

S = span
{
s̄111(t), · · · , s̄MKN (t)

}
is the vector space spanned

by the effective signature waveform s̄mki(t) = ∑L
l=1 gklsmki

(t − λk − τkl).

The proof for Proposition 2 is given in Appendix 4.
Unlike the frequency-non-selective channel case, the
sufficient condition for achieving the asymptotic sum-
capacity in a frequency-selective channel case is based
on the effective signature waveforms, which include the
impact of the channel gains {gk}k and delays {τkl}k,l.
This implies that the multi-path channel may help the
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equivalent channel matrix H to achieve full-rank. For
instance, if dim(ST ) < KNM, H is obviously singular
when L = 1, while H can be still invertible when L > 1
since dim(S) is possible to be equal to KNM according
to the channel selectivity and the potential offset in the
multi-path environment5. This is particularly helpful in an
overloaded CDMA system [8, 21], where the number of
users exceed the spreading factor.

4.3 Necessary condition
Propositions 1 and 2 state sufficient conditions that the
transmitted messages can be uniquely decoded when
SNR → ∞, which holds for all kinds of input signals
including both finite and infinite constellation signals.
However, the conditions in Propositions 1 and 2 can
be relaxed in certain scenarios with finite constellation
inputs. In this subsection, we first consider a simple exam-
ple where such conditions can be relaxed. The necessary
condition for the unique decoding with finite constellation
input is then studied in the following.
For instance, let us consider an example with two dif-

ferent set-ups of channel (15) with K = 2 and binary
transmitted signals da = [ da1 da2]T and db = [ db1 db2]T ,
i.e.,

ya(t) = da1s1(t) + da2s2(t) + na(t),
yb(t) = db1s1(t) + db2s2(t) + nb(t),

where na(t) and nb(t) denote additive Gaussian noise
processes. We assume that the same signature waveform
space S2 : = span{s1(t), s2(t)} is used in both set-ups.
However, the transmitted symbols are uniformly and ran-
domly picked up from different input constellation sets:
da1, da2 ∈ {0, 1} and db1 ∈ {−1/

√
2, 1/

√
2}, db2 ∈ {0, 1}.

The corresponding sufficient statistic models are then
given by

Ya = da1 + da1 + Na,
Yb = db1 + db2 + Nb,

where Ya and Yb denote the sufficient statistics and Na
and Nb are the equivalent noises. We can see that when
the noise power becomes zero (or SNR → ∞), da (and
so da1 and da2)) cannot be uniquely decoded from Ya
since the conditional entropy H(da1, da2|Ya) = 0.5 > 0
when SNR → ∞. However, (db1 and db2) can be uniquely
decoded from Yb since H(db1, db2|Yb) = 0 when SNR →
∞ even though dim(S2) = 1 < 2. It shows that the con-
dition dim(SK ) = K can be relaxed for certain signal
constellation structures. Therefore, it is expected that nec-
essary conditions for achieving the unique decoding with
finite constellation input have to take both the signature
waveforms and the structure of the signal constellation
into account.

Let us assume that d ∈ MKNM, where M is a set of
constellation points and is finite. In order to derive the
sufficient condition for the unique decoding, we refer the
equivalent channel in (C.2) in Appendix 3

z = HEd + n. (16)

When SNR → ∞, the transmitted vector d can be
uniquely decoded from z if and only if the mapping

f : MKNM �→ CKNM

d �→ HEd

is an one-to-one mapping. In particular, for any pair of
di,dj ∈ MKNM and di �= dj, the condition HEdi �= HEdj
is needed for the unique decoding. Therefore, by defin-
ing vij = di − dj, the condition for the unique decoding
becomes

HEvij �= 0,∀i �= j. (17)

In other words, the necessary condition for the unique
decoding is that any vector vij with i �= j is not in the null
space of matrixHE. This necessary condition includes the
impact of signal constellation reflected via vij.

Remark 2. This result is consistent with the sufficient
conditions in Propositions 1 and 2. Indeed, when the
(effective) signature waveform space has dimension KNM
and H is invertible, the null space of HE is empty. Thus,
the condition in (17) holds for any set of vector vij, and the
unique decoding is achieved for any kind of input signal.

