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Abstract

This paper studies the Gaussian two-way relay channel (GTWRC), where two nodes exchange their messages with the
help of a half-duplex relay. We investigate a cooperative transmission protocol, consisting of four phases: multiple
access (MA) phase, broadcast (BC) phase, and two cooperative phases. For this setup, we propose a new transmission
scheme based on superposition coding for nested lattice codes, random coding, and jointly typical decoding. This
scheme divides the message of each node into two parts, referred to as satellite codeword and cloud center.
Depending on the phase type, the encoder sends a linear combination of satellite codewords or cloud centers. For
comparison, a rate region outer bound using a cut-set bound is provided. We show that the proposed scheme can
achieve the capacity region in the high signal-to-noise ratio (SNR) regime. In addition, the achievable rate region is
within 0.5 bit of the outer bound, regardless of all channel parameters. Using numerical examples, we show that our
proposed scheme achieves a larger rate region than the best known 4-phase transmission strategy so far, called the
Hybrid Broadcast (HBC) protocol by Kim et al. Our proposed scheme not only improves upon previous 2- and 3- and
4-phase protocols but also can perform superior at some cases to the introduced 6-phase protocol by Gong, Yue, and
Wang (which has more complexity relative to our 4-phase protocol).

1 Introduction
In the last couple of years, cooperative communication
and relaying has attracted great interest in wireless net-
works and some scenarios have been studied from infor-
mation theory perspective. The first model to study this
problem, which consists of 3 nodes, is introduced by Van
der Meulen [1]. Cover and El Gamal presented two cod-
ing strategies for this model [2]. In addition to one-way
relaying, two-way communication between two nodes or
bidirectional relaying is of great interest. In the two-way
relay channel (TWRC), there exists a relay that facili-
tates exchange of messages between two nodes. In the full
duplex mode, each node is able to transmit and receive
simultaneously but in a half-duplex communication, each
node can either receive or transmit data at each time slot.
Due to practical constraints on wireless nodes, in this

paper, we study the Gaussian two-way relay channel
(GTWRC) in a half-duplex mode. In the literature, there
exist many transmission protocols for the GTWRC in
a half-duplex mode, see, e.g., [3–7]. Each transmission
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protocol consists of a sequence of phases (or states) where
each phase is specified by the modes of the half-duplex
nodes (transmit or receive) all together. For instance, in
the 3-node half-duplex TWRC, there exist 8 possible
states, out of which there are 6 useful phases as shown in
Fig. 1 (the 2 phases in which all nodes are transmitting or
all are receiving are not useful [8]).
The basic protocol for the TWRC, which consists of

two phases (phase 1 and 2 of Fig. 1), is Multiple Access
and Broadcast (MABC) protocol. In the first phase, which
is referred to as the MA phase, two nodes simultane-
ously transmit to the relay. In the second phase, i.e, the
BC phase, the relay broadcasts a signal to both nodes.
There are several practical coding schemes that investi-
gate this protocol, see e.g., [9–13]. In the BC phase, the
relay combines the data from both nodes and broadcasts
the combined data back to both nodes. For this phase,
there exist several strategies for the processing at the relay
node, e.g., an amplify-and-forward (AF) strategy [5], a
decode-and-forward (DF) strategy [5, 14], or a compress-
and-forward (CF) strategy [15]. The AF protocol is a
simple scheme, which amplifies the signal transmitted
from both nodes and retransmits it to them, and unlike
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Fig. 1 Possible phases in the half-duplex two-way relay channel

the DF protocol, no decoding at the relay is performed.
In the two-way AF relaying strategy, the signals at the
relay are actually combined on the symbol level. Due to
amplification of noise, its performance degrades at low
signal-to-noise ratios (SNRs). The two-way DF relaying
strategy was proposed in [5], where the relay decodes the
received data bits from the both nodes. Since the decoded
data at the relay can be combined on the symbol level or
on the bit level, there has been different data-combining
schemes at the relay for the two-way DF relaying strategy:
superposition coding, network coding, and lattice cod-
ing [16]. In the superposition coding scheme, applied in
[5], the data from the two nodes are combined on the
symbol level, where the relay sends the linear sum of
the decoded symbols from both nodes. Shortly after the
introduction of the two-way relay channel, its connection
to network coding [17] was observed and investigated.
The network coding schemes combine the data from
nodes on the bit level using the XOR operation, see, e.g.,
[10, 18–22]. Lattice-based coding uses modulo addi-
tion in a multi-dimensional space and utilizes nonlinear
operations for data combining. Applying lattice codes
over two-way relaying systems was considered in, e.g.,
[7, 12, 13, 23–25]. In general, as in CF or partial DF relay-
ing strategies, the relay node does not need to decode
the source messages but only needs to pass sufficient
information to the destination nodes. A strategy based
on symbol-wise network coding, in which two modulated
symbols with different modulation types directly being
mapped to a transmitted signal at the relay is investigated
in [9]. A combination of bit-wise network coding and
channel decoding is considered in [10]. A coding scheme
based on distributed linear-dispersion space-time codes is
considered in [11]. Nested lattice codes for the GTWRC
in the symmetric and asymmetric case are considered in
[12, 13], respectively. For the asymmetric case, based on
a lattice partition chain, [12] shows that the achievable

rate region is within 0.5 bit from the capacity region for
each user. Note that in [12] all nodes operate in full-duplex
mode and there is no direct channel between the source
nodes. Using a compress-and-forward strategy based on
nested lattice codes, some new achievable rate regions for
the GTWRC are provided [7] where it is assumed that
all nodes operate in half-duplex mode without any direct
link between the communication nodes. In the proposed
scheme in [7], a layered coding is applied: a common
layer is decoded by both receivers and a refinement layer
is recovered only by the receiver which has the better
channel condition. In [24] the GTWRC which operates in
full-duplex mode is considered. Based on decoding non-
integer linear combination of lattice codewords (instead
of decoding linear combination of them), it is shown that
the capacity region of the GTWRC under MABC proto-
col is partially achieved [24]. However, it is shown that the
MABC protocol may not perform well when the channel
gains are asymmetric [3]. Thus, to improve performance
and to achieve a larger rate region, protocols with more
phases are proposed in the literature, e.g., [3, 6, 26–28].
The capacity region of relay channel with state infor-

mation at the sources or at the relay is investigated in
[29–36]. The relay channel and the cooperative relay
broadcast channel controlled by random parameters are
studied in [29]. It is shown that when the state is non-
causally known to transmitter and intermediate nodes,
the decode-and-forward can achieve the capacity region
under some cases. The relay channel with state known
non-causally at the relay is investigated in [30, 31]. Using
Gelfand-Pinsker coding, rate-splitting and decode-and-
forward, a lower bound on channel capacity is obtained
for this channel and it is shown that for the degraded
Gaussian channels, the lower bound meets the upper
bound and thus the capacity region is achievable. The
relay channel when the state is available only at the
source is studied in [32–34]. By obtaining lower and upper
bounds, it is shown that in a number of special cases,
the capacity region is achievable. A partially cooperative
relay broadcast channel (PC-RBC) with state is studied in
[35] where two situations including availability of the state
non-causally at both the source and the relay and only at
the source are analyzed. The relay interference channel
with cognitive source where only the source knows (non-
causally) the interference from the interferer is considered
in [36] and some achievable rate regions are obtained.
In [26], the GTWRC with four phases (phases 1, 2, 5,

and 6 of Fig. 1) is considered. It is shown that for both full-
and half-duplex modes, partial decode-and-forward can
achieve a rate region strictly larger than the time shared
region of pure decode-and-forward and direct transmis-
sion. Two different decode-and-forward protocols with
three and four phases, which have a better performance
than MABC under some constraints on the asymmetric
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model, are considered in [3]. These protocols are referred
to as Time Division Broadcast (TDBC) (phases 2, 5, and
6 of Fig. 1) and Hybrid Broadcast (HBC) (phases 1, 2, 5,
and 6 of Fig. 1). If channel coefficients tend to symmetric-
channel coefficients, then TDBC protocol has a poor
performance compared with the MABC. But it is shown
that at some cases, the achievable sum rate of HBC proto-
col contains set of points that are outside the outer bounds
of the MABC and TDBC protocols .
To achieve a larger rate region than the HBC protocol in

[3, 37], a protocol that uses all possible 6 phases (shown
in Fig. 1) is proposed in [27, 28]. Although increasing the
number of transmission phases results in improvement of
achievable rate region with respect to the HBC protocol,
it has more complexity relative to a 4-phase protocol. In
[8], by obtaining achievable rate regions and outer bounds
for a 6-phase protocol, it is shown that it can achieve
a larger rate region compared with other protocols at
some cases. In [6], two protocols are investigated: MABC
protocol and TDBC protocol. Using decode-and-forward,
compress-and-forward, amplify-and-forward, and a new
mixed-forward scheme, some achievable rate regions for
these protocols are obtained. A 3-phase protocol, which is
called CooperativeMultiple Access Broadcast (CoMABC)
and consists of phases 1, 2, and 4 of Fig. 1, is pro-
posed in [38]. Using doubly nested lattice codes, an
achievable rate region for this scheme is obtained and
it is shown numerically that the CoMABC outperforms
the MABC and TDBC protocols in terms of sum rate
in asymmetric channel conditions. The two-way relay-
ing in a Gaussian diamond channel is considered in
[39] and it is shown that lattice codes under certain
conditions can achieve rate regions close to the outer
bound.
In this paper, in contrast to [27], instead of increasing

the number of phases in order to achieve a larger rate
region than the HBC protocol, we propose a new 4-phase
cooperative MABC protocol for the half-duplex GTWRC,
including phases 1, 2, 3, and 4 of Fig. 1. First, consider
the MABC protocol, which includes two phases, MA and
BC phases. It is well known that lattice codes can achieve
the capacity region of the MABC protocol within 0.5 bit
[6, 12]. Thus, it seems that we do not need to consider
GTWRC with more transmission phases (i.e., three or
four or six phases). But, suppose that the link from the
relay node to node 2 (1) is very weak (noisy) such that
node 2 (1) can correctly decode the message of node 1
(2) at a very low rate. Thus, we require defining other
phases to increase the rate. Now, consider the CoMABC
protocol [38]. The CoMABC protocol consists of three
phases: phases 1 and 2 are similar to the MABC proto-
col and at the third phase, by cooperating between node
1 and the relay node, we send information to node 2. To
explain why we must use the CoMABC protocol, suppose

that we are at the MABC protocol. At the end of sec-
ond phase, the relay sends information bits to both nodes.
Node 1 can recover its data while node 2, since has a weak
link, can only decode the message of node 1 at a very low
rate. Thus, to increase the data transmission rate, we use
another phase to send data to node 2. Now, to explain our
proposed scheme, again, consider the CoMABC protocol.
Suppose that at the end of phase 2, node 1 can recover
message of node 2 at a very low rate. Since at phase 3,
we send no data to node 1, thus, we must define other
phases to send extra data to node 1 to decode the mes-
sage of node 2 at a higher rate. In our proposed scheme,
at phases 3 and 4, we send some data to node 1 and node
2 to decode the message of the other node at a higher
rate.
Our proposed protocol is denoted by 2-CoMABC. In

phase 1 and phase 2, the protocol is similar to the MABC.
In these phases, both nodes cannot completely recover
the message of each other. Thus, we introduce two other
phases. In phase 3 and phase 4, each node with the help
of the relay and the other node tries to recover the mes-
sage of the other node. These two phases are referred to
as the cooperative phases. For the first time in this paper,
we propose a scheme based on a “superposition coding
for nested lattice codes” for the GTWRC. In superposi-
tion coding, we divide the message of each node into two
parts using nested lattice codes: satellite codeword and
cloud center. Thus, if we want to recover a message, we
must recover the satellite codeword and the cloud center
simultaneously. In phase 1, based on the idea of com-
putation coding [40], we recover a linear combination of
messages. Due to structured codes, we can calculate the
satellite codeword and cloud center for linear combina-
tion of messages. Then, we send the satellite codewords to
nodes in phase 2 using “random coding”. In phase 3 and
4, we send the cloud centers to both nodes. At the end
of phase 4, we can recover both messages. Although we
apply the superposition coding using nested lattice codes
to the 2-CoMABC protocol, but one can use it to achieve
better or same rate regions which are obtained at other
papers. For example, we can apply it to the CoMABC
protocol proposed in [38] and show that our proposed
scheme includes the CoMABC scheme as a special
case.
Finally, by examining many numerical examples (out

of which some are presented here) and comparing the
achievable rate region of the proposed scheme with that
of the HBC protocol, it can be observed that our proposed
scheme has a better performance than the HBC protocol.
In addition, this scheme not only improves upon previ-
ous 2- and 3- and 4-phase protocols but also can perform
superior at some cases to the 6-phase protocol, proposed
in [27] (which has more complexity relative to a 4-phase
protocol).
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In summary, our main contributions are as follows:

• Proposing a new transmission scheme based on
“superposition coding for nested lattice codes” and
“random coding”.

• Analyzing the proposed protocol in a new cooperative
transmission scheme and showing that our proposed
scheme can achieve the capacity rate region in the
high SNR regime and within 0.5 bit in general.

• Improving the rate region of the 4-phase HBC
protocol without increasing any complexity (in
contrast to the proposed scheme at [27]).

The remainder of the paper is organized as follows. We
present the channel model and the preliminaries on lat-
tice codes in Section 2. In Section 3, first, we present
the superposition coding for nested lattice codes and
then we introduce and analyze our proposed scheme. In
Section 4, an achievable rate region as well as a rate region
outer bound based on the cut-set bound are provided.
Using numerical examples, achievable rate regions of dif-
ferent cooperative protocols are compared in Section 5.
Section 6 concludes the paper.
Notations: Let C (x) = 1

2 log (1 + x). Logarithms are of
base two. The random variables (RV) and their realiza-
tions are denoted by capital and small letters, respectively.
x stands for a vector of length n, (x1, x2, . . . , xn). [ x]+ =
max {x, 0} for x ∈ R.

2 Preliminaries: channel model and lattices
2.1 Channel model
The channel model for the GTWRC via 2-CoMABC pro-
tocol is shown in Fig. 2. This paper studies a GTWRCwith
four phases which operates in half-duplex mode, i.e., each
node can only either listen or transmit at the same time. In
this model, nodes 1 and 2 intend to exchange independent
messages W1 ∈ {1, 2, . . . , 2nR1} and W2 ∈ {1, 2, . . . , 2nR2}
with the assistance of a relay (represented by node r). We
denote the relative time duration of the mth phase by tm
where

∑
m tm = 1. For a given block size n, we denote

the normalized duration of the mth phase by tm,n, and in
achievability schemes, we must have lim

n→∞tm,n = tm [6].

The random sequences Xk
i ∈ Xi and Y k

i ∈ Yi, respectively,
denote the channel input and output at kth channel use at
node i, for i ∈ {1, 2, r}. Note that the distributions of Xk

i
and Y k

i depend on the value of k, e.g., for k ≤ t1,n.n, we are
in phase 1; for t1,n.n ≤ k ≤ (

t1,n + t2,n
)
.n, we are in phase

2; for
(
t1,n + t2,n

)
.n ≤ k ≤ (

t1,n + t2,n + t3,n
)
.n, we are in

phase 3; and for
(
t1,n + t2,n + t3,n

)
.n ≤ k ≤ n, we are in

phase 4 [6]. With a slight abuse of notation, assume that
X(m)
i denotes the random variable with alphabetXi during

phasem.
In the following, similar to [6], we define encoders,

decoders, and associated probability of errors: letWS,T :=

Fig. 2 The channel model for the Gaussian two-way relay channel via
2-CoMABC protocol in the half-duplex mode

{
Wi,j|i ∈ S, j ∈ T , S,T ⊂ M

}
denote the set of messages

from nodes in set S to nodes in set T. Note that if node i
does not have amessage for node j, then we haveWi,j = Ø.
At node i, the encoder at channel use k is a function
Xk
i

(
W{i},M,Y 1

i ,Y 2
i , . . . ,Y

k−1
i

)
∈ Xi; the decoder at node

i after all n channel uses produces an estimate of the mes-
sageWj,i using function Ŵj,i

(
Y 1
i ,Y 2

i , . . . ,Yn
i ,W{i},M

)
. The

error event to decode the message Wi,j at the end of the
block of length n is defined by Ei,j :=

{
Wi,j �= Ŵi,j (.)