5 Conclusions
This paper studies the capacity limit of the uplink
WCDMA system whose set-up has been chosen to be
close to real CDMA cellular networks. We present a
theoretical framework, which can be used to evaluate
how close the maximal performance of a practical sys-
tem design is to the theoretical fundamental limit. To this
end, sufficient statistics for decoding the transmittedmes-
sages were derived using a bank of matched filters, each of
which is matched to the signature waveforms. An equiv-
alent discrete-time channel model based on the derived
sufficient statistics was provided which can be used to
analyze the capacity of the system. The capacity regions
for finite constellation input and Gaussian-distributed
input signals have been both analytically and numeri-
cally characterized. The comparison with the sampling
capacity showed that sampling within the transmission
time window might cause a capacity loss even if the sam-
pling was performed at Nyquist rate. Fortunately, this loss
could be significantly diminished by extending the sam-
pling window by only two symbol durations. Moreover,
the asymptotic analysis shows that for proper choices
of the (effective) signature waveforms, a K-user uplink
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WCDMA channel can be decoupled so that each user
achieves a point-to-point channel capacity when SNR
goes to infinity. The presented framework and results
provide valuable insights for the design and further devel-
opment of not only WCDMA but also other wireless
standard networks.

Appendices
Appendix 1 Derivation of equivalent noise statistic
Since n(t) is a zero mean complex Gaussian random
process, the equivalent noises after a bank of linear fil-
ters (matched filters), nml

ki = ∫∞
−∞ n(t)smki(t − λk − τkl)

∗dt,
∀k, i,m, l, are zero mean joint Gaussian random variables
([28], Chap. 8) with the correlation coefficient given by

E

{
nml
ki n

m′l′
k′i′

∗}
= E

{∫ ∞

−∞
n(t)smki (t−λk−τkl)

∗dt
∫ ∞

−∞
n(t′)∗sm′

k′i′
(
t′−λk′ −τk′l′

)
dt′
}

=
∫ ∞

−∞

∫ ∞

−∞
E
{
n(t)n(t′)∗

}
smki(t−λk−τkl)

∗sm′
k′i′(t

′−λk′ −τk′l′)dtdt′,

s where E
{
n(t)n(t′)∗

} = σ 2δ(t − t′). Thus, we have

E

{
nml
ki n

m′l′
k′i′

∗}
=
∫ ∞

−∞

∫ ∞

−∞
σ 2δ(t−t′)smki(t−λk−τkl)

∗sm′
k′i′(t

′−λk′ −τk′l′)dtdt′

=σ 2
∫ ∞

−∞
smki(t−λk−τkl)

∗
[∫ ∞

−∞
δ(t−t′)sm′

k′i′(t
′−λk′ −τk′l′)dt′

]
dt

= σ 2
∫ ∞

−∞
smki(t − λk − τkl)

∗sm′
k′i′(t − λk′ − τk′l′)dt

= σ 2ρ(k′i′m′l′)
(kiml) .

Accordingly, the equivalent noises nmki = ∑L
l=1 gkl∗nml

ki ,∀k, i,m are zero mean joint Gaussian random variables
with correlation coefficient

E

{
nmkin

m′
k′i′

∗} =
L∑

l=1

L∑
l′=1

gkl∗gk′l′E
{
nml
ki n

m′l′
k′i′

∗}
= σ 2

L∑
l=1

L∑
l′=1

gkl∗gk′l′ρ
(k′i′m′l′)
(kiml) .

Moreover, we have the (a, b)th element of H expressed
as

H[ a, b]=
L∑

l=1

L∑
l′=1

gkl∗gk′l′ρ
(k′i′m′l′)
(kiml) , (A.1)

where the indices are given by

a = (k − 1)NM + (i − 1)M + m,
b = (k′ − 1)NM + (i′ − 1)M + m′.

As a result, n is a complex Gaussian random vector with
zero mean and covariance matrix σ 2H.