}
, and

the error event at node j in which node j wants to find
wi at the end of phase m is denoted by E(m)

i,j . For a pro-
tocol with phase durations {tm}, a set of rates Ri,j is said
to be achievable if there exist encoders/decoders of block
length n = 1, 2, . . . with both P

[
Ei,j
] → 0 and tm,n → tm

as n → ∞ for all i, j, m. An achievable rate region is the
closure of a set of achievable rate tuples for fixed {tm}. The
set of all achievable rate tuples is the capacity region of the
TWRC.
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In this paper, we assume all links in the bi-directional
relay channel are subject to independent, identically dis-
tributed (i.i.d) white Gaussian noise. In the following, we
describe the Gaussian channel model for the 2-CoMABC
protocol. Communication process takes place in four
phases: MA phase, BC phase, and two cooperative phases,
as follows:

MA phase (phase t1) :Y (1)
r = g1rX(1)

1 + g2rX(1)
2 + Z(1)

r ,

BC phase (phase t2) :Y (2)
i = griX(2)

r + Z(2)
i , i ∈ {1, 2}

Cooperative phases (phase t3) :Y (3)
1 = gr1X(3)

r + g21X(3)
2 + Z(3)

1 ,

Cooperative phases (phase t4) :Y (4)
2 = gr2X(4)

r + g12X(4)
1 + Z(4)

2 ,

where all Gaussian noise sequences are zero mean with
unit variance and the channel inputs are subject to average
power constraints as the following:

1
n
E

∥∥∥X(m)
i

∥∥∥2 ≤ Pi. for i = 1, 2, r m = 1, 2, 3, 4

In addition, gij is the channel gain between transmitter
i and receiver j. We assume that the channel is recipro-
cal such that gij = gji and each node is fully aware of g1r ,
g2r , and g12 (i.e., full CSI). Considering channel reciprocity,
the channel coefficient between nodes 1 and r is denoted
collectively as g1, i.e., g1r = gr1 = g1. Similarly, we have
g2r = gr2 = g2 and g12 = g21 = g3.

2.2 Lattice definitions
Here, we provide some necessary definitions on lattices
and nested lattice codes. Interested readers can refer to
[40–42] and the references therein for more details.

Definition 1. (Lattice): A lattice �(n) is a discrete addi-
tive subgroup of Rn. A lattice �(n) can always be written
in terms of a generator matrix G ∈ R

n×n as

�(n) = {x = zG : z ∈ Z
n},

where Z represents the set of integers.

Definition 2. (Quantizer): The nearest neighbor quan-
tizer Q� maps any point x ∈ R

n to the nearest lattice
point:

Q�(x) = argmin
l∈�

‖x − l‖ .

Definition 3. (Voronoi region): The fundamental
Voronoi region of lattice �(n) is set of points in R

n closest
to the zero codeword, i.e.,

V0(�
(n)) = {x ∈ R

n : Q(x) = 0}.

Definition 4. (Moments): σ 2 (�(n)
)
which is called the

second moment of lattice �(n) is defined as

σ 2(�(n)) = 1
n

∫
V(�)

‖x‖2 dx∫
V(�)

dx
, (1)

and the normalized second moment of lattice � can be
expressed as

G(�(n)) = σ 2(�(n))[∫
V(�)

dx
] 2
n

= σ 2(�)

V
2
n

,

where V = ∫
V(�)

dx is the Voronoi region volume.

Definition 5. (Modulus): Themodulo-� operation with
respect to lattice � returns the quantization error as

xmod �(n) = x − Q(x),

that maps x into a point in the fundamental Voronoi
region and it is always placed in V .

The modulo lattice operation satisfies the following dis-
tributive property [43][

xmod �(n) + y
]
mod �(n) = [

x + y
]
mod �(n).

Definition 6. (Quantization goodness or Rogers-good):
A sequence of lattices�(n) ⊆ R

n is good for mean-squared
error (MSE) quantization if

lim
n→∞G

(
�(n)

)
= 1

2πe
.

The sequence is indexed by the lattice dimension n. The
existence of such lattices is shown in [44, 45].

Definition 7. (AWGN channel coding goodness or
Poltyrev-good): Let Z be a length-n i.i.d. Gaussian vector,
Z ∼ N

(
0, σ 2

ZIn
)
. The volume-to-noise ratio of a lattice is

given by

μ (�, ε) = (Vol(V))2/n

2πeσ 2
Z

,

where σ 2
Z is chosen such that Pr {Z /∈ V} = ε and In is

an n-by-n identity matrix. A sequence of lattices is �(n)

Poltyrev-good if

lim
n→∞μ

(
�(n), ε

)
= 1, ∀ε ∈ (0, 1)

and, for fixed volume-to-noise ratio greater than 1,
Pr {Z /∈ Vn} decays exponentially in n .

Definition 8. (Nested lattices): A lattice �(n) is said to
be nested in lattice �

(n)
c if �(n) ⊆ �

(n)
c . �(n) is referred

to as the coarse lattice and �
(n)
c as the fine lattice. The set

of all points of a fine lattice �
(n)
c that are within the fun-

damental Voronoi region V of a coarse lattice �(n) form
a nested lattice code. The rate of a nested lattice code is
defined as

R = 1
n
log
∣∣∣C(n)

∣∣∣ = 1
n
log

Vol (V)

Vol (Vc)
.
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Erez et al. show that there exists a sequence of lat-
tices that are simultaneously good for packing, cover-
ing, source coding (Rogers-good), and channel coding
(Poltyrev-good). In the following, we present a key prop-
erty of dithered lattice codes.

Lemma 1. [41] The Crypto Lemma Let V be a ran-
dom vector with an arbitrary distribution over Rn. If D is
independent of V and uniformly distributed over V , then
(V + D)mod � is also independent of V and uniformly
distributed over V .

Proof. See lemma 1 in [41].

3 Lattice-coded cooperation protocol
In this section, based on nested lattice codes, we propose
an achievable rate region on the capacity region of the
GTWRC. First, we present the superposition scheme for
nested lattice codes that is a key to our code construction.

3.1 Superposition coding for nested lattice codes
Consider the following nested lattices:

�
(n)
s1 ⊆ �

(n)
s2 ⊆ �(n)

m ⊆ �(n)
c . (2)

The coding lattice (i.e., fine lattice) �
(n)
c provides the

codewords, while the shaping sublattices (i.e., coarse lat-
tices) �

(n)
s1 and �

(n)
s2 satisfy the power constraint. The set

of points of fine lattice �
(n)
c that lies in the fundamental

Voronoi region of shaping lattice �
(n)
si forms a codebook

for node i, i.e.,

C(n)
i =

{
�(n)

c ∩ V(n)
si

}
,

and its rate is given by

Ri = 1
n
log
∣∣∣C(n)

i

∣∣∣ = 1
n
log

⎛⎝Vol
(
V(n)
si

)
Vol

(
V(n)
c
)
⎞⎠ . (3)

The meso-lattice [46] �
(n)
m partitions the set of code-

words for node i into two parts. To clarify this discussion,
we define two additional codebooks as follows:

C(n)
a =

{
�(n)

c ∩ V(n)
m

}
,

C(n)

b,i =
{
�(n)

m ∩ V(n)
si

}
,

where the associated coding rates are

Ra = 1
n
log

⎛⎝Vol
(
V(n)
m
)

Vol
(
V(n)
c
)
⎞⎠ ,

Rb,i = Ri − Ra = 1
n
log

⎛⎝Vol
(
V(n)
si

)
Vol

(
V(n)
m
)
⎞⎠ .

Now, we can decompose each lattice codeword V i ∈
C(n)
i by �

(n)
m into two points, Va,i (an individual codeword

in each cloud, referred to as a satellite codeword) and V b,i
(the cloud center associated with a nested lattice, referred
to as a cloud center):

V i = [
Va,i + V b,i

]
mod �

(n)
si ; (4)

where

Va,i = V imod �(n)
m ∈ C(n)

a ,
V b,i = [

V i − Va,i
]
mod �

(n)
si ∈ C(n)

b,i .

The meso-lattice point V b,i determines the cloud cen-
ter in which V i resides, while Va,i identifies its location
within the clouds (i.e., the individual codewords within
the clouds). This scheme is similar to superposition cod-
ing in the broadcast channel [47].
The following theorem presents the main result of this

paper.

Theorem 1. An achievable region of the half-duplex
bidirectional relay channel with the 2-CoMABC protocol
is the closure of the set of all points (R1,R2) satisfying:

R1 ≤ min
(
t1R∗

1,r + t4C
(
g23P1

)
, t2C

(
g22Pr

)
+ t4C

(
g22Pr + g23P1 + 2ρ1rg2g3

√
PrP1

))
, (5)

R2 ≤ min
(
t1R∗

2,r + t3C
(
g23P2

)
, t2C

(
g21Pr

)
+ t3C

(
g21Pr + g23P2 + 2ρ2rg1g3

√
PrP2

))
, (6)

where R∗
i,r


=
[
1
2 log

(
g2i Pi

g21P1+g22P2
+ g2i Pi

)]+
and [x]+ =

max {0, x}.

In the following, the steps of the proof are presented.
First, we provide a brief explanation of our coding and
then present our scheme in more details. Without loss
of generality, we assume that R1 ≥ R2. Since we need
two codebooks, three nested lattices for generating these
codebooks are required. One of the lattices, �

(n)
c , con-

structs the codewords while the other two lattices (shap-
ing lattices) satisfy the channel power constraints (�(n)

s1
and �

(n)
s2 ). Based on the idea of computation coding [40],

at the end of phase 1, we decode two linear combinations
of messages. In order to decompose these linear combina-
tions, which are points of �

(n)
c , we define another lattice(

�
(n)
m
)

that partitions �
(n)
c into clouds. Based on this

coding strategy, both linear combinations have the same
satellite codeword (i.e., an individual codeword in Vm) but
different cloud centers (i.e., an individual codeword in Vs1
or Vs2).
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In phase 2, we send the satellite codeword of the linear
combinations to both nodes while in phase 3 and 4, we
communicate the cloud center associated with the linear
combination of codewords to node 1 and 2, respectively.
Thus, at the end of phase 4, based on having the cloud
center associated with a nested lattice and the individ-
ual codeword in that cloud, we can fully find the linear
combination of messages at both nodes. Using the later
decoding, we can decode the message of each node at the
opposite node. In the following, we present our scheme in
more details.

3.2 Phase 1 (MA phase)
• Encoding:

By calculating the optimum phase durations, t1, t2, t3,
and t4, we can determine the codeword length in each
phase as n1 = t1

Ts
, n2 = t2

Ts
, n3 = t3

Ts
, and n4 = t4

Ts
, whereTs

is the sampling interval. In the following, without loss of
generality, we assume that g21P1 ≥ g22P2. In order to apply
the rate splitting, we choose a chain of lattices as (2), such
that �

(n1)
s1 , �(n1)

s2 and �
(n1)
m are Rogers-good and Poltyrev-

good while�
(n1)
c is Poltyrev-good. The generation of these

lattices is fully explained in [45].
To send the messages Wi i ∈ {1, 2} to the relay node,

using a one-to-one mapping, we first map it to lattice
codeword V i ∈ C(n1)

i . Then, we construct the following
sequence to transmit over the channel:

X(1)
i = 1

gi [V i + Di]mod �
(n1)
si ,

where Di is a dither that is uniformly distributed over the
Voronoi region of �

(n1)
si , i.e., Di ∼ Unif (Vsi). Since the

channel gains from node 1 → r and 2 → r are differ-
ent, and we also aim to decode the sum of codewords
V 1 and V 2 at the relay node, we pre-amplify the trans-
mit signals by 1

gi . According to the channel power con-
straints, we choose the second moments of lattices as the
following:

σ 2 (�si) = g2i Pi i ∈ {1, 2} .
• Decoding:

The relay aims to recover the linear combination of V i’s
instead of recovering V 1 and V 2, separately. Thus, the lat-
tice scheme inherits the idea of computation coding [40]
and physical-layer network coding [48]. To reach this goal,
with receiving the sequence

Y (1)
r = g1X(1)

1 + g2X(1)
2 + Z(1)

r ,

the relay performs the following operations:

Y (1)
dr = αY (1)

r − D1 − D2

= αg1X(1)
1 + αg2X(1)

2 + αZ(1)
r − D1 − D2

= V 1 + V 2 + αg1X(1)
1 − (V 1 + D1) + αg2X(1)

2

− (V 2 + D2) + αZ(1)
r

= V 1 + V 2 − Q�s1 (V 1 + D1) − Q�s2 (V 2 + D2)

+ g1 (α − 1)X(1)
1 + g2 (α − 1)X(1)

2 + αZ(1)
r

= V 1 + V 2 − Q�s1 (V 1 + D1) − Q�s2 (V 2 + D2) + Zeff,

where

Zeff = g1 (α − 1)X(1)
1 + g2 (α − 1)X(1)

2 + αZ(1)
r .

Due to the dithers, the vectors V 1,V 2,X(1)
1 ,X(1)

2 are
independent and also independent of Z(1)

r . Therefore Zeff
is independent of V 1 and V 2. Now, we choose α such
that the variance of the effective noise, Zeff is minimized.
Hence, we obtain

αMMSE = g21P1 + g22P2
g21P1 + g22P2 + 1

.

After calculating Y (1)
dr , we need to obtain estimations of

the following linear combinations:

V r,1 = [
V 1 + V 2 − Q�s2 (V 2 + D2)

]
mod �

(n1)
s1 , (7)

V r,2 = [V 1 + V 2]mod �
(n1)
s2 . (8)

To decode (7) using Y (1)
dr , we perform the following

operation:

Y dr,1 =
[
Y (1)
dr

]
mod �

(n1)
s1

= [
V 1 + V 2 − Q�s1 (V 1 + D1) − Q�s2 (V 2 + D2)

+ Zeff
]
mod �

(n1)
s1

= [
V r,1 + Zeff

]
mod �

(n1)
s1 (9)

where (9) is based on the distributive law of the modulo
operation. Now, we use the minimum Euclidean distance
lattice decoding [41, 49] to decode V r,1, correctly. Thus,
we get

V̂ r,1 = Q�c

(
Y dr,1

)
.

From (9), we can see that the estimation is incorrect if

Zeff /∈ Vc. (10)

(10) shows that the estimation of V r,1 is incorrect if the
effective noise Zeff leaves the Voronoi region surrounding
the true codeword, i.e., Pe = Pr (Zeff /∈ Vc) .
To show that Pe = Pr (Zeff /∈ Vc) goes to zero exponen-

tially in n, we consider a Gaussian sequence, N
(
0, σ 2

ZIn
)

with the same second moment as Zeff, i.e., Z∗
eff ∼

N (0, Var (Zeff)). Since the fine lattice �
(n1)
c is a Poltyrev-

good lattice, then from Definition 7, we know that for a
Gaussian sequence, Z∗

eff ∼ N (0, Var (Zeff)), the following
error probability Pr

(
Z∗
eff /∈ Vc

)
, vanishes as n1 → ∞ if
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μ =
(
Vol

(
V(n1)
c

)) 2
n1

2πeVar
(
Z∗
eff
) > 1, (11)

If this occurs, then from Lemma 11 in [41], Pe =
Pr (Zeff /∈ Vc) goes to zero exponentially in n as well. Now,
from (3), we can obtain the rate of link 1 → r and 2 → r,
i.e., R(1)

i,r , as follows:

R(1)
i,r = 1

n1
log

⎛⎝Vol
(
V(n1)
si

)
Vol

(
V(n1)
c

)
⎞⎠

= 1
2
log

⎛⎜⎜⎝ σ 2
(
�

(n1)
si

)
G
(
�

(n1)
si

) (
Vol

(
V(n1)
c

)) 2
n1

⎞⎟⎟⎠

≤ 1
2
log

⎛⎝ σ 2
(
�

(n1)
si

)
G
(
�

(n1)
si

)
2πeVar

(
Z∗
eff
)
⎞⎠ (12)

≤ 1
2
log

⎛⎝σ 2
(
�

(n1)
si

)
Var

(
Z∗
eff
)
⎞⎠ (13)

= 1
2
log
(

g2i Pi
Var

(
Z∗
eff
))

= 1
2
log
(

g2i Pi
g21P1 + g22P2

+ g2i Pi

)
,

where (12) follows from (11), and (13) is based on Rogers
goodness of �

(n1)
si and the fact that G

(
�

(n1)
si

)
≥ 1

2πe .
Thus, we obtain the achievable rate region of link 1 → r
and 2 → r as

R(1)
i,r ≤ R∗

i,r , (14)

where

R∗
i,r


=
[
1
2
log
(

g2i Pi
g21P1 + g22P2

+ g2i Pi

)]+
.

In order to decode the second term, (8), we assume that
the estimation of V r,1 is correct. This assumption is valid
if R(1)

1,r and R(1)
2,r satisfy (14). Thus, we can calculate V r,2 as:[

V r,1
]
mod �

(n1)
s2 = [

V 1 + V 2 − Q�s2 (V 2 + D2)
]
mod �

(n1)
s2

= [V 1 + V 2]mod �
(n1)
s2

= V r,2,
(15)

where (15) follows from�
(n1)
s1 ⊆ �

(n1)
s2 and the distributive

law of the modulo operation.