Appendix 2 Proof of Lemma 1
The proof of Lemma 1 consists of two parts:

• Part 1: We first show that the received signal passed
through a bank of matched filters, which match to
the signature waveforms, yields a sufficient statistic
for decoding d = [ d1, · · · , dK ]T based on y(t).
Moreover, when SNR → ∞, d can be uniquely
decoded if dim(SK ) = K .

• Part 2: Based on the uniquely decodable property, we
then derive the asymptotic sum-capacity.

Part 1: Part 1 is a result of the following claim

Claim. Let the received signal y(t) in (15) passed
through a bank of matched filters, where y(t) is matched
with each signature waveform sk(t), i.e.,

yk = 〈y(t), sk(t)〉 =
∫ ∞

−∞
y(t)s∗k(t)dt, k = 1 · · ·K .

Then y=[ y1, · · · , yK ]T is a sufficient statistic for decod-
ing d based on y(t). Moreover, if the vector space SK =
span{s1(t), · · · , sK (t)} has a dimension of K, d can be
uniquely decoded from the sufficient statistic y as SNR →
∞.

Proof. Following similar steps as in Section 2.2, it can be
shown that y is a sufficient statistic for decoding d based
on y(t).
It remains to show that d can be uniquely decoded from

y when SNR → ∞. Let us denote Rs as the correla-
tion matrix of the signature waveforms {sk(t)}k , where
Rs[ i, j]= 〈si(t), sj(t)〉. Therewith, we have the equivalent
matrix expression

y = Rsd + ñ,

where ñ is the equivalent noise vector.
Since dim(SK ) = K , we can rewrite {s1(t), · · · , sK (t)} as⎡⎢⎣ s1(t)

...
sK (t)

⎤⎥⎦ = A

⎡⎢⎣ e1(t)
...

eK (t)

⎤⎥⎦
where {e1(t), · · · , eK (t)} is an orthonormal basis of SK and
A is a K × K full rank matrix.
Consider the correlation matrix Re where

Re[ i, j]= 〈ei(t), ej(t)〉.
Then, we have Re = IK since {e1(t), · · · , eK (t)} is an

orthonormal basic. Moreover,

Rs = AReA† = AA†.

Thus,

rank(Rs) = rank(AA†) = rank(A) = K .
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Therefore, when dim(SK ) = K , Rs is invertible and d
can be uniquely decoded from y when SNR → ∞ since
lim

SNR→∞
R−1
s y = d.

Part 2: We next derive the asymptotic sum-capacity
based on the sufficient statistic from Part 1.
The sum-capacity of the channel (15) is given by

Csum = I(d; y(t)). (B.1)

From Part 1, we know that y is a sufficient statistic for
decoding d based on y(t). Thus,

I(d; y(t)) = I(d; y), (B.2)

where

I(d; y) = H(d) − H(d|y). (B.3)

When dim(SK ) = K , following from Part 1, Rs is
invertible and lim

SNR→∞
R−1
s y = d. Therefore,

lim
SNR→∞

H(d|y) = H(R−1
s y|y) = 0 (B.4)

Let us define the asymptotic sum-capacity as Cas
sum =

lim
SNR→∞

Csum, combining (B.1)−(B.4), we have

Cas
sum = H(d) =

K∑
k=1

H(dk).

This completes the proof for Lemma 1. �

Appendix 3 Proof of Proposition 1
Proposition 1 is proved in three steps:

• Step 1 : We first re-formulate (5) by an equivalent
input-output model, in whichH is decomposed into
a multiplication of multiple matrices including a
matrix that depends only on the signature waveform
correlation coefficients. To this end, we rewrite the
equivalent channelH as follows:

H = [H1, . . . ,HK ]

=

⎡⎢⎢⎢⎢⎣
G†
1R1

1G1 G†
1R2

1G2 · · · G†
1R

K
1 GK

G†
2R

1
2G1 G†

2R
2
2G2 · · · G†

2R
K
2 GK

...
...

...
...

G†
KR

1
KG1 G†

KR
2
KG2 · · · G†

KR
K
KGK

⎤⎥⎥⎥⎥⎦ .