Now, the relay node decomposes the linear combina-
tions of messages, V r,1 and V r,2, as the following:

La,1

= [

V r,1
]
mod �(n1)

m

=
[(
V 1 + V 2 − Q�s2 (V 2 + D2)

)
mod �

(n1)
s1

]
mod �(n1)

m

=
[([

Va,1 + V b,1
]
mod �

(n1)
s1 + [

Va,2 + V b,2
]
mod �

(n1)
s2

− Q�s2 (V 2 + D2)
)
mod �

(n1)
s1

]
mod �(n1)

m (16)

= [
Va,1 + V b,1 + Va,2 + V b,2 − Q�s2 (V 2 + D2)

− Q�s1

(
Va,1 + V b,1

)− Q�s2

(
Va,2 + V b,2

)]
mod �(n1)

m

= [
Va,1 + Va,2

]
mod �(n1)

m (17)

where (16) follows from (4) and the last equality follows
from �

(n1)
s1 ⊆ �

(n1)
s2 ⊆ �

(n1)
m and V b,i ∈ C(n)

b,i . To determine
the cloud center, we perform the following operation:

Lb,1

= [

V r,1 − La,1
]
mod �

(n1)
s1 (18)

=
[([

Va,1 + V b,1
]
mod �

(n1)
s1 + [

Va,2 + V b,2
]
mod �

(n1)
s2

− Q�s2 (V 2 + D2)
)
mod �

(n1)
s1 − La,1

]
mod �

(n1)
s1

= [
V b,1 + V b,2 − Q�s2 (V 2 + D2) − Q�s1

(
Va,1 + V b,1

)
− Q�s2

(
Va,2 + V b,2

)+ Q�m

(
Va,1 + Va,2

)]
mod �

(n1)
s1

= [
V b,1 + V b,2 − Q�s2 (V 2 + D2) − Q�s2

(
Va,2 + V b,2

)
+ Q�m

(
Va,1 + Va,2

)]
mod �

(n1)
s1 (19)

where the last equality is based on the distributive law of
themodulo operation. Thus using (18), we can decompose
V r,1 as follows:

V r,1 = [
La,1 + Lb,1

]
mod �

(n1)
s1 .

Similarly, for V r,2, we get:

V r,2 = [
La,2 + Lb,2

]
mod �

(n1)
s2 ,

where

La,2 = [
Va,1 + Va,2

]
mod �(n1)

m ,

Lb,2 = [
V b,1 + V b,2 + Q�m

(
Va,1 + Va,2

)]
mod �

(n1)
s2 .

Note that La,i ∈ C(n1)
a and Lb,i ∈ C(n1)

b,i for i = 1, 2. As
we showed in (17) and (19), due to the structure of nested
lattice codes, we can determine La,i and Lb,i for i = 1, 2
using V r,i. Our coding strategy sends the linear combina-
tion of satellite codewords (associated with V 1 and V 2),
i.e., La,1 to both nodes in phase 2. In phase 3 and 4, we
communicate the cloud center associated with the linear
combination of codewords, i.e., Lb,2 and Lb,1 to node 1 and
2, respectively.
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3.3 Phase 2 (broadcast phase)
• Encoding:

In this phase, we send the codeword La,1 = [
Va,1+

Va,2
]
mod �

(n1)
m to both nodes by random coding. Note

that La,1 ∈ C(n1)
a . Here, we apply joint-typicality scheme.

First, we generate 2n2R
(2)
r sequences, with each element

i.i.d. according toN ∼ (0,Pr) and R(2)
r = max

(
R(2)
r,1 ,R

(2)
r,2

)
,

where R(2)
r,1 and R(2)

r,2 will be determined later. These
sequences form a codebook C(n2)

r . We assume a one-to-
one correspondence between each La,1 ∈ C(n1)

a and a
codeword X(2)

r ∈ C(n2)
r .

• Decoding:

Let us denote the relay codeword by X(2)
r
(
La,1

)
. Based

on Y (2)
1 = g1X(2)

r + Z(2)
1 , node 1 finds the relay message

La,1 as L̂a,1 if a unique codeword Xr
(̂
La,1

) ∈ C(n2)
r,2 exists

such that
(
Xr
(̂
La,1

)
,Y (2)

1

)
are jointly typical, where

C(n2)
r,2 =

{
Xr
(
La,1

)
: La,1 = [

va,1 + Va,2
]
mod �(n1)

m

}
.

Note that |C(n2)
r,2 | = 2n2R

(2)
r,1 (since Va,1 is known at node

1). Since node 1 has access to its codeword, V 1, its cor-
responding satellite codeword Va,1 can be determined
easily. Using the knowledge of va,1 and L̂a,1 at node 1, it
can decode the message of node 2 as:

V̂a,2 = [̂
La,1 − va,1

]
mod �(n1)

m .

From the argument of random coding and jointly typical
decoding [50], we get

R(2)
r,1 ≤ C

(
g21Pr

)
. (20)

Similarly, node 2 with having V 2 and thus its corre-
sponding satellite codeword Va,2 can find Va,1 if

R(2)
r,2 ≤ C

(
g22Pr

)
. (21)

3.4 Phase 3 (first cooperative phase)
During this phase, only node 2 and the relay node trans-
mit.

• Encoding:

In this phase, node 1 attempts to decode V b,2 to con-
struct V 2 using the decoded satellite codeword, V̂a,2 from
the previous phase. At the relay node, from phase 1, the
following sequence is available:

L(3)
r


= Lb,2 = [
V b,1 + V b,2 + Q�m

(
Va,1 + Va,2

)]
mod �

(n1)
s2 .

The relay encodes L(3)
r and transmits it to node 1. Node

2 has access to V 2 and Va,1 (from phase 2) and thus can
generate L(3)

2

= [

V b,2 + Q�m

(
Va,1 + Va,2

)]
mod �

(n1)
s2 .

Since, the relay and node 2 want to send L(3)
r and L(3)

2
to node 1, respectively, we have a conventional MAC
and we can apply any capacity-achieving code. Note that
L(3)
r =

[
L(3)
2 + V b,1

]
mod �

(n1)
s2 and the cardinality of

the sets of L(3)
r and L(3)

2 are equal (based on the Crypto
lemma in [41, 51]). We assume that this cardinality is
2n3R(3) . To construct codebooks at node 2 and the relay
node, we first find all values of L(3)

2 and V b,1 which
results in the same L(3)

r . Suppose that for each L(3)
r , there

are mi
(
i ∈

{
1, 2, . . . , 2n3R(3)

})
values of L(3)

2 and V b,1
so that the sum of them with each other results in the
same L(3)

r . Now, consider a multivariate Gaussian dis-
tribution p

(
x2,1, x2,2, . . . , x2,2n3R(3) , xr

)
with the following

covariance matrix:

� =

⎡⎢⎢⎢⎢⎢⎣
P2 0 · · · 0 ρ2r

√
PrP2

0 P2 · · · 0 ρ2r
√
PrP2

...
... · · · ...

...
0 0 · · · P2 ρ2r

√
PrP2

ρ2r
√
PrP2 ρ2r

√
PrP2 · · · ρ2r

√
PrP2 Pr

⎤⎥⎥⎥⎥⎥⎦ ,

where ρ2r denotes the correlation coefficient between
x2,i and xr for i ∈

{
1, 2, . . . , 2n3R(3)

}
. To generate the

codebook at node 2, we use the marginal distribu-
tions p

(
x2,1

)
, p
(
x2,2

)
, . . . , p

(
x2,2n3R(3)

)
and by each one of

them, construct a codeword with each element i.i.d. These
sequences form a codebook C(n3)

2 for node 2. This enables
node 2 to map L(3)

2 to a codeword X(3)
2

(
L(3)
2

)
∈ C(n3)

2 .

Now at the relay node, we generate the codebook C(n3)
r .

In order to construct this codebook, suppose Xi is set of
all X2,i

(
L(3)
2

)
such that for the corresponding L(3)

2 , there

exist a V b,1 such that L(3)
r is the same for them. Now,

we generate 2n3R(3) sequences according to the marginal
distribution p (xr|Xi). The relay maps L(3)

r to a codeword
X(3)
r
(
L(3)
r
)

∈ C(n3)
r . Note that both mappings at the relay

and node 2 are one-to-one correspondence.

• Decoding:

In this phase, the decoder of node 1 attempts to
decode V b,2 to construct V 2. Note that node 1 already
has Va,2 from phase 2. Since V b,1 is known at node
1, and the following equality holds for L(3)

2 and L(3)
r :

L(3)
r =

[
L(3)
2 + V b,1

]
mod �

(n1)
s2 , the decoder of node 1

suffices to decode either L(3)
2 or L(3)

r . Based on the received
sequence in this phase, Y (3)

1 = g1X(3)
r + g3X(3)

2 + Z(3)
1 ,

node 1 estimates the message of node 2, L(3)
2 , as L̂(3)

2 if
a unique codeword X(3)

2

(
L̂(3)
2

)
∈ C(n3)

2 exists such that
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(
X(3)
r
([

L̂(3)
2 + vb,1

]
mod �

(n1)
s2

)
,X(3)

2

(
L̂(3)
2

)
,Y (3)

1

)
are

jointly typical, where

C(n3)
2 =

{
X(3)
2

(
L(3)
2

)
: L(3)

2 = [
V b,2 + Q�m

(
va,1 + va,2

)]
mod �

(n1)
s2

}
.

From the argument of random coding and jointly typical
decoding [50], we get

R(3) ≤ C
(
g21Pr + g23P2 + 2ρ2rg1g3

√
PrP2

)
.

Note that by decoding L(3)
2 , we can decode V b,2 as the

following:

V̂ b,2 =
[
L(3)
2 − Q�m

(
va,1 + va,2

)]
mod �

(n1)
s2 .

Also, using flow constraints, we have

t3R(3) = t1R(1)
2,r − t2R(2)

r,1 . (22)

Thus, if the rate of X(3)
r
(
L(3)
r
)
or X(3)

2

(
L(3)
2

)
, which are

equal, is less than the sum capacity of the multiple-access
channel, node 2 can transmit another sequence to node
1 in this phase. Suppose that X

′(3)
2 denotes this supple-

mentary sequence. Given the data rate of X
′(3)
2 as R(3)

2,1 ,
error probabilities vanish as n3 → ∞, if the following
constraints are satisfied:

R(3)
2,1 ≤ C

(
g23P2

)
, (23)

R(3) + R(3)
2,1 ≤ C

(
g21Pr + g23P2 + 2ρ2rg1g3

√
PrP2

)
. (24)

Using (22), the constraints in (23) and (24) can be
rewritten as follows:

R(3)
2,1 ≤ C

(
g23P2

)
, (25)

t1R(1)
2,r + t3R(3)

2,1 ≤ t2R(2)
r,1 + t3C

(
g21Pr + g23P2 + 2ρ2rg1g3

√
PrP2

)
.

(26)

3.5 Phase 4 (second cooperative phase)
In this phase, we can use the explained scheme at phase
3. Since the message of node 2 is recovered by node 1 at
phase 3, it can construct the following sequence, which
the relay has it as well:
Lb,1 = [

V b,1 + V b,2 − Q�s2 (V 2 + D2) − Q�s2

(
Va,2 + V b,2

)
+ Q�m

(
Va,1 + Va,2

)]
mod �

(n1)
s1 .

Here, we assume that p (x1, xr) is a bivariate Gaussian
distribution. The correlation coefficient between X1 and
Xr is denoted by ρ1r , Var (X1) = P1 and Var (Xr) = Pr . By
using this distribution, we generate 2n4R(4) sequences, with
each element i.i.d. according to p (x1, xr). We choose the
first component of the generated sequence as a codeword
for node 1 and the second component as a codeword for
the relay node. These sequences form two codebooks C(n4)

1
and C(n4)

r . Node 1 and relay map Lb,1 to X(4)
1
(
Lb,1

)
and

X(4)
r
(
Lb,1

)
, respectively, and send them to node 2. Thus,

we have a conventional MAC and the capacity region is
easily achieved. But, we can see that if individual rate of
node 1 and the relay is less than the sum capacity of the
MAC, node 1 in this phase can communicate another
data sequence, denoted byX

′(4)
1 . Thus, to correctly recover

X(4)
r
(
Lb,1

)
and X

′(4)
1 in this phase, we get:

R(4)
1,2 ≤ C

(
g23P1

)
, (27)

R(4)
1,2 + R(4) ≤ C

(
g22Pr + g23P1 + 2ρ1rg2g3

√
PrP1

)
, (28)

where t4R(4) = t1R(1)
1,r − t2R(2)

r,2 . Thus, we can rewrite (27)
and (28) as the following:

R(4)
1,2 ≤ C

(
g23P1

)
, (29)

t1R(1)
1,r + t4R(4)

1,2 ≤ t2R(2)
r,2 + t4C

(
g22Pr + g23P1 + 2ρ1rg2g3

√
PrP1

)
.

(30)

Encoding and decoding at nodes in four phases are
explained with the help of Table 1.

Table 1 Encoding and decoding at nodes

Phase 1 Phase 2 Phase 3 Phase 4

(a) Encoding at nodes

Node 1 X1 = 1
g1

[V 1 + D1]mod �
(n1)
s1 − − X(4)

1

(
Lb,1

)
Node 2 X2 = 1

g2
[V 2 + D2]mod �

(n1)
s2 − X(3)

2

(
L(3)
2

)
−

Relay − X(2)
r
(
La,1

)
X(3)
r

(
L(3)
r

)
X(4)
r
(
Lb,1

)
(b) Decoding at nodes

Node 1 − V a,2 V b,2 −
Node 2 − V a,1 − V b,1

Relay

V r,1 = [V 1 + V 2

−Q�s2 (V 2 + D2)
]
mod �

(n1)
s1

V r,2 = [V 1 + V 2]mod �
(n1)
s2

− − −
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3.6 Achievable rate region
From (14), (20), (21), (25), (26), (29) and (30), the following
rate region is achieved:

R(1)
1,r ≤ R∗

1,r , (31)

R(1)
2,r ≤ R∗

2,r , (32)

R(2)
r,1 ≤ C

(
g21Pr

)
, (33)

R(2)
r,2 ≤ C

(
g22Pr

)
, (34)

R(3)
2,1 ≤ C

(
g23P2

)
, (35)

t1R(1)
2,r + t3R(3)

2,1 ≤ t2R(2)
r,1 + t3C

(
g21Pr + g23P2

+ 2ρ2rg1g3
√
PrP2

)
, (36)

R(4)
1,2 ≤ C

(
g23P1

)
, (37)

t1R(1)
1,r + t4R(4)

1,2 ≤ t2R(2)
r,2 + t4C

(
g22Pr + g23P1

+ 2ρ1rg2g3
√
PrP1

)
. (38)

Since there are outgoing data flows from node 1 to node
2 at phases 1 and 4, from (31) and (37), we get:

t1R(1)
1,r + t4R(4)

1,2 ≤ t1R∗
1,r + t4C

(
g23P1

)
. (39)

Similarly, there are information flows from node 2 to
node 1 at phases 1 and 3. Thus, we get

t1R(1)
2,r + t3R(3)

2,1 ≤ t1R∗
2,r + t3C

(
g23P2

)
. (40)

From (36), (38), (39), and (40), we have proved theorem.

4 The rate region outer bound and capacity
results

4.1 The rate region outer bound
In this subsection using the cut-set bound, we obtain
an outer bound over the rate region of the half-duplex
GTWRC. This bound can be derived from the half-duplex
cut-set bound in [52].

Lemma 2. All rate pairs of the discrete memoryless
restricted half-duplex two-way relay channel, as shown
in Fig. 2, that are achievable for some joint probability
distributions

P
(
x(1)
1 x(1)

2 y(1)
r

)
= P

(
x(1)
1

)
P
(
x(1)
2

)
P
(
y(1)
r |x(1)

1 x(1)
2

)
,

P
(
x(2)
r y(2)

1 y(2)
2

)
= P

(
x(2)
r

)
P
(
y(2)
1 |x(2)

r

)
P
(
y(2)
2 |x(2)

r

)
,

P
(
x(3)
r x(3)

2 y(3)
1

)
= P

(
x(3)
r x(3)

2

)
P
(
y(3)
1 |x(3)

r x(3)
2

)
,

P
(
x(4)
r x(4)

1 y(4)
2

)
= P

(
x(4)
r x(4)

1

)
P
(
y(4)
2 |x(4)

r x(4)
1

)
,

must satisfy

R1 ≤ min
{(

t1I
(
X(1)
1 ;Y (1)

r |X(1)
2

)
+ t4I

(
X(4)
1 ;Y (4)

2 |X(4)
r

))
,(

t2I
(
X(2)
r ;Y (2)

2

)
+ t4I

(
X(4)
1 ,X(4)

r ;Y (4)
2

))}
(41)

R2 ≤ min
{(

t1I
(
X(1)
2 ;Y (1)

r |X(1)
1

)
+ t3I

(
X(3)
2 ;Y (3)

1 |X(3)
r

))
,(

t2I
(
X(2)
r ;Y (2)

1

)
+ t3I

(
X(3)
2 ,X(3)

r ;Y (3)
1

))}
(42)

where all tm are non-negative subject to
4∑

m=1
tm = 1.