Therefore, the equivalent channelH can be expressed
as

H = G†RG, (C.1)

where

G = blkdiag (G1, . . . ,GK ) ∈ C
KNML×KNM,

and

R =

⎡⎢⎢⎢⎣
R1
1 R2

1 · · · RK
1

R1
2 R2

2 · · · RK
2

...
...

...
...

R1
K R2

K · · · RK
K

⎤⎥⎥⎥⎦ ∈ C
KNML×KNML.

Thus, we have the equivalent input-output model as

z = HEd + n, (C.2)

where

E = diag

⎛⎜⎝√E1, . . . ,
√
E1︸ ︷︷ ︸

NM elements

, . . . ,
√
EK , . . . ,

√
EK︸ ︷︷ ︸

NM elements

⎞⎟⎠ .

• Step 2 : We show thatH is invertible when L = 1 and
dim(ST ) = KNM.
Following the same arguments as for the proof of
Lemma 1, we have R as full rank since
dim(ST ) = KNM. SinceH = G†RG, where G,R are
the square matrices with full rank, it follows thatH is
invertible.

• Step 3 : Lastly, we can conclude on the asymptotic
capacity of the channel (5). Since z in (C.2) is a
sufficient statistic for decoding d based on y(t) (from
Section 2.2) andH is invertible, similarly to the proof
in Part 2 of Lemma 1, it follows that

Cas
sum,nsec = H(d) =

K∑
k=1

H(dk). (C.3)

This completes the proof for Proposition 1. �

Appendix 4 Proof of Proposition 2
Let us define ρ̄k′i′m′

kim as the inner product between s̄mki(t)
and s̄m′

k′i′(t), i.e.,

ρ̄k′i′m′
kim = 〈s̄mki(t), s̄m

′
k′i′(t)〉 (D.1)

=
L∑

l=1

L∑
l′=1

g∗
kl〈smki(t −λk−τkl), sm

′
k′i′(t −λk−τk′l′)〉gk′l′

=
L∑

l=1

L∑
l′=1

g∗
klρ

k′i′m′l
kiml gk′l′ .

Define Rs as the correlation matrix of S , where
Rs[ a, b]= ρ̄k′i′m′

kim , (D.2)

and the coefficient indices are given by

a = (k − 1)NM + (i − 1)M + m,
b = (k′ − 1)NM + (i′ − 1)M + m′.

Since Rs is the correlation matrix of S , following similar
steps as for the proof in Part 1 of Lemma 1, we arrive at
rank(Rs) = KNM if dim(S) = KNM.
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Moreover, combining (A.1) with (D.1) and (D.2), we
have

H = Rs.

Thus, rank(H) = KNM andH is invertible.
Finally, similar to the proof in Part 2 of Lemma 1, given

H is invertible, the asymptotic sum-capacity is given by

Cas
sum,sec = H(d) =

K∑
k=1

H(dk). (D.3)

This completes the proof for Proposition 2. �

Endnotes
1In theory, a band-limited signal requires infinite time

to transmit. However, in practical WCDMA systems, the
chip waveforms with fast decaying sidelobes (e.g., root
raised cosine (RRC) and squared-root raised cosine
(SRRC) pulses) are used and truncated by the length of
several chip intervals.

2It is worth noting that even though the channel
impulse response is assumed to be time-invariant as
similar to [12, 24], the Toeplitz structure of the
equivalent channel matrix is not maintained because of
the variation of the spreading sequences over symbols in
a time-variant CDMA system.

3In [27], [Proposition 3.2], the hypotheses are
equiprobable and the optimal decision is based on
maximum of �(d) (ML criterion). In general, the optimal
decision is based on MAP criterion, which includes
log(p(d)) into μ(t;d). However, this additional term is
independent of r(t). Therefore, we do not have to include
it in the sufficient statistic.

4Similarly to the capacity achieved by sufficient
statistic, the quantities in the right-hand sides of (13) and
(14) describe the number of bits that can be reliably
transmitted per block of N symbols. One can express the
capacity in bit/second by normalizing with 1/T ,
T = NTs, or in bit/second/Hertz by normalizing with
1/TW .

5When L > 1, the channel gain matrix G is not a
square matrix anymore. The invertible property ofH
does not depend only on rank of the correlation matrix R
but also on G.
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