Proof. For a half-duplex relay network with k phases in
which the sequence of phases is fixed with fraction of
time, any achievable rate R of information flow is upper
bounded as follows [53]

R ≤ min
S

k∑
m=1

tmI
(
X(m)
S ;Y (m)

Sc |X(m)
Sc
)
,

where a cut partitions nodes into two sets S and Sc such
that the source nodes are in S, the destination nodes are
in Sc, and Sc is the complement of S. Using this, we bound
R1 and R2. For communication rate from node 1 to node
2, i.e., R1, we divide the nodes into two sets, S = {1} and
S = {1, r}. As seen from Fig. 2, node 1 only transmits to
relay and node 2 in phases t1 and t4, i.e., there is data rate
from S = {1} to Sc = {r, 2} only in phases t1 and t4. Thus,

4∑
m=1

tmI
(
X(m)
S ;Y (m)

Sc |X(m)
Sc
)

= t1I
(
X(1)
1 ;Y (1)

r |X(1)
2

)
+ t4I

(
X(4)
1 ;Y (4)

2 |X(4)
r

)
.

(43)

On the other hand, there exists data rate from S = {1, r}
to Sc = {2} only in phases t2 and t4. Therefore, we get

4∑
m=1

tmI
(
X(m)
S ;Y (m)

Sc |X(m)
Sc
)

= t2I
(
X(2)
r ;Y (2)

2

)
+ t4I

(
X(4)
1 ,X(4)

r ;Y (4)
2

)
.

(44)

Now, by minimizing over two cuts, i.e., minimizing (43)
and (44), we get the desired bound in (41). Similarly, we
can conclude the bound on R2 which is given by (42).
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For the Gaussian model, we can upper bound the vari-
ous mutual information terms as the following [53]

I
(
X(1)
1 ;Y (1)

r |X(1)
2

)
≤ C

(
g21P1

)
,

I
(
X(4)
1 ;Y (4)

2 |X(4)
r

)
≤ C

(
g23P1

)
,

I
(
X(2)
r ;Y (2)

2

)
≤ C

(
g22Pr

)
,

I
(
X(3)
2 ,X(3)

r ;Y (3)
1

)
≤ C

(
g21Pr + g23P2 + 2ρ2rg1g3

√
PrP2

)
,

I
(
X(4)
1 ,X(4)

r ;Y (4)
2

)
≤ C

(
g22Pr + g23P1 + 2ρ1rg2g3

√
PrP1

)
,

where ρ1r is the correlation coefficient between X(4)
1 and

X(4)
r and ρ2r is the correlation coefficient betweenX(3)

2 and
X(3)
r . Using these mutual information terms at the outer

bounds, given in (41) and (42), we get:

R1 ≤ min
{(

t1C
(
g21P1

)+ t4C
(
g23P1

))
,
(
t2C

(
g22Pr

)
+ t4C

(
g22Pr + g23P1 + 2ρ1rg2g3

√
PrP1

))}
, (45)

R2 ≤ min
{(
t1C

(
g22P2

)+ t3C
(
g23P2

))
,
(
t2C

(
g21Pr

)
+ t3C

(
g21Pr + g23P2 + 2ρ2rg1g3

√
PrP2

))}
. (46)

Linear resource allocation problem
In (45) and (46), phases t1, t2, t3, and t4 are not deter-
mined. Since the capacity region, which should be the
convex hull of all achievable rate pairs (R1,R2), has two
dimensions, this region has no unique maximum and we
cannot determine optimum values for phases. To solve
this problem, we use an alternative metric that is com-
monly used in [3, 6]. In this metric, we maximize the sum
rate, i.e., R1+R2. Thus, we have the following optimization
problem with t1, t2, t3, and t4 as optimization parameters:

max
t1,t2,t3,t4

R1 + R2

s.t.

R1 − t1C
(
g21P1

)− t4C
(
g23P1

) ≤ 0
R1 − t2C

(
g22Pr

)− t4C
(
g22Pr + g23P1 + 2ρ1rg2g3

√
PrP1

) ≤ 0
R2 − t1C

(
g22P2

)− t3C
(
g23P2

) ≤ 0
R2 − t2C

(
g21Pr

)− t3C
(
g21Pr + g23P2 + 2ρ2rg1g3

√
PrP2

) ≤ 0
t1 + t2 + t3 + t4 = 1
0 < t1, t2, t3, t4 < 1

(47)

We can easily transform this problem to a standard form
and solve this optimization problem.

4.2 Capacity results
Corollary 1. The capacity region of the half-duplex

Gaussian two-way relay channel via the 2-CoMABC pro-
tocol, as shown in Fig. 2, is achievable within 0.5 bit.

Proof. We first calculate the gap for R1. For calculating
the gap for R1, if we compare the right-hand sides (RHS)
of (5) and (41), the second term in both minimizations is
the same and the first terms differ by at most 1

2 bit. To see
this, we have:

1
2
log
(
1 + g21P1

)−
[
1
2
log
(

g21P1
g21P1 + g22P2

+ g21P1

)]+

≤ 1
2
log
(
2 − g21P1

g21P1 + g22P2

)
≤ 1

2
,

(48)

where (48) is based on the fact that the maximum
gap occurs at g21P1

g21P1+g22P2
+ g21P1 = 1. Now, from a

simple inequality min (a1, a2) − min (b1, b2) ≤ max
(a1 − b1, a2 − b2), the RHSs of (5) and (45) differ by at
most 1

2 bit. The same holds for (6) and (46), and thus
the achievable rate region which is given by (5) and (6) is
within 0.5 bit of the outer bound for each user regardless
of channel parameters.

Now, we investigate the achievable rate region of the
GTWRC via 2-CoMABC protocol in the high SNR
regime.

Corollary 2. At high SNRs (i.e., g21P1 � 1 and g22P2 �
1), the capacity region of the GTWRC via 2-CoMABC
protocol is given by

R1 ≤ min
{(
t1C

(
g21P1

)+ t4C
(
g23P1

)− o(1)
)
,(

t2C
(
g22Pr

)+ t4C
(
g22Pr + g23P1 + 2ρ1rg2g3

√
PrP1

))}
,

(49)

R2 ≤ min
{(
t1C

(
g22P2

)+ t3C
(
g23P2

)− o(1)
)
,(

t2C
(
g21Pr

)+ t3C
(
g21Pr + g23P2 + 2ρ2rg1g3

√
PrP2

))}
,

(50)

where o(1) → 0 as g21P1, g22P2 → ∞.

To evaluate the achievable rate region of the GTWRC
via 2-CoMABC protocol that is given by (5) and (6), in the
high SNR regime, we consider g21P1 � 1 and g22P2 � 1.
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Thus, we have:

R1 ≤ min
(
t1
[
1
2
log
(
g21P1

)]+
+ t4C

(
g23P1

)
, t2C

(
g22Pr

)
+ t4C

(
g22Pr + g23P1 + 2ρ1rg2g3

√
PrP1

))
,

R2 ≤ min
(
t2
[
1
2
log
(
g22P2

)]+
+ t3C

(
g23P2

)
, t2C

(
g21Pr

)
+ t3C

(
g21Pr + g23P2 + 2ρ2rg1g3

√
PrP2

))
.

By comparing this region with the outer bound in (45)
and (46) for g21P1 � 1 and g22P2 � 1, we can see that the
capacity region is achievable at high SNRs.

5 Numerical results
In this section, we compare the achievable rate region and
the outer bound, in the sum rate sense, of the bidirec-
tional coded cooperation protocols: the MABC protocol
[3], the TDBC protocol [3], the CoMABC protocol [38],
the HBC [3], the 6-phase protocol [27], and our proposed
scheme, 2-CoMABC. Since we have studied a 4-phase
protocol, and the MABC and TDBC protocols have two
and three phases, respectively, we compare the achievable
rate region of our protocol with the outer bound ofMABC
and TDBC protocols.

• MABC protocol (outer bound): The MABC protocol
is a two-phase protocol (phases 1 and 2 of Fig. 1)
where both users simultaneously transmit during the
first phase and the relay alone transmits during the
second. The outer bound of the MABC protocol is
given by [3]:

R1 ≤ min
{
t1C

(
g21P1

)
, t2C

(
g22Pr

)}
,

R2 ≤ min
{
t1C

(
g22P2

)
, t2C

(
g21Pr

)}
.

• TDBC protocol (outer bound): The second protocol
considers sequential transmissions from the two
users followed by a transmission from the relay:
R1 ≤ min

{
t1C

(
P1
(
g21 + g23

))
, t1C

(
g23P1

)+ t3C
(
g22Pr

)}
,

R2 ≤ min
{
t2C

(
P2
(
g22 + g23

))
, t2C

(
g23P2

)+ t3C
(
g21Pr

)}
.

• In [38], using doubly nested lattice codes, an
achievable rate region for three phases CoMABC
protocol is obtained. The achievable rate region for
this protocol is given by [38]

R1 ≤ min
{
t1R∗

1,r + t3C
(
g23P1

)
, t2C

(
g22Pr

)
+ t3C

(
g22Pr + g23P1

)}
,

R2 ≤ min
{
t1R∗

2,r , t2C
(
g21Pr

)}
.

• HBC protocol (achievable rate region): The HBC
protocol contains four phases (phases 1, 2, 5, and 6 of
Fig. 1) which starts with the broadcast phases (5 and

6) followed by the MABC phases (1 and 2). In [3], it is
shown that for the HBC protocol, the following rate
region is achievable:

R1 ≤ min
{
t1C

(
g21P1

)+ t3C
(
g21P1

)
,

t1C
(
g23P1

)+ t4C
(
g22Pr

)}
, (51)

R2 ≤ min
{
t2C

(
g22P2

)+ t3C
(
g22P2

)
,

t2C
(
g23P2

)+ t4C
(
g21Pr

)}
, (52)

R1 + R2 ≤ t1C
(
g21P1

)+ t2C
(
g22P2

)
+t3C

(
g21P1 + g22P2

)
. (53)

An outer bound for the HBC protocol using the cut-
set bound is given in [3]. Since it is not clear that jointly
Gaussian distributions are optimal, it is difficult to com-
pute the outer bound of the HBC protocol numerically
[3]. However, using the presented approach at [53], we can
bound the given outer bound in [3] as the following for the
Gaussian case:

• HBC protocol (outer bound)

R1 ≤ min
{
t1C

(
g21P1 + g23P1

)+ t3C
(
g21P1

)
,

t1C
(
g23P1

)+ t4C
(
g22Pr

)}
,

R2 ≤ min
{
t2C

(
g22P2 + g23P2

)+ t3C
(
g22P2

)
,

t2C
(
g23P2

)+ t4C
(
g21Pr

)}
.

• 6-phase protocol (achievable rate region) [27]

R1 ≤ R(4)
1,2 + min

{
(t1 + t5)C

(
g21P1

)
, t5C

(
g23P1

)
+ t2C

(
g22Pr

)+ R(4)
r,2

}
,

R2 ≤ R(3)
2,1 + min

{
(t1 + t6)C

(
g22P2

)
, t6C

(
g23P2

)
+ t2C

(
g21Pr

)+ R(3)
r,1

}
,

R1 + R2 ≤ t5C
(
g21P1

)+ R(4)
1,2 + t6C

(
g22P2

)
+t1C

(
g21P1 + g22P2

)+ R(3)
2,1,

R(4)
1,2 ≤ t4C

(
g23P1

)
, R(4)

r,2 ≤ t4C
(
g22Pr

)
, R(4)

1,2

+R(4)
r,2 ≤ t4C

(
g22Pr + g23P1

)
,

R(3)
2,1 ≤ t3C

(
g23P2

)
, R(3)

r,1 ≤ t3C
(
g21Pr

)
, R(3)

2,1

+R(3)
r,1 ≤ t3C

(
g21Pr + g23P2

)
.

Kim et al. [3] show that the achievable rate region for the
HBC protocol contains points that are outside the outer
bounds of the MABC and TDBC protocols. In [27], it is
shown that by using a 6-phase protocol, we can achieve
a better rate region than the obtained rate region of the
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HBC protocol in [3]. Note that this improvement is due
to increasing number of transmission phases from 4 to 6
(which induces higher complexity). Here, we numerically
compare 2-CoMABC with the above-mentioned proto-
cols. When we compare the sum rate outer bounds or
achievable sum rates for different protocols, linear pro-
gramming is used to optimize the portion of time allo-
cated to each phase. In the following, for all nodes, we
assume that the power constraint equals to P and we
define SNRi = g2i P for i ∈ {1, 2, 3}.
We compare the sum rate in an environment with path

loss. We assume the channel gains to be g1 = (1 + d)−
γ
2 ,

g2 = (1 − d)−
γ
2 and g3 = 2− γ

2 , where d is the position of
the relay and γ is the path loss exponent.
The achievable sum rate and sum rate outer bound with

different d for HBC and 2-CoMABC protocols are given
in Fig. 3. The figures are evaluated at P = 5 dB and 15
dB, respectively, with γ = 4 and ρ1r = ρ2r = 0.2. As
we expected from Corollary 2, for 2-CoMABC, the inner
bound meets the outer bound at high SNR and performs
superior to the HBC protocol. Also at P = 15 dB, the
achievable rate for 2-CoMABC protocol is larger than the
HBC outer bound. For P = 5 dB, there is a gap between
the inner bound and the outer bound for 2-CoMABC pro-
tocol. This gap at d = ±1 tends to zero due to R∗

1,r →
C
(
g21P1

)
or R∗

2,r → C
(
g22P2

)
.

In Fig. 4, we compare the achievable sum rates and
sum rate outer bounds with different path loss exponents

for 2-CoMABC and HBC protocols. The results are for
γ = 2, 5 with P = 10 dB. Since we have normalized
the channel gain at d = 0, the two groups of curves
meet at this position. As we observe, for smaller γ , the
gap between 2-CoMABC protocol and HBC protocol is
significantly larger than the case of an environment with
larger value of path loss exponent. Moreover, achiev-
able sum rate region and sum rate outer bound of 2-
CoMABC protocol is larger than that of HBC under any
circumstance.
In Figs. 5 and 6, we compare the rate region of dif-

ferent protocols in asymmetric and symmetric scenar-
ios. For the asymmetric case, we see that the achievable
rate region of our proposed scheme not only contains
the achievable rate region of all previous protocols but
it also contains some rates of the 6-phase protocol in
[27]. For the symmetric case, the achievable rate region
of our proposed scheme is completely better than all
other protocols and it fully contains the rate region of
them.
In Fig. 7, we compare the rate region of protocols in low

SNRs, SNR1 = −3 dB, SNR2 = −4 dB, and SNR3 = 2
dB. As we observe, the performance of our transmission
scheme via the 2-CoMABC protocol is similar to the 6-
phase transmission protocol and both schemes achieve
the same rate region. In addition, this rate region coin-
cides with the outer bound of the TDBC protocol. Note
that the achievable rate region using CoMABC protocol
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Fig. 3 Achievable sum rate region and sum rate outer bound vs. the relay position for different SNRs (γ = 4, ρ1r = ρ2r = 0.2)
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Fig. 4 Achievable sum rate region and sum rate outer bound vs. the relay position for different path loss exponents (ρ1r = ρ2r = 0.2)

is zero and thus by the proposed scheme in [38], no rate
region for this protocol can be achieved.
Finally, we compare the performance of HBC, 6-phase,

CoMABC, TDBC, MABC, and 2-CoMABC protocols (in
the sense of achievable sum rate) for P = 15 dB, g2 = 0 dB,

g3= −5 dB with differentG1 = g21 . Figure 8 shows that the
achievable sum rate for 2-CoMABC is larger than that of
all other protocols. Note that in this example, 2-CoMABC
protocol, which only uses four transmission phases, has a
larger sum rate than the 6-phase protocol in [27].
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Fig. 5 Achievable rate regions for six protocols in an asymmetric scenario: SNR1 = 35 dB, SNR2 = 30 dB, and SNR3 = 13 dB (ρ1r = ρ2r = 0.3)
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Fig. 6 Achievable rate regions for six protocols in the symmetric scenario: SNR1 = SNR2 = SNR3 = 10 dB (ρ1r = ρ2r = 0.3)
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Fig. 7 Achievable rate regions for five protocols: SNR1 = −3 dB, SNR2 = −4 dB, and SNR3 = 2 dB
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Fig. 8 Achievable sum rates of different protocols. Channel parameters are P = 15 dB, g2 = 0 dB, and g3 = −5 dB

6 Conclusions
In this paper, the Gaussian two-way relay channel in
the half-duplex mode, which operates in four phases, is
studied. By using superposition coding, a scheme which
achieves the outer bound within 0.5 bit is proposed. In
this scheme, both structured codes and random coding
have been used. In phase 1 (MA phase), we decompose
the message of each user into two parts due to struc-
tured codes. In phase 2 (BC phase) and phase 3 and 4
(cooperative phases), random coding is applied. In the
high SNR regime, the proposed scheme coincided with
the cut-set outer bound and thus the capacity region is
achieved. Also, using numerical examples, we showed that
our 2-CoMABC protocol performs superior to the well-
known HBC protocol (which has the same number of
transmission phases). Although in general the comparison
for few examples may not provide a general insight on
which scheme outperforms the others, similar behavior
has been observed by evaluating the achievable sum rates
and the achievable rate regions in many other examples
with different channel parameters.
